1
|
Craciun AM, Rotaru A, Cojocaru C, Mangalagiu II, Danac R. New 2,9-disubstituted-1,10-phenanthroline derivatives with anticancer activity by selective targeting of telomeric G-quadruplex DNA. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 249:119318. [PMID: 33360205 DOI: 10.1016/j.saa.2020.119318] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 11/26/2020] [Accepted: 12/05/2020] [Indexed: 06/12/2023]
Abstract
Fifteen new 1,10-phenanthrolines disubstituted at positions 2 and 9 via amide bonds with different heterocycles have been designed and synthesized as G-quadruplex DNA stabilizers. Ten compounds were evaluated for the in vitro anticancer activity against 60 human tumor cell lines panel, four of them showing a very good inhibitory activity on several cell lines. To assess the ability of the most active compounds to interact with G-quadruplex DNA (G4-DNA), circular dichroism experiments were performed. The potency of the compounds to stabilize the G4-DNA has been shown from the thermal denaturation experiments. The mechanism of compounds binding to DNA and to G4-DNA was theoretically investigated by molecular docking studies. The experimental results demonstrated excellent capacity of the two compounds bearing two pyridin-3-yl residues (methylated and non-methylated) to act as selective G-quadruplex binders with promising anticancer activity.
Collapse
Affiliation(s)
- Anda-Mihaela Craciun
- Chemistry Department, Faculty of Chemistry, "Al. I. Cuza" University of Iasi, 11 Carol I, Iasi 700506, Romania; "Petru Poni" Institute of Macromolecular Chemistry, 41A, Grigore Ghica Voda Alley, Iasi 700487, Romania
| | - Alexandru Rotaru
- "Petru Poni" Institute of Macromolecular Chemistry, 41A, Grigore Ghica Voda Alley, Iasi 700487, Romania
| | - Corneliu Cojocaru
- "Petru Poni" Institute of Macromolecular Chemistry, 41A, Grigore Ghica Voda Alley, Iasi 700487, Romania
| | - Ionel I Mangalagiu
- Chemistry Department, Faculty of Chemistry, "Al. I. Cuza" University of Iasi, 11 Carol I, Iasi 700506, Romania
| | - Ramona Danac
- Chemistry Department, Faculty of Chemistry, "Al. I. Cuza" University of Iasi, 11 Carol I, Iasi 700506, Romania.
| |
Collapse
|
2
|
Li Z, Zou S, Wu S, Miao X, Ma DL. Polymerase chain reaction-based ultrasensitive detection of HBV DNA via G-quadruplex selective iridium(III) complex luminescent probe. Talanta 2021; 221:121661. [DOI: 10.1016/j.talanta.2020.121661] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 09/07/2020] [Accepted: 09/09/2020] [Indexed: 12/20/2022]
|
3
|
Zhang S, Huang J, Lu J, Liu M, Chen X, Su S, Mo F, Zheng J. Electrochemical and Optical Biosensing Strategies for DNA Methylation Analysis. Curr Med Chem 2020; 27:6159-6187. [DOI: 10.2174/0929867326666190903161750] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 07/24/2019] [Accepted: 08/07/2019] [Indexed: 12/14/2022]
Abstract
DNA methylation is considered as a crucial part of epigenetic modifications and a popular
research topic in recent decades. It usually occurs with a methyl group adding to the fifth carbon
atom of cytosine while the base sequence of DNA remains unchanged. DNA methylation has significant
influences on maintaining cell functions, genetic imprinting, embryonic development and
tumorigenesis procedures and hence the analysis of DNA methylation is of great medical significance.
With the development of analytical techniques and further research on DNA methylation,
numerous DNA methylation detection strategies based on biosensing technology have been developed
to fulfill various study requirements. This article reviewed the development of electrochemistry
and optical biosensing analysis of DNA methylation in recent years; in addition, we also reviewed
some recent advances in the detection of DNA methylation using new techniques, such as
nanopore biosensors, and highlighted the key technical and biological challenges involved in these
methods. We hope this paper will provide useful information for the selection and establishment of
analysis of DNA methylation.
Collapse
Affiliation(s)
- Shu Zhang
- Department of Basic Clinical Laboratory Medicine, School of Clinical Laboratory Science, Guizhou Medical University, No. 9 Beijing Road, Yunyan District, Guiyang 550004, China
| | - Jian Huang
- Department of Clinical and Military Laboratory Medicine, College of Medical Laboratory Science, Army Medical University, 30 Gaotanyan Street, Shapingba District, Chongqing 400038, China
| | - Jingrun Lu
- Department of Basic Clinical Laboratory Medicine, School of Clinical Laboratory Science, Guizhou Medical University, No. 9 Beijing Road, Yunyan District, Guiyang 550004, China
| | - Min Liu
- Department of Basic Clinical Laboratory Medicine, School of Clinical Laboratory Science, Guizhou Medical University, No. 9 Beijing Road, Yunyan District, Guiyang 550004, China
| | - Xi Chen
- Department of Basic Clinical Laboratory Medicine, School of Clinical Laboratory Science, Guizhou Medical University, No. 9 Beijing Road, Yunyan District, Guiyang 550004, China
| | - Shasha Su
- Department of Basic Clinical Laboratory Medicine, School of Clinical Laboratory Science, Guizhou Medical University, No. 9 Beijing Road, Yunyan District, Guiyang 550004, China
| | - Fei Mo
- Department of Basic Clinical Laboratory Medicine, School of Clinical Laboratory Science, Guizhou Medical University, No. 9 Beijing Road, Yunyan District, Guiyang 550004, China
| | - Junsong Zheng
- Department of Clinical and Military Laboratory Medicine, College of Medical Laboratory Science, Army Medical University, 30 Gaotanyan Street, Shapingba District, Chongqing 400038, China
| |
Collapse
|