1
|
Moussa AY, Luo J, Xu B. Insights into Chemical Diversity and Potential Health-Promoting Effects of Ferns. PLANTS (BASEL, SWITZERLAND) 2024; 13:2668. [PMID: 39339643 PMCID: PMC11434777 DOI: 10.3390/plants13182668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/18/2024] [Accepted: 09/20/2024] [Indexed: 09/30/2024]
Abstract
The scientific community is focusing on how to enhance human health and immunity through functional foods, and dietary supplements are proven to have a positive as well as a protective effect against infectious and chronic diseases. Ferns act as a taxonomical linkage between higher and lower plants and are endowed with a wide chemical diversity not subjected to sufficient scrutinization before. Even though a wealth of traditional medicinal fern uses were recorded in Chinese medicine, robust phytochemical and biological investigations of these plants are lacking. Herein, an extensive search was conducted using the keywords ferns and compounds, ferns and NMR, ferns and toxicity, and the terms ferns and chemistry, lignans, Polypodiaceae, NMR, isolation, bioactive compounds, terpenes, phenolics, phloroglucinols, monoterpenes, alkaloids, phenolics, and fatty acids were utilized with the Boolean operators AND, OR, and NOT. Databases such as PubMed, Web of Science, Science Direct, Scopus, Google Scholar, and Reaxys were utilized to reveal a wealth of information regarding fern chemistry and their health-promoting effects. Terpenes followed by phenolics represented the largest number of isolated active compounds. Regarding the neuroprotective effects, Psilotium, Polypodium, and Dryopteris species possessed as their major phenolics component unique chemical moieties including catechins, procyanidins, and bioflavonoids. In this updated chemical review, the pharmacological and chemical aspects of ferns are compiled manifesting their chemical diversity in the last seven years (2017-2024) together with a special focus on their nutritive and potential health-promoting effects.
Collapse
Affiliation(s)
- Ashaimaa Y Moussa
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Abbassia, Cairo 11566, Egypt
| | - Jinhai Luo
- Food Science and Technology Program, Department of Life Sciences, BNU-HKBU United International College, 2000 Jintong Road, Tangjiawan, Zhuhai 519087, China
| | - Baojun Xu
- Food Science and Technology Program, Department of Life Sciences, BNU-HKBU United International College, 2000 Jintong Road, Tangjiawan, Zhuhai 519087, China
| |
Collapse
|
2
|
Shetty N, Schalka S, Lim HW, Mohammad TF. The effects of UV filters on health and the environment. Photochem Photobiol Sci 2023; 22:2463-2471. [PMID: 37344707 DOI: 10.1007/s43630-023-00446-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 06/06/2023] [Indexed: 06/23/2023]
Abstract
Sunscreens are an important means of protection against sunburns, dyspigmentation, photoaging, and photocarcinogenesis. Sunscreens come in a variety of formulations that can protect against ultraviolet B (UVB) radiation, both UVB and ultraviolet A (UVA) radiation (broad-spectrum sunscreens), and UVB, UVA, and visible light (tinted broad-spectrum sunscreens). In the USA, there is currently a paucity of FDA-approved broad-spectrum filters on the market. Studies have identified the presence of multiple UV filters in water sources globally. Many laboratory studies have implicated the potential impact of UV filters on coral reef bleaching, the food chain, and human health. However, many of these studies are performed at concentrations that are much higher than those present in the natural environment. With increasing discussion surrounding the role of organic and inorganic UV filters as potential environmental pollutants over the past decade, approval of additional broad-spectrum filters would be an important means of alleviating the use of more controversial filters. The aim of this article is to review the effects of UV filters on health and the environment and explore potential adjunctive agents for photoprotection.
Collapse
Affiliation(s)
- Nayha Shetty
- Department of Dermatology, Henry Ford Health, 3031 W. Grand Blvd, Suite 800, Detroit, MI, 48202, USA
| | - Sérgio Schalka
- Medcin Skin Research Center and Biochemistry Department, Chemistry Institute of São Paulo University, São Paulo, Brazil
| | - Henry W Lim
- Department of Dermatology, Henry Ford Health, 3031 W. Grand Blvd, Suite 800, Detroit, MI, 48202, USA
| | - Tasneem F Mohammad
- Department of Dermatology, Henry Ford Health, 3031 W. Grand Blvd, Suite 800, Detroit, MI, 48202, USA.
| |
Collapse
|
3
|
Calzari P, Vaienti S, Nazzaro G. Uses of Polypodium leucotomos Extract in Oncodermatology. J Clin Med 2023; 12:jcm12020673. [PMID: 36675602 PMCID: PMC9861608 DOI: 10.3390/jcm12020673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/18/2022] [Accepted: 01/09/2023] [Indexed: 01/19/2023] Open
Abstract
The effects of UV radiation on the skin and its damage mechanisms are well known. New modalities of exogenous photoprotection have been studied. It was demonstrated that Polypodium leucotomos extract acts as an antioxidant, photoprotectant, antimutagenic, anti-inflammatory, and immunoregulator. It is effective when taken orally and/or applied topically to support the prevention of skin cancers. It also has an important role in preventing photoaging. This review aims to report the mechanisms through which Polypodium leucotomos acts and to analyze its uses in oncodermatology with references to in vitro and in vivo studies. Additionally, alternative uses in non-neoplastic diseases, such as pigmentary disorders, photosensitivity, and atopic dermatitis, have been considered.
Collapse
Affiliation(s)
- Paolo Calzari
- Department of Pathophysiology and Transplantation, University of Milan, 20122 Milan, Italy
| | - Silvia Vaienti
- Section of Dermatology and Venereology, Department of Medicine, University of Verona, 30127 Verona, Italy
| | - Gianluca Nazzaro
- Department of Pathophysiology and Transplantation, University of Milan, 20122 Milan, Italy
- Dermatology Unit, Foundation IRCCS, Ca’ Granda Ospedale Maggiore Policlinico, Via Pace 9, 20122 Milan, Italy
- Correspondence:
| |
Collapse
|
4
|
Lacerda PA, Oenning LC, Bellato GC, Lopes-Santos L, Antunes NDJ, Mariz BALA, Teixeira G, Vasconcelos R, Simões GF, de Souza IA, Pinto CAL, Salo T, Coletta RD, Augusto TM, de Oliveira CE, Cervigne NK. Polypodium leucotomos targets multiple aspects of oral carcinogenesis and it is a potential antitumor phytotherapy against tongue cancer growth. Front Pharmacol 2023; 13:1098374. [PMID: 36686704 PMCID: PMC9849903 DOI: 10.3389/fphar.2022.1098374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 12/14/2022] [Indexed: 01/07/2023] Open
Abstract
Introduction: Oral cancer refers to malignant tumors, of which 90% are squamous cell carcinomas (OSCCs). These malignancies exhibit rapid progression, poor prognosis, and often mutilating therapeutical approaches. The determination of a prophylactic and/or therapeutic antitumor role of the polyphenolic extract Polypodium leucotomos(PL) would be relevant in developing new tools for prevention and treatment. Methods: We aimed to determine the antitumor effect of PL by treating OSCC cell lines with PL metabolites and evaluating its action during OSCC progression in vivo. Results: PL treatment successfully impaired cell cycling and proliferation, migration, and invasion, enhanced apoptosis, and modulated macrophage polarization associated with the tumoral immune-inflammatory response of tongue cancer cell lines (TSCC). PL treatment significantly decreased the expression of MMP1 (p < 0.01) and MMP2 (p < 0.001), and increased the expression of TIMP1 (p < 0.001) and TIMP2 (p < 0.0001) in these cells. The mesenchymal-epithelial transition phenotype was promoted in cells treated with PL, through upregulation of E-CAD (p < 0.001) and reduction of N-CAD (p < 0.05). PL restrained OSCC progression in vivo by inhibiting tumor volume growth and decreasing the number of severe dysplasia lesions and squamous cell carcinomas. Ki-67 was significantly higher expressed in tongue tissues of animals not treated with PL(p < 0.05), and a notable reduction in Bcl2 (p < 0.05) and Pcna (p < 0.05) cell proliferation-associated genes was found in dysplastic lesions and TSCCs of PL-treated mice. Finally, N-cad(Cdh2), Vim, and Twist were significantly reduced in tongue tissues treated with PL. Conclusion: PL significantly decreased OSCC carcinogenic processes in vitro and inhibited tumor progression in vivo. PL also appears to contribute to the modulation of immune-inflammatory oral tumor-associated responses. Taken together, these results suggest that PL plays an important antitumor role in processes associated with oral carcinogenesis and may be a potential phytotherapeutic target for the prevention and/or adjuvant treatment of TSCCs.
Collapse
Affiliation(s)
- Pammela A. Lacerda
- Laboratory of Molecular Biology and Cell Culture (LBMCC), Faculty of Medicine of Jundiaí (FMJ), Jundiaí, Brazil
| | - Luan C. Oenning
- Laboratory of Molecular Biology and Cell Culture (LBMCC), Faculty of Medicine of Jundiaí (FMJ), Jundiaí, Brazil
| | - Guilherme Cuoghi Bellato
- Laboratory of Molecular Biology and Cell Culture (LBMCC), Faculty of Medicine of Jundiaí (FMJ), Jundiaí, Brazil
| | - Lucilene Lopes-Santos
- Laboratory of Molecular Biology and Cell Culture (LBMCC), Faculty of Medicine of Jundiaí (FMJ), Jundiaí, Brazil
| | | | | | - Gabriela Teixeira
- Laboratory of Molecular Biology and Cell Culture (LBMCC), Faculty of Medicine of Jundiaí (FMJ), Jundiaí, Brazil
| | - Rafael Vasconcelos
- Laboratory of Molecular Biology and Cell Culture (LBMCC), Faculty of Medicine of Jundiaí (FMJ), Jundiaí, Brazil
| | | | - Ivani Aparecida de Souza
- Department of Physiology, Faculty of Medicine of Jundiaí (FMJ), São Paulo, Brazil,Graduate Program in Health Sciences, Faculty of Medicine of Jundiaí (FMJ), São Paulo, Brazil
| | - Clóvis Antônio Lopes Pinto
- Graduate Program in Health Sciences, Faculty of Medicine of Jundiaí (FMJ), São Paulo, Brazil,Department of Morphology and Basic Pathology, Faculty of Medicine of Jundiaí (FMJ), São Paulo, Brazil
| | - Tuula Salo
- Department of Oral and Maxillofacial Diseases, University of Helsinki, Helsinki, Finland
| | - Ricardo D. Coletta
- Department of Oral Diagnosis, School of Dentistry, University of Campinas, Piracicaba, Brazil,Graduate Program in Oral Biology, School of Dentistry, University of Campinas, Piracicaba, Brazil
| | - Taize M. Augusto
- Laboratory of Molecular Biology and Cell Culture (LBMCC), Faculty of Medicine of Jundiaí (FMJ), Jundiaí, Brazil,Graduate Program in Health Sciences, Faculty of Medicine of Jundiaí (FMJ), São Paulo, Brazil,Department of Internal Medicine, Faculty of Medicine of Jundiaí (FMJ), São Paulo, Brazil
| | - Carine Ervolino de Oliveira
- Department of Pathology and Parasitology, Universidade Federal de Alfenas (UNIFAL), Alfenas, Brazil,Graduate Program in Biological Science, Universidade Federal de Alfenas (UNIFAL), Alfenas, Brazil
| | - Nilva K. Cervigne
- Laboratory of Molecular Biology and Cell Culture (LBMCC), Faculty of Medicine of Jundiaí (FMJ), Jundiaí, Brazil,Graduate Program in Health Sciences, Faculty of Medicine of Jundiaí (FMJ), São Paulo, Brazil,Department of Internal Medicine, Faculty of Medicine of Jundiaí (FMJ), São Paulo, Brazil,*Correspondence: Nilva K. Cervigne,
| |
Collapse
|
5
|
Cruz RYMS, Arévalo SV, Rashid A, Jara MRA, Prado MSA. Antioxidant and photoprotective potential of Polypodium leucotomos. EXPLORATION OF MEDICINE 2022. [DOI: 10.37349/emed.2022.00117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
In recent years, Polypodium leucotomos has emerged with a great interest for having medicinal and therapeutic potential. It is producing very promising results due to the presence of antioxidant and photoprotective properties. Electronic libraries and databases, including Scopus, PubMed, Google Scholar, Science Direct, and Web of Science were searched to identify relevant studies; 79 publications contributed to this review regarding Polypodium leucotomos botanical aspects, chemical composition, antioxidant and photoprotective activity. It is used in complementary and alternative therapies with various pharmaceutical dosage forms (systemic or topical). Thanks to the composition of phytochemical constituents present in the leaves and rhizomes which confer antioxidant and photoprotective activity that has clinical therapeutic potential to be used as systemic and topical sunscreen of natural origin for the prevention of different types of skin diseases caused by harmful ultraviolet A and ultraviolet B radiations. However, more studies are needed in the future to test the ability and enhance the capacity of sunscreen and sunblock in cosmetic formulations. To conclude, it is recommended to carry out scientific studies based on different analytical methods to evaluate the phytoconstituents potential and to develop stable pharmaceutical formulations according to the skin phototype.
Collapse
Affiliation(s)
- Rosy Yesela Mancilla Santa Cruz
- Department of Pharmacy, School of Pharmaceutical Sciences, University of São Paulo, São Paulo 05508-000, Brazil; Professional School of Pharmacy and Biochemistry, Faculty of Health Sciences, National University of San Cristóbal of Huamanga, Ayacucho 05001, Peru
| | - Sharon Velásquez Arévalo
- Department of Pharmacotechnics, Faculty of Pharmacy and Biochemistry, National University of Trujillo, Trujillo 13011, Peru
| | - Anas Rashid
- Department of Pharmacy, School of Pharmaceutical Sciences, University of São Paulo, São Paulo 05508-000, Brazil; School of Medicine and Surgery, University of Torino, Torino 10125, Italy
| | - Marco Rolando Aronés Jara
- Professional School of Pharmacy and Biochemistry, Faculty of Health Sciences, National University of San Cristóbal of Huamanga, Ayacucho 05001, Peru
| | - María Segunda Aurora Prado
- Department of Pharmacy, School of Pharmaceutical Sciences, University of São Paulo, São Paulo 05508-000, Brazil
| |
Collapse
|
6
|
Resende DISP, Jesus A, Sousa Lobo JM, Sousa E, Cruz MT, Cidade H, Almeida IF. Up-to-Date Overview of the Use of Natural Ingredients in Sunscreens. Pharmaceuticals (Basel) 2022; 15:ph15030372. [PMID: 35337168 PMCID: PMC8949675 DOI: 10.3390/ph15030372] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/09/2022] [Accepted: 03/14/2022] [Indexed: 12/04/2022] Open
Abstract
The photoprotective skincare segment is in high demand to meet consumer concerns on UV-induced skin damage, with a recent trend towards sunscreen alternatives with a natural origin. In this study, the use of natural ingredients, either from terrestrial or marine origin, in a panel of 444 sunscreen commercial formulations (2021) was analyzed. Ingredients from terrestrial organisms represent the large majority found in the analyzed sunscreen formulations (48%), whereas marine ingredients are present only in 13% of the analyzed products. A deeper analysis regarding the most prevalent families of ingredients from terrestrial and marine organisms used as top ingredients is also presented, as well as their mechanisms of action. This study provides an up-to-date overview of the sunscreen market regarding the use of natural ingredients, which is of relevance for scientists involved in the development of new sunscreens to identify opportunities for innovation.
Collapse
Affiliation(s)
- Diana I. S. P. Resende
- CIIMAR—Centro Interdisciplinar de Investigação Marinha e Ambiental, 4450-208 Matosinhos, Portugal; (D.I.S.P.R.); (H.C.)
- Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, 4050-313 Porto, Portugal
| | - Ana Jesus
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (A.J.); (J.M.S.L.)
- UCIBIO—Applied Molecular Biosciences Unit, MedTech, Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - José M. Sousa Lobo
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (A.J.); (J.M.S.L.)
- UCIBIO—Applied Molecular Biosciences Unit, MedTech, Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Emília Sousa
- CIIMAR—Centro Interdisciplinar de Investigação Marinha e Ambiental, 4450-208 Matosinhos, Portugal; (D.I.S.P.R.); (H.C.)
- Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, 4050-313 Porto, Portugal
- Correspondence: (E.S.); (I.F.A.); Tel.: +351-220-428-689 (E.S.); +351-220-428-621 (I.F.A.)
| | - Maria T. Cruz
- Faculty of Pharmacy, University of Coimbra, 3004-531 Coimbra, Portugal;
- Center for Neuroscience and Cell Biology, 3004-504 Coimbra, Portugal
| | - Honorina Cidade
- CIIMAR—Centro Interdisciplinar de Investigação Marinha e Ambiental, 4450-208 Matosinhos, Portugal; (D.I.S.P.R.); (H.C.)
- Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, 4050-313 Porto, Portugal
| | - Isabel F. Almeida
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (A.J.); (J.M.S.L.)
- UCIBIO—Applied Molecular Biosciences Unit, MedTech, Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- Correspondence: (E.S.); (I.F.A.); Tel.: +351-220-428-689 (E.S.); +351-220-428-621 (I.F.A.)
| |
Collapse
|
7
|
Therapies with Antioxidant Potential in Psoriasis, Vitiligo, and Lichen Planus. Antioxidants (Basel) 2021; 10:antiox10071087. [PMID: 34356320 PMCID: PMC8301010 DOI: 10.3390/antiox10071087] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 07/02/2021] [Accepted: 07/05/2021] [Indexed: 12/17/2022] Open
Abstract
Oxidative stress plays an important pathogenetic role in many chronic inflammatory diseases, including those of dermatological interest. In particular, regarding psoriasis, vitiligo, and lichen planus, excess reactive oxygen species and a decline in endogenous antioxidant systems are observed. In this regard, treatments with antioxidant properties could be appropriate therapeutic options. To date, clinical trials in dermatology on these treatments are limited. We reviewed the available studies on the efficacy of antioxidant therapies in psoriasis, vitiligo, and lichen planus. The role of herbal derivatives, vitamins, and trace elements was analyzed. The antioxidant properties of conventional therapies were also evaluated. Data from the literature suggest that antioxidants might be useful, but available studies on this topic are limited, heterogeneous, not completely standardized, and on small populations. Furthermore, in most cases, antioxidants alone are unable to induce significant clinical changes, except perhaps in mild forms, and must be used in conjunction with standard drug treatments to achieve measurable results. Further studies need to be conducted, considering larger populations and using internationally validated scales, in order to compare the results and clinical efficacy.
Collapse
|
8
|
Souza de Carvalho VM, Covre JL, Correia-Silva RD, Lice I, Corrêa MP, Leopoldino AM, Gil CD. Bellis perennis extract mitigates UVA-induced keratinocyte damage: Photoprotective and immunomodulatory effects. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2021; 221:112247. [PMID: 34175580 DOI: 10.1016/j.jphotobiol.2021.112247] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/23/2021] [Accepted: 06/18/2021] [Indexed: 11/26/2022]
Abstract
A need exists for further research elucidating the benefits of environmentally safe photoprotective agents against ultraviolet (UV) exposure, and plant extracts represent a human-friendly alternative formulation. This study was designed to evaluate the potential use of Bellis perennis extract (BPE), from the Asteraceae family, known as the common daisy or the English daisy, in cosmeceuticals as a photoprotective factor, using an in vitro model of UVA-induced keratinocyte damage. Human skin keratinocytes (HaCaT cell line) were incubated with BPE at 0.01, 0.1, or 1% in Dulbecco's Modified Eagle Medium (DMEM), and after 15 min they were submitted to UVA radiation at 5, 10, and 15 J/cm2 doses, respectively. For comparative purposes, Polypodium leucotomos extract (PLE), known as the fern, was used as a positive control in assessing the photoprotective effect. After 24 h of UVA exposure, cell viability (MTT and LDH assays), levels of cleaved caspase-3, cyclooxygenase-2, IL-6, reactive oxygen species (ROS) and antioxidant enzyme (catalase, SOD, and glutathione peroxidase) activity were determined. UVA radiation at 5, 10, and 15 J/cm2 doses reduced cell viability to 63%, 43%, and 23%, respectively; we selected 10 J/cm2 for our purposes. After 24 h of UVA exposure, treatment with 1% BPE and 1% PLE significantly recovered cell viability (p < 0.05). Furthermore, treatment was associated with lower cleaved caspase-3 and ROS levels, higher catalase activity, and lower IL-6 levels in the treated UVA keratinocytes compared with the untreated UVA group (p < 0.01). Our results demonstrate photoprotective and immunomodulatory effects of BPE in skin keratinocytes and support its use as a bioactive agent in cosmetic formulations to prevent skin damage caused by exposure to the UV light.
Collapse
Affiliation(s)
- Vivian Maria Souza de Carvalho
- Universidade Federal de São Paulo (UNIFESP), Escola Paulista de Medicina, Departamento de Morfologia e Genética, São Paulo, SP, Brazil
| | - Joyce L Covre
- Universidade Federal de São Paulo (UNIFESP), Escola Paulista de Medicina, Departamento de Morfologia e Genética, São Paulo, SP, Brazil
| | - Rebeca D Correia-Silva
- Universidade Federal de São Paulo (UNIFESP), Escola Paulista de Medicina, Departamento de Morfologia e Genética, São Paulo, SP, Brazil
| | - Izabella Lice
- Universidade Federal de São Paulo (UNIFESP), Escola Paulista de Medicina, Departamento de Morfologia e Genética, São Paulo, SP, Brazil
| | - Mab P Corrêa
- Universidade Estadual Paulista (UNESP), Instituto de Biociências Letras e Ciências Exatas, Programa de Pós-Graduação em Biociências, São José do Rio Preto, SP, Brazil
| | - Andréia M Leopoldino
- Universidade de São Paulo (USP), Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Ribeirão Preto, SP, Brazil
| | - Cristiane D Gil
- Universidade Federal de São Paulo (UNIFESP), Escola Paulista de Medicina, Departamento de Morfologia e Genética, São Paulo, SP, Brazil; Universidade Estadual Paulista (UNESP), Instituto de Biociências Letras e Ciências Exatas, Programa de Pós-Graduação em Biociências, São José do Rio Preto, SP, Brazil.
| |
Collapse
|
9
|
|
10
|
Yan D, Borucki R, Sontheimer RD, Werth VP. Candidate drug replacements for quinacrine in cutaneous lupus erythematosus. Lupus Sci Med 2020; 7:7/1/e000430. [PMID: 33082164 PMCID: PMC7577055 DOI: 10.1136/lupus-2020-000430] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 09/22/2020] [Accepted: 10/01/2020] [Indexed: 12/17/2022]
Abstract
Cutaneous lupus erythematosus (CLE) is a disfiguring and potentially disabling disease that causes significant morbidity in patients. Antimalarials are an important class of medication used to treat this disease and have been the first-line systemic therapy since the 1950s. Quinacrine, in particular, is used as an adjuvant therapy to other antimalarials for improved control of CLE. Quinacrine is currently unavailable in the USA, which has taken away an important component of the treatment regimen of patients with CLE. This paper reviews the evidence of available local and systemic therapies in order to assist providers in choosing alternative treatments for patients who previously benefited from quinacrine therapy.
Collapse
Affiliation(s)
- Daisy Yan
- Department of Dermatology, Corporal Michael J Crescenz VA Medical Center, Philadelphia, Pennsylvania, USA.,Department of Dermatology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Robert Borucki
- Department of Dermatology, Corporal Michael J Crescenz VA Medical Center, Philadelphia, Pennsylvania, USA.,Department of Dermatology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Richard D Sontheimer
- Department of Dermatology, The University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Victoria P Werth
- Department of Dermatology, Corporal Michael J Crescenz VA Medical Center, Philadelphia, Pennsylvania, USA .,Department of Dermatology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| |
Collapse
|
11
|
Parrado C, Nicolas J, Juarranz A, Gonzalez S. The role of the aqueous extract Polypodium leucotomos in photoprotection. Photochem Photobiol Sci 2020; 19:831-843. [PMID: 33856681 DOI: 10.1039/d0pp00124d] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 05/13/2020] [Indexed: 11/21/2022]
Abstract
Solar radiation in the ultraviolet (UV), visible (VIS), and infrared (IR) ranges produces different biological effects in humans. Most of these, particularly those derived from ultraviolet radiation (UVR) are harmful to the skin, and include cutaneous aging and increased risk of cutaneous diseases, particularly skin cancer. Pharmacological photoprotection is mostly topical, but it can also be systemic. Oral photoprotectives constitute a new generation of drugs to combat the deleterious effects of solar radiation. Among these, an extract of Polypodium leucotomos (PL/Fernblock®, IFC Group, Spain) contains a high content of phenolic compounds that endow it with antioxidant activity. PL can administered orally or topically and is completely safe. PL complements and enhances endogenous antioxidant systems by neutralizing superoxide anions, hydroxyl radicals, and lipoperoxides. In addition to its antioxidant activity, PL also improves DNA repair and modulates immune and inflammatory responses. These activities are likely due to its ability to inhibit the generation and release of reactive oxygen species (ROS) by UVR, VIS, and IR radiation. PL also prevents direct DNA damage by accelerating the removal of induced photoproducts and decreasing UV-induced mutations. Oral PL increases the expression of active p53, decreases cell proliferation, and inhibits UV-induced COX-2 enzyme levels. PL has been used to treat skin diseases such as photodermatoses and pigmentary disorders and recently as a complement of photodynamic phototherapy in actinic keratoses. The photoprotective capability of PL has been proven in a multitude of in vitro and in vivo studies, which include animal models and clinical trials with human subjects. Based on this evidence, PL is a new generation photoprotector with antioxidant and anti-inflammatory properties that also protects DNA integrity and enhances the immune response.
Collapse
Affiliation(s)
- Concepción Parrado
- Department of Histology and Pathology, Faculty of Medicine, University of Málaga, Málaga, Spain
| | - Jimena Nicolas
- Department of Biology, Faculty of Sciences, Autónoma University of Madrid, Spain
| | - Angeles Juarranz
- Department of Biology, Faculty of Sciences, Autónoma University of Madrid, Spain
| | - Salvador Gonzalez
- Medicine and Medical Specialties Department, Alcala University, Madrid, Spain.
| |
Collapse
|
12
|
Juhasz MLW, Levin MK. The role of systemic treatments for skin lightening. J Cosmet Dermatol 2018; 17:1144-1157. [PMID: 30133125 DOI: 10.1111/jocd.12747] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 03/03/2018] [Accepted: 07/16/2018] [Indexed: 01/22/2023]
Abstract
BACKGROUND Pigmentation of the skin occurs as a result of increased melanin production or deposition due to various reasons including age, hormonal imbalances, endocrine disease, inflammation, and/or exposure to damaging radiation, resulting in dermatologic conditions such as lentigines, melasma, or postinflammatory hyperpigmentation. Although numerous topical therapies exist for skin lightening, they are limited by efficacy and pigmentation recurrence after treatment cessation. New research into systemic therapies for hyperpigmentation has been promising. OBJECTIVE To summarize the current literature for systemic skin lightening therapies. METHODS A review of the literature surrounding systemic skin lightening therapies was completed using PubMed (US National Library of Medicine). RESULTS Multiple systemic therapies for skin lightening exist including oral carotenoids, glutathione, melatonin, Polypodium leucotomos hydrophilic extract, procyanidin, and tranexamic acid. Preliminary data for the treatment of hyperpigmentation are promising, and currently, these oral treatments appear safe. It is not suggested to use intravenous glutathione for skin lightening due to the increased risk of adverse events. CONCLUSION With the patient population seeking effective systemic treatments for skin pigmentation, it is important for dermatologists to understand the properties, the efficacy, and the adverse events profile of each compound, thus ensuring proper use by patients, and that patients are appropriately counseled regarding treatment expectation and safety.
Collapse
Affiliation(s)
- Margit L W Juhasz
- Department of Dermatology, University of California, Irvine, Irvine, California
| | - Melissa K Levin
- The Ronald O. Perelman Department of Dermatology, New York University Langone Health, New York City, New York.,Department of Dermatology, The Mount Sinai Hospital, New York City, New York
| |
Collapse
|
13
|
Parrado C, Philips N, Gilaberte Y, Juarranz A, González S. Oral Photoprotection: Effective Agents and Potential Candidates. Front Med (Lausanne) 2018; 5:188. [PMID: 29998107 PMCID: PMC6028556 DOI: 10.3389/fmed.2018.00188] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 06/08/2018] [Indexed: 12/20/2022] Open
Abstract
Electromagnetic radiation in the ultraviolet, visible, and infrared ranges produces biologic effects in humans. Where some of these effects are beneficial, others are harmful to the skin, particularly those stemming from ultraviolet radiation (UVR). Pharmacological photoprotection can be topical or systemic. Systemic photoprotection is often administered orally, complementing topical protection. New and classic oral agents (e.g., essential micronutrients as vitamins, minerals, polyphenols, carotenoids) are endowed with photoprotective and anti-photocarcinogenic properties. These substances bear the potential to increase systemic protection against the effects of electromagnetic radiation in the UV, visible, and infrared ranges. Protective mechanisms vary and include anti-oxidant, anti-inflammatory, and immunomodulatory effects. As such, they provide protection against UVR and prevent photo-induced carcinogenesis and aging. In this review, we present state of the art approaches regarding the photoprotective effects of vitamins and vitamin derivatives, dietary botanical, and non-botanical agents. A growing body of data supports the beneficial effects of oral photoprotection on the health of the skin. More studies will likely confirm and expand the positive impact of oral dietary botanicals as complementary measures for photoprotection.
Collapse
Affiliation(s)
- Concepción Parrado
- Department of Histology and Pathology, University of Málaga, Málaga, Spain
| | - Neena Philips
- School of Natural Sciences, Fairleigh Dickinson University, Teaneck, NJ, United States
| | - Yolanda Gilaberte
- Dermatology Service, Hospital Miguel Servet, Zaragoza, Spain.,Dermatology, Hospital Universitario Miguel Servet, Zaragoza, Spain
| | - Angeles Juarranz
- Biology Department, Instituto Ramón y Cajal de Investigación Sanitaria, Universidad Autónoma de Madrid, Madrid, Spain
| | - Salvador González
- Medicine and Medical Specialties Department, Instituto Ramón y Cajal de Investigación Sanitaria, Alcalá University Madrid, Madrid, Spain
| |
Collapse
|
14
|
The photoprotective and anti-inflammatory activity of red propolis extract in rats. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2018; 180:198-207. [DOI: 10.1016/j.jphotobiol.2018.01.028] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 01/22/2018] [Accepted: 01/29/2018] [Indexed: 01/01/2023]
|
15
|
Damian DL. Nicotinamide for skin cancer chemoprevention. Australas J Dermatol 2017; 58:174-180. [PMID: 28321860 DOI: 10.1111/ajd.12631] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 01/11/2017] [Indexed: 12/14/2022]
Abstract
Nicotinamide (vitamin B3 ) has a range of photoprotective effects in vitro and in vivo; it enhances DNA repair, reduces UV radiation-induced suppression of skin immune responses, modulates inflammatory cytokine production and skin barrier function and restores cellular energy levels after UV exposure. Pharmacological doses of nicotinamide have been shown to reduce actinic keratoses and nonmelanoma skin cancer incidence in high-risk individuals, making this a nontoxic and accessible option for skin cancer chemoprevention in this population.
Collapse
Affiliation(s)
- Diona L Damian
- Discipline of Dermatology, Central Clinical School, University of Sydney at Royal Prince Alfred Hospital and Melanoma Institute Australia, Sydney, Australia
| |
Collapse
|
16
|
Parrado C, Mascaraque M, Gilaberte Y, Juarranz A, Gonzalez S. Fernblock (Polypodium leucotomos Extract): Molecular Mechanisms and Pleiotropic Effects in Light-Related Skin Conditions, Photoaging and Skin Cancers, a Review. Int J Mol Sci 2016; 17:ijms17071026. [PMID: 27367679 PMCID: PMC4964402 DOI: 10.3390/ijms17071026] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2016] [Revised: 06/02/2016] [Accepted: 06/20/2016] [Indexed: 12/20/2022] Open
Abstract
Healthier life styles include increased outdoors time practicing sports and walking. This means increased exposure to the sun, leading to higher risk of sunburn, photoaging and skin cancer. In addition to topical barrier products, oral supplementations of various botanicals endowed with antioxidant activity are emerging as novel method of photoprotection. Polypodium leucotomos extract (PL, commercial name Fernblock®, IFC Group, Spain) is a powerful antioxidant due to its high content of phenolic compounds. PL is administered orally, with proven safety, and it can also be used topically. Its mechanisms include inhibition of the generation and release of reactive oxygen species (ROS) by ultraviolet (UV) light. It also prevents UV- and ROS-induced DNA damage with inhibition of AP1 and NF-κB and protection of natural antioxidant enzyme systems. At the cellular level, PL decreases cellular apoptosis and necrosis mediated UV and inhibits abnormal extracellular matrix remodeling. PL reduces inflammation, prevents immunosuppression, activates tumor suppressor p53 and inhibits UV-induced cyclooxygenase-2 (COX-2) enzyme expression. In agreement with increased p53 activity, PL decreased UV radiation-induced cell proliferation. PL also prevents common deletions mitochondrial DNA damage induced by UVA, and MMP-1 expression induced Visible Light and Infrared Radiation. These cellular and molecular effects are reflected in inhibitions of carcinogenesis and photoaging.
Collapse
Affiliation(s)
- Concepcion Parrado
- Pathology Department, School of Medicine, Universidad de Málaga, Malaga 29071, Spain.
| | - Marta Mascaraque
- Biology Department, Sciences School, Universidad Autónoma de Madrid, Madrid 28049, Spain.
| | | | - Angeles Juarranz
- Biology Department, Sciences School, Universidad Autónoma de Madrid, Madrid 28049, Spain.
| | - Salvador Gonzalez
- Dermatology Service, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA.
- Medicine Department, Alcalá University, Madrid 28805, Spain.
| |
Collapse
|