1
|
Fu W, Yang K, Wu M, Wang Y. Terminal deoxynucleotidyl transferase (TdT) based template-free signal amplification for the detection of exosomes in MUC1-positive cells. J Pharm Biomed Anal 2024; 253:116539. [PMID: 39454542 DOI: 10.1016/j.jpba.2024.116539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 10/15/2024] [Accepted: 10/18/2024] [Indexed: 10/28/2024]
Abstract
The Mucin1 (MUC1) protein, involved in cytoprotective and signaling pathways, is abnormally elevated in various cancers, making it a key cancer indicator. Exosomes, which reflect the status of their originating cells, offer potential for cancer diagnosis. Thus, developing a method to detect MUC1-positive exosomes is crucial for the early diagnosis of certain cancers. In this study, we developed a highly sensitive, specific, and simple UV-visible signal amplification method to detect MUC1-positive exosomes using terminal deoxynucleotidyl transferase (TdT). Initially, exosomes were captured on magnetic beads using a CD63 aptamer(apt). The Primer-AuNPs-MUC1 apt complex which we synthesized by low pH loading method was then attached MUC1 proteins on the surface of the exosomes to create a sandwich structure. TdT catalyzed the extension of Biotin-dATP at the 3' end of the primer, introducing multiple biotin sites into the sandwich structure. These sites subsequently bound multiple streptavidin-horseradish peroxidase (streptavidin-HRP), which catalyzed the oxidative color change of the substrate, which can be detected by colorimetric method. This method can detect A549 exosomes in the range of 1.4E+6 to 4.2E+8 particles/mL and shows high specificity for cell lines with different MUC1 expression. Additionally, it successfully distinguished cholangiocarcinoma (CCA) patients (n=11) from healthy individuals (n=7) in clinical serum assays, demonstrating good performance in real sample detection.
Collapse
Affiliation(s)
- Wenchang Fu
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Kaige Yang
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Mingyuan Wu
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China; Engineering Research Center of Cell and Therapeutic Antibody (Ministry of Education), School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Yan Wang
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
2
|
Javed A, Kong N, Mathesh M, Duan W, Yang W. Nanoarchitectonics-based electrochemical aptasensors for highly efficient exosome detection. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2024; 25:2345041. [PMID: 38742153 PMCID: PMC11089931 DOI: 10.1080/14686996.2024.2345041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 04/15/2024] [Indexed: 05/16/2024]
Abstract
Exosomes, a type of extracellular vesicles, have attracted considerable attention due to their ability to provide valuable insights into the pathophysiological microenvironment of the cells from which they originate. This characteristic implicates their potential use as diagnostic disease biomarkers clinically, including cancer, infectious diseases, neurodegenerative disorders, and cardiovascular diseases. Aptasensors, which are electrochemical aptamers based biosensing devices, have emerged as a new class of powerful detection technology to conventional methods like ELISA and Western analysis, primarily because of their capability for high-performance bioanalysis. This review covers the current research landscape on the detection of exosomes utilizing nanoarchitectonics strategy for the development of electrochemical aptasensors. Strategies involving signal amplification and biofouling prevention are discussed, with an emphasis on nanoarchitectonics-based bio-interfaces, showcasing their potential to enhance sensitivity and selectivity through optimal conduction and mass transport properties. The ongoing challenges to broaden the clinical applications of these biosensors are also highlighted.
Collapse
Affiliation(s)
- Aisha Javed
- School of Life and Environmental Science, Centre for Sustainable Bioproducts, Deakin University, Geelong, VIC, Australia
| | - Na Kong
- School of Life and Environmental Science, Centre for Sustainable Bioproducts, Deakin University, Geelong, VIC, Australia
| | - Motilal Mathesh
- School of Life and Environmental Science, Centre for Sustainable Bioproducts, Deakin University, Geelong, VIC, Australia
| | - Wei Duan
- School of Medicine, Faculty of Health, Deakin University, Geelong, VIC, Australia
| | - Wenrong Yang
- School of Life and Environmental Science, Centre for Sustainable Bioproducts, Deakin University, Geelong, VIC, Australia
| |
Collapse
|
3
|
Zhang Q, Wang H, Liu Q, Zeng N, Fu G, Qiu Y, Yang Y, Yuan H, Wang W, Li B. Exosomes as Powerful Biomarkers in Cancer: Recent Advances in Isolation and Detection Techniques. Int J Nanomedicine 2024; 19:1923-1949. [PMID: 38435755 PMCID: PMC10906735 DOI: 10.2147/ijn.s453545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 02/13/2024] [Indexed: 03/05/2024] Open
Abstract
Exosomes, small extracellular vesicles derived from cells, are known to carry important bioactive molecules such as proteins, nucleic acids, and lipids. These bioactive components play crucial roles in cell signaling, immune response, and tumor metastasis, making exosomes potential diagnostic biomarkers for various diseases. However, current methods for detecting tumor exosomes face scientific challenges including low sensitivity, poor specificity, complicated procedures, and high costs. It is essential to surmount these obstacles to enhance the precision and dependability of diagnostics that rely on exosomes. Merging DNA signal amplification techniques with the signal boosting capabilities of nanomaterials presents an encouraging strategy to overcome these constraints and improve exosome detection. This article highlights the use of DNA signal amplification technology and nanomaterials' signal enhancement effect to improve the detection of exosomes. This review seeks to offer valuable perspectives for the enhancement of amplification methods applied in practical cancer diagnosis and prognosis by providing an overview of how these novel technologies are utilized in exosome-based diagnostic procedures.
Collapse
Affiliation(s)
- Qiongdan Zhang
- TCM and Ethnomedicine Innovation & Development International Laboratory, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, People’s Republic of China
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, People’s Republic of China
| | - Huizhen Wang
- TCM and Ethnomedicine Innovation & Development International Laboratory, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, People’s Republic of China
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, People’s Republic of China
| | - Qingyi Liu
- TCM and Ethnomedicine Innovation & Development International Laboratory, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, People’s Republic of China
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, People’s Republic of China
| | - Ni Zeng
- TCM and Ethnomedicine Innovation & Development International Laboratory, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, People’s Republic of China
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, People’s Republic of China
| | - Gang Fu
- TCM and Ethnomedicine Innovation & Development International Laboratory, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, People’s Republic of China
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, People’s Republic of China
| | - Yixing Qiu
- TCM and Ethnomedicine Innovation & Development International Laboratory, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, People’s Republic of China
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, People’s Republic of China
| | - Yupei Yang
- TCM and Ethnomedicine Innovation & Development International Laboratory, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, People’s Republic of China
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, People’s Republic of China
| | - Hanwen Yuan
- TCM and Ethnomedicine Innovation & Development International Laboratory, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, People’s Republic of China
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, People’s Republic of China
| | - Wei Wang
- TCM and Ethnomedicine Innovation & Development International Laboratory, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, People’s Republic of China
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, People’s Republic of China
| | - Bin Li
- TCM and Ethnomedicine Innovation & Development International Laboratory, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, People’s Republic of China
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, People’s Republic of China
| |
Collapse
|
4
|
Chang K, Fang Y, He P, Zhu C, Liu X, Zheng D, Chen D, Liu C. Employing the Anchor DSPE-PEG as a Redox Probe for Ratiometric Electrochemical Detection of Surface Proteins on Extracellular Vesicles with Aptamers. Anal Chem 2023; 95:16194-16200. [PMID: 37889159 DOI: 10.1021/acs.analchem.3c02948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
Quantitative analysis of surface proteins on extracellular vesicles (EVs) has been considered to be a crucial approach for reflecting the status of diseases. Due to the diverse composition of surface proteins on EVs and the interference from nonvesicular proteins, accurately detecting the expression of surface proteins on EVs remains a challenging task. While membrane affinity molecules have been widely employed as EVs capture probes to address this issue, their inherent biochemical properties have not been effectively harnessed. In this paper, we found that the electrochemical redox activity of the DSPE-PEG molecule was diminished upon its insertion into the membrane of EVs. This observation establishes the DSPE-PEG molecule modified on the Au electrode surface as a capture and a redox probe for the electrochemical detection of EVs. By utilizing methylene blue-labeled aptamers, the targeted surface proteins of EVs can be detected by recording the ratio of the oxidation peak current of methylene blue and DSPE-PEG. Without complicated signal amplification, the detection limit for EVs is calculated to be 8.11 × 102 particles/mL. Using this platform, we directly analyzed the expression of CD63 and HER2 proteins on the surface of EVs in human clinical plasma samples, demonstrating its significant potential in distinguishing breast cancer patients from healthy individuals.
Collapse
Affiliation(s)
- Kaili Chang
- The Key Laboratory of Cognitive Science of State Ethnic Affairs Commission, Hubei Key Laboratory of Medical Information Analysis and Tumor Diagnosis and Treatment, College of Biomedical Engineering, South-Central Minzu University, Wuhan 430074, China
| | - Yi Fang
- The Key Laboratory of Cognitive Science of State Ethnic Affairs Commission, Hubei Key Laboratory of Medical Information Analysis and Tumor Diagnosis and Treatment, College of Biomedical Engineering, South-Central Minzu University, Wuhan 430074, China
| | - Ping He
- The Key Laboratory of Cognitive Science of State Ethnic Affairs Commission, Hubei Key Laboratory of Medical Information Analysis and Tumor Diagnosis and Treatment, College of Biomedical Engineering, South-Central Minzu University, Wuhan 430074, China
| | - Chunnan Zhu
- The Key Laboratory of Cognitive Science of State Ethnic Affairs Commission, Hubei Key Laboratory of Medical Information Analysis and Tumor Diagnosis and Treatment, College of Biomedical Engineering, South-Central Minzu University, Wuhan 430074, China
| | - Xiaojun Liu
- The Key Laboratory of Cognitive Science of State Ethnic Affairs Commission, Hubei Key Laboratory of Medical Information Analysis and Tumor Diagnosis and Treatment, College of Biomedical Engineering, South-Central Minzu University, Wuhan 430074, China
| | - Dongyun Zheng
- The Key Laboratory of Cognitive Science of State Ethnic Affairs Commission, Hubei Key Laboratory of Medical Information Analysis and Tumor Diagnosis and Treatment, College of Biomedical Engineering, South-Central Minzu University, Wuhan 430074, China
| | - Dongjuan Chen
- Department of Laboratory Medicine, Maternal and Child Health Hospital of Hubei Province, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430070, China
| | - Chao Liu
- The Key Laboratory of Cognitive Science of State Ethnic Affairs Commission, Hubei Key Laboratory of Medical Information Analysis and Tumor Diagnosis and Treatment, College of Biomedical Engineering, South-Central Minzu University, Wuhan 430074, China
| |
Collapse
|
5
|
Althomali RH, Hamoud Alshahrani S, Qasim Almajidi Y, Kamal Hasan W, Gulnoza D, Romero-Parra RM, Abid MK, Radie Alawadi AH, Alsalamyh A, Juyal A. Current Trends in Nanomaterials-Based Electrochemiluminescence Aptasensors for the Determination of Antibiotic Residues in Foodstuffs: A Comprehensive Review. Crit Rev Anal Chem 2023:1-17. [PMID: 37480552 DOI: 10.1080/10408347.2023.2238059] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2023]
Abstract
Veterinary pharmaceuticals have been recently recognized as newly emerging environmental contaminants. Indeed, because of their uncontrolled or overused disposal, we are now facing undesirable amounts of these constituents in foodstuff and its related human health concerns. In this context, developing a well-organized environmental and foodstuff screening toward antibiotic levels is of paramount importance to ensure the safety of food products as well as human health. In this case, with the development and progress of electric/photo detecting, nanomaterials, and nucleic acid aptamer technology, their incorporation-driven evolving electrochemiluminescence aptasensing strategy has presented the hopeful potentials in identifying the residual amounts of different antibiotics toward sensitivity, economy, and practicality. In this context, we reviewed the up-to-date development of ECL aptasensors with aptamers as recognition elements and nanomaterials as the active elements for quantitative sensing the residual antibiotics in foodstuff and agriculture-related matrices, dissected the unavoidable challenges, and debated the upcoming prospects.
Collapse
Affiliation(s)
- Raed H Althomali
- Department of Chemistry, College of Arts and Science, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | | | | | - Wajeeh Kamal Hasan
- Department of Radiology and Sonar Technologies, Al Rafidain University College, Bagdad, Iraq
| | - Djakhangirova Gulnoza
- Department of Food Products Technology, Tashkent Institute of Chemical Technology, Tashkent, Uzbekistan
| | | | - Mohammed Kadhem Abid
- Department of Anesthesia, College of Health & Medical Technology, Al-Ayen University, Thi-Qar, Iraq
| | | | - Ali Alsalamyh
- College of Technical Engineering, Imam Jafar Al-Sadiq University, Al-Muthanna, Iraq
| | - Ashima Juyal
- Division of Research & Innovation, Uttaranchal University, Dehradun, Uttarakhand, India
| |
Collapse
|
6
|
Li Y, Gao X, Fang Y, Cui B, Shen Y. Nanomaterials-driven innovative electrochemiluminescence aptasensors in reporting food pollutants. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2023.215136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
7
|
Duan M, Li K, Zhang L, Zhou Y, Bian L, Wang C. Screening, characterization and specific binding mechanism of aptamers against human plasminogen Kringle 5. Bioorg Chem 2023; 137:106579. [PMID: 37149949 DOI: 10.1016/j.bioorg.2023.106579] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 03/30/2023] [Accepted: 04/26/2023] [Indexed: 05/09/2023]
Abstract
Plasminogen Kringle 5 is one of the most potent cytokines identified to inhibit the proliferation and migration of vascular endothelial cells. Herein, six aptamer candidates that specifically bind to Kringle 5 were generated by the systematic evolution of ligands by exponential enrichment (SELEX). After 10 rounds of screening against Kringle 5, a highly enriched ssDNA pool was sequenced and the representative aptamers were subjected to binding assays to evaluate their affinity and specificity. The preferred aptamer KG-4, which demonstrated a low dissociation constant (Kd) of ∼ 432 nM and excellent selectivity for Kringle 5. A conserved "motif" of eight bases located at the stem-loop intersection, common to the aptamer, was further confirmed as the recognition element for binding with Kringle 5. The bulge formed by the motif and depression on the lysine binding site of Kringle 5 were both located at the binding interface, and the "induced fit" between their structures played a central role in the recognition process. Kringle 5 interacts KG-4 primarily through enthalpy-driven van der Waals forces and hydrogen bond. The key nucleotides A34 and C35 at motif on KG-4 and the positively charged amino acids in the loop 1 and loop 4 regions on Kringle 5 play a major role in the interaction. Furthermore, KG-4 dose-dependently reduced the proliferation inhibition of vascular endothelial cells by Kringle 5 and had a blocking effect on the function of Kringle 5 in inhibiting migration and promoting apoptosis of vascular endothelial cells in vitro. This study put a new light on protein-aptamer binding mechanism and may provide insight into the treatment of ischemic diseases by target depletion of Kringle 5.
Collapse
Affiliation(s)
- Meijiao Duan
- College of Life Science, Northwest University, Xi'an 710069, Shaanxi, China
| | - Kewei Li
- College of Life Science, Northwest University, Xi'an 710069, Shaanxi, China
| | - Ling Zhang
- College of Life Science, Northwest University, Xi'an 710069, Shaanxi, China
| | - Yaqi Zhou
- College of Life Science, Northwest University, Xi'an 710069, Shaanxi, China
| | - Liujiao Bian
- College of Life Science, Northwest University, Xi'an 710069, Shaanxi, China.
| | - Cuiling Wang
- College of Life Science, Northwest University, Xi'an 710069, Shaanxi, China.
| |
Collapse
|
8
|
Sfragano PS, Pillozzi S, Condorelli G, Palchetti I. Practical tips and new trends in electrochemical biosensing of cancer-related extracellular vesicles. Anal Bioanal Chem 2023; 415:1087-1106. [PMID: 36683059 PMCID: PMC9867925 DOI: 10.1007/s00216-023-04530-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 12/03/2022] [Accepted: 12/06/2022] [Indexed: 01/24/2023]
Abstract
To tackle cancer and provide prompt diagnoses and prognoses, the constantly evolving biosensing field is continuously on the lookout for novel markers that can be non-invasively analysed. Extracellular vesicles (EVs) may represent a promising biomarker that also works as a source of biomarkers. The augmented cellular activity of cancerous cells leads to the production of higher numbers of EVs, which can give direct information on the disease due to the presence of general and cancer-specific surface-tethered molecules. Moreover, the intravesicular space is enriched with other molecules that can considerably help in the early detection of neoplasia. Even though EV-targeted research has indubitably received broad attention lately, there still is a wide lack of practical and effective quantitative procedures due to difficulties in pre-analytical and analytical phases. This review aims at providing an exhaustive outline of the recent progress in EV detection using electrochemical and photoelectrochemical biosensors, with a focus on handling approaches and trends in the selection of bioreceptors and molecular targets related to EVs that might guide researchers that are approaching such an unstandardised field.
Collapse
Affiliation(s)
- Patrick Severin Sfragano
- grid.8404.80000 0004 1757 2304Department of Chemistry Ugo Schiff, University of Florence, Via Della Lastruccia 3, 50019 Sesto, Fiorentino, Italy
| | - Serena Pillozzi
- grid.24704.350000 0004 1759 9494Medical Oncology Unit, Careggi University Hospital, Largo Brambilla 3, 50134 Florence, Italy
| | - Gerolama Condorelli
- grid.4691.a0000 0001 0790 385XDepartment of Molecular Medicine and Medical Biotechnology, Federico II University of Naples, Via Pansini, 5, 80131 Naples, Italy ,grid.419543.e0000 0004 1760 3561IRCCS Istituto Neurologico Mediterraneo (INM) Neuromed, Via Atinense 18, 86077 Pozzilli, Italy
| | - Ilaria Palchetti
- grid.8404.80000 0004 1757 2304Department of Chemistry Ugo Schiff, University of Florence, Via Della Lastruccia 3, 50019 Sesto, Fiorentino, Italy
| |
Collapse
|
9
|
Gholikhani T, Kumar S, Valizadeh H, Mahdinloo S, Adibkia K, Zakeri-Milani P, Barzegar-Jalali M, Jimenez B. Advances in Aptamers-Based Applications in Breast Cancer: Drug Delivery, Therapeutics, and Diagnostics. Int J Mol Sci 2022; 23:ijms232214475. [PMID: 36430951 PMCID: PMC9695968 DOI: 10.3390/ijms232214475] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 11/03/2022] [Accepted: 11/08/2022] [Indexed: 11/23/2022] Open
Abstract
Aptamers are synthetic single-stranded oligonucleotides (such as RNA and DNA) evolved in vitro using Systematic Evolution of Ligands through Exponential enrichment (SELEX) techniques. Aptamers are evolved to have high affinity and specificity to targets; hence, they have a great potential for use in therapeutics as delivery agents and/or in treatment strategies. Aptamers can be chemically synthesized and modified in a cost-effective manner and are easy to hybridize to a variety of nano-particles and other agents which has paved a way for targeted therapy and diagnostics applications such as in breast tumors. In this review, we systematically explain different aptamer adoption approaches to therapeutic or diagnostic uses when addressing breast tumors. We summarize the current therapeutic techniques to address breast tumors including aptamer-base approaches. We discuss the next aptamer-based therapeutic and diagnostic approaches targeting breast tumors. Finally, we provide a perspective on the future of aptamer-based sensors for breast therapeutics and diagnostics. In this section, the therapeutic applications of aptamers will be discussed for the targeting therapy of breast cancer.
Collapse
Affiliation(s)
- Tooba Gholikhani
- Student Research Committee, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz 5166-15731, Iran
- NanoRa Pharmaceuticals Ltd., Tabriz 5166-15731, Iran
| | - Shalen Kumar
- IQ Science Limited, Wellington 5010, New Zealand
| | - Hadi Valizadeh
- Drug Applied Research Centre, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz 5166-15731, Iran
| | - Somayeh Mahdinloo
- Student Research Committee, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz 5166-15731, Iran
| | - Khosro Adibkia
- Research Center for Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz 5166-15731, Iran
| | - Parvin Zakeri-Milani
- Liver and Gastrointestinal Diseases Research Center, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz 5166-15731, Iran
| | - Mohammad Barzegar-Jalali
- Pharmaceutical Analysis Research Center, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz 5166-15731, Iran
| | - Balam Jimenez
- School of Biological Sciences, Victoria University of Wellington, Wellington 6012, New Zealand
- Correspondence:
| |
Collapse
|