1
|
Gholap SS, Dakhil AA, Chakraborty P, Dighe S, Rahman MM, Dutta I, Hengne A, Huang KW. Efficient and chemoselective imine synthesis catalyzed by a well-defined PN 3-manganese(II) pincer system. Chem Commun (Camb) 2024; 60:2617-2620. [PMID: 38351877 DOI: 10.1039/d3cc05892a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
The highly efficient reductive amination of aldehydes with ammonia (NH3) and hydrogen (H2) to form secondary imines is described, as well as the dehydrogenative homocoupling of benzyl amines. Using an air-stable, well-defined PN3-manganese(II) pincer complex as a catalyst precursor, various aldehydes are easily converted directly into secondary imines using NH3 as a nitrogen source under H2 in a one-pot reaction. Importantly, the same catalyst facilitates the dehydrogenative homocoupling of various benzylamines, exclusively forming imine products. These reactions are conducted under very mild conditions, without the addition of any additives, yielding excellent selectivities and high yields of secondary imines in a green manner by minimizing wastes.
Collapse
Affiliation(s)
- Sandeep Suryabhan Gholap
- KAUST Catalysis Center and Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia.
| | - Abdullah Al Dakhil
- KAUST Catalysis Center and Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia.
- Department of Chemistry, College of Science, Imam Mohammad Ibn Saud Islamic University, Riyadh 11432-5701, Saudi Arabia
| | - Priyanka Chakraborty
- KAUST Catalysis Center and Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia.
| | - Shashikant Dighe
- Agency for Science, Technology and Research, Institute of Materials Research and Engineering and Institute of Sustainability for Chemicals, Energy and Environment, Singapore
| | - Mohammad Misbahur Rahman
- KAUST Catalysis Center and Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia.
| | - Indranil Dutta
- KAUST Catalysis Center and Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia.
| | - Amol Hengne
- Agency for Science, Technology and Research, Institute of Materials Research and Engineering and Institute of Sustainability for Chemicals, Energy and Environment, Singapore
| | - Kuo-Wei Huang
- KAUST Catalysis Center and Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia.
- Agency for Science, Technology and Research, Institute of Materials Research and Engineering and Institute of Sustainability for Chemicals, Energy and Environment, Singapore
| |
Collapse
|
2
|
Zhang M, Zhang S, Ma Y. In-situ reconstruction of CoBO x enables formation of Co for synthesis of benzylamine through reductive amination. Front Chem 2023; 10:1104844. [PMID: 36688037 PMCID: PMC9845621 DOI: 10.3389/fchem.2022.1104844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 12/14/2022] [Indexed: 01/06/2023] Open
Abstract
Cobalt (Co) as a substitute of noble-metal catalysts shows high catalytic capability for production of the widely used primary amines through the reductive amination. However, the synthesis of Co catalysts usually involves the introduction of organic compounds and the high-temperature pyrolysis, which is complicated and difficult for large-scale applications. Herein, we demonstrated a facile and efficient strategy for the preparation of Co catalysts through the in situ reconstruction of cobalt borate (CoBOx) during the reductive amination, delivering a high catalytic activity for production of benzylamine from benzaldehyde and ammonia. Initially, CoBOx was transformed into Co(OH)2 through the interaction with ammonia and subsequently reduced to Co nanoparticles by H2 under the reaction environments. The in situ generated Co catalysts exhibited a satisfactory activity and selectivity to the target product, which overmatched the commonly used Co/C, Pt or Raney Ni catalysts. We anticipate that such an in situ reconstruction of CoBOx by reactants during the reaction could provide a new approach for the design and optimization of catalysts to produce primary amines.
Collapse
Affiliation(s)
- Mingkai Zhang
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi’an, China,Frontier Institute of Science and Technology, Xi’an Jiaotong University, Xi’an, China
| | - Sai Zhang
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi’an, China,*Correspondence: Sai Zhang, ; Yuanyuan Ma,
| | - Yuanyuan Ma
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi’an, China,*Correspondence: Sai Zhang, ; Yuanyuan Ma,
| |
Collapse
|
3
|
Saranya PV, Neetha M, Philip RM, Anilkumar G. Recent advances and prospects in the cobalt-catalyzed amination reactions. Tetrahedron 2022. [DOI: 10.1016/j.tet.2021.132582] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
4
|
Lu Q, Liu J, Ma L. Recent advances in selective catalytic hydrogenation of nitriles to primary amines. J Catal 2021. [DOI: 10.1016/j.jcat.2021.10.028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
5
|
Korkmaz A, Duran S. High yielding electrophilic amination with lower order and higher order organocuprates: Application of acetone O-(4-Chlorophenylsulfonyl)oxime in the construction of the C−N bond at room temperature. SYNTHETIC COMMUN 2021. [DOI: 10.1080/00397911.2021.1924787] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Adem Korkmaz
- Department of Occupational Health and Safety, Faculty of Health Sciences, Muş Alparslan University, Muş, Turkey
| | - Serdar Duran
- Department of Chemistry, Muş Alparslan University, Muş, Turkey
| |
Collapse
|