1
|
Abdulrahman N, Leo R, Boumenar HA, Ahmad F, Mateo JM, Jochebeth A, Al-Sowaidi NK, Sher G, Ansari AW, Alam M, Uddin S, Ahmad A, Steinhoff M, Buddenkotte J. Embelin inhibits viability of cutaneous T cell lymphoma cell lines HuT78 and H9 by targeting inhibitors of apoptosis. Leuk Lymphoma 2023; 64:2236-2248. [PMID: 37708450 DOI: 10.1080/10428194.2023.2256909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 05/15/2023] [Accepted: 08/30/2023] [Indexed: 09/16/2023]
Abstract
Cutaneous T cell lymphoma (CTCL) is a varied group of neoplasms that affects the skin. Acquired resistance against chemotherapeutic drugs and associated toxic side effects are limitations that warrant search for novel drugs against CTCL. Embelin (EMB) is a naturally occurring benzoquinone derivative that has gained attention owing to its anticancer pharmacological actions and nontoxic nature. We assessed the anticancer activity of EMB against CTCL cell lines, HuT78, and H9. EMB inhibited viability of CTCL cells in a dose-dependent manner. EMB activated extrinsic and intrinsic pathways of apoptosis as shown by the activation of initiator and executioner caspases. EMB-induced apoptosis also involved suppression of inhibitors of apoptosis, XIAP, cIAP1, and cIAP2. PARP cleavage and upregulation of pH2AX indicated DNA damage induced by EMB. In conclusion, we characterized a novel apoptosis-inducing activity of EMB against CTCL cells, implicating EMB as a potential therapeutic agent against CTCL.
Collapse
Affiliation(s)
- Nabeel Abdulrahman
- Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
- Translational Research Institute, Hamad Medical Corporation, Doha, Qatar
| | - Rari Leo
- Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
- Translational Research Institute, Hamad Medical Corporation, Doha, Qatar
| | - Hasna Amal Boumenar
- Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
- Translational Research Institute, Hamad Medical Corporation, Doha, Qatar
| | - Fareed Ahmad
- Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
- Translational Research Institute, Hamad Medical Corporation, Doha, Qatar
| | - Jericha M Mateo
- Translational Research Institute, Hamad Medical Corporation, Doha, Qatar
| | - Anh Jochebeth
- Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
- Translational Research Institute, Hamad Medical Corporation, Doha, Qatar
| | | | - Gulab Sher
- Translational Research Institute, Hamad Medical Corporation, Doha, Qatar
| | - Abdul W Ansari
- Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
- Translational Research Institute, Hamad Medical Corporation, Doha, Qatar
| | - Majid Alam
- Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
- Translational Research Institute, Hamad Medical Corporation, Doha, Qatar
| | - Shahab Uddin
- Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
- Translational Research Institute, Hamad Medical Corporation, Doha, Qatar
| | - Aamir Ahmad
- Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
- Translational Research Institute, Hamad Medical Corporation, Doha, Qatar
| | - Martin Steinhoff
- Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
- Translational Research Institute, Hamad Medical Corporation, Doha, Qatar
- Department of Dermatology and Venereology, Hamad Medical Corporation, Doha, Qatar
- College of Medicine, Qatar University, Doha, Qatar
- Weill Cornell Medicine, School of Medicine, Doha, Qatar
- Department of Dermatology, Weill Cornell Medicine, New York, NY, USA
| | - Joerg Buddenkotte
- Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
- Translational Research Institute, Hamad Medical Corporation, Doha, Qatar
- Department of Dermatology and Venereology, Hamad Medical Corporation, Doha, Qatar
| |
Collapse
|
2
|
Tomacinschii V, Mosquera Orgueira A, Santos CA, Robu M, Buruiana S, Fraga Rodriguez MF. The implication of next-generation sequencing in the diagnosis and clinical management of non-Hodgkin lymphomas. Front Oncol 2023; 13:1275327. [PMID: 38023160 PMCID: PMC10663367 DOI: 10.3389/fonc.2023.1275327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 10/27/2023] [Indexed: 12/01/2023] Open
Abstract
Next generation sequencing (NGS) is a technology that broadens the horizon of knowledge of several somatic pathologies, especially in oncological and oncohematological pathology. In the case of NHL, the understanding of the mechanisms of tumorigenesis, tumor proliferation and the identification of genetic markers specific to different lymphoma subtypes led to more accurate classification and diagnosis. Similarly, the data obtained through NGS allowed the identification of recurrent somatic mutations that can serve as therapeutic targets that can be inhibited and thus reducing the rate of resistant cases. The article's purpose is to offer a comprehensive overview of the best ways of integrating of next-generation sequencing technologies for diagnosis, prognosis, classification, and selection of optimal therapy from the perspective of tailor-made medicine.
Collapse
Affiliation(s)
- Victor Tomacinschii
- Department of Hematology, Nicolae Testemitanu State University of Medicine and Pharmacy, Chisinau, Moldova
- Department of Hematology, Public Medical Sanitary Institution (PMSI) Institute of Oncology, Chisinau, Moldova
| | - Adrian Mosquera Orgueira
- University Hospital of Santiago de Compostela, Servizo Galego de Saude (SERGAS), Santiago de Compostela, Spain
- Health Research Institute of Santiago de Compostela, Santiago de Compostela, Spain
| | - Carlos Aliste Santos
- University Hospital of Santiago de Compostela, Servizo Galego de Saude (SERGAS), Santiago de Compostela, Spain
| | - Maria Robu
- Department of Hematology, Nicolae Testemitanu State University of Medicine and Pharmacy, Chisinau, Moldova
| | - Sanda Buruiana
- Department of Hematology, Nicolae Testemitanu State University of Medicine and Pharmacy, Chisinau, Moldova
| | - Maximo Francisco Fraga Rodriguez
- University Hospital of Santiago de Compostela, Servizo Galego de Saude (SERGAS), Santiago de Compostela, Spain
- Health Research Institute of Santiago de Compostela, Santiago de Compostela, Spain
- Department of Forensic Sciences, Pathology, Ginecology and Obstetrics and Pediatrics, Faculty of Medicine, University of Santiago de Compostela, Santiago de Compostela, Spain
| |
Collapse
|
3
|
Cutaneous Lymphoma and Antibody-Directed Therapies. Antibodies (Basel) 2023; 12:antib12010021. [PMID: 36975368 PMCID: PMC10045448 DOI: 10.3390/antib12010021] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/24/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023] Open
Abstract
The introduction of monoclonal antibodies such as rituximab to the treatment of cancer has greatly advanced the treatment scenario in onco-hematology. However, the response to these agents may be limited by insufficient efficacy or resistance. Antibody–drug conjugates are an attractive strategy to deliver payloads of toxicity or radiation with high selectivity toward malignant targets and limited unwanted effects. Primary cutaneous lymphomas are a heterogeneous group of disorders and a current area of unmet need in dermato-oncology due to the limited options available for advanced cases. This review briefly summarizes our current understanding of T and B cell lymphomagenesis, with a focus on recognized molecular alterations that may provide investigative therapeutic targets. The authors reviewed antibody-directed therapies investigated in the setting of lymphoma: this term includes a broad spectrum of approaches, from antibody–drug conjugates such as brentuximab vedotin, to bi-specific antibodies, antibody combinations, antibody-conjugated nanotherapeutics, radioimmunotherapy and, finally, photoimmunotherapy with specific antibody–photoadsorber conjugates, as an attractive strategy in development for the future management of cutaneous lymphoma.
Collapse
|
4
|
Hristov AC, Tejasvi T, Wilcox RA. Cutaneous T-cell lymphomas: 2023 update on diagnosis, risk-stratification, and management. Am J Hematol 2023; 98:193-209. [PMID: 36226409 PMCID: PMC9772153 DOI: 10.1002/ajh.26760] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 10/05/2022] [Indexed: 02/04/2023]
Abstract
DISEASE OVERVIEW Cutaneous T-cell lymphomas are a heterogenous group of T-cell neoplasms involving the skin, the majority of which may be classified as Mycosis Fungoides (MF) or Sézary Syndrome (SS). DIAGNOSIS The diagnosis of MF or SS requires the integration of clinical and histopathologic data. RISK-ADAPTED THERAPY TNMB (tumor, node, metastasis, blood) staging remains the most important prognostic factor in MF/SS and forms the basis for a "risk-adapted," multidisciplinary approach to treatment. For patients with disease limited to the skin, expectant management or skin-directed therapies is preferred, as both disease-specific and overall survival for these patients is favorable. In contrast, patients with advanced-stage disease with significant nodal, visceral or the blood involvement are generally approached with systemic therapies, including biologic-response modifiers, histone deacetylase inhibitors, or antibody-based strategies, in an escalating fashion. In highly-selected patients, allogeneic stem-cell transplantation may be considered, as this may be curative in some patients.
Collapse
Affiliation(s)
- Alexandra C. Hristov
- Departments of Pathology and Dermatology, 2800 Plymouth Road, Building 35, Ann Arbor, MI 48109-2800
| | - Trilokraj Tejasvi
- Department of Dermatology, 1910 Taubman Center, 1500 E Medical Center Dr, Ann Arbor, MI 48109
| | - Ryan A. Wilcox
- Correspondence to: Ryan Wilcox, MD, PhD, Division of Hematology/Oncology, Department of Internal Medicine, University of Michigan Rogel Cancer Center, 1500 E. Medical Center Drive, Room 4310 CC, Ann Arbor, MI 48109-5948, Phone: (734) 615-9799, Fax: (734) 936-7376,
| |
Collapse
|
5
|
Sorger H, Dey S, Vieyra‐Garcia PA, Pölöske D, Teufelberger AR, de Araujo ED, Sedighi A, Graf R, Spiegl B, Lazzeri I, Braun T, Garces de los Fayos Alonso I, Schlederer M, Timelthaler G, Kodajova P, Pirker C, Surbek M, Machtinger M, Graier T, Perchthaler I, Pan Y, Fink‐Puches R, Cerroni L, Ober J, Otte M, Albrecht JD, Tin G, Abdeldayem A, Manaswiyoungkul P, Olaoye OO, Metzelder ML, Orlova A, Berger W, Wobser M, Nicolay JP, André F, Nguyen VA, Neubauer HA, Fleck R, Merkel O, Herling M, Heitzer E, Gunning PT, Kenner L, Moriggl R, Wolf P. Blocking STAT3/5 through direct or upstream kinase targeting in leukemic cutaneous T-cell lymphoma. EMBO Mol Med 2022; 14:e15200. [PMID: 36341492 PMCID: PMC9727928 DOI: 10.15252/emmm.202115200] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 09/26/2022] [Accepted: 10/02/2022] [Indexed: 11/09/2022] Open
Abstract
Leukemic cutaneous T-cell lymphomas (L-CTCL) are lymphoproliferative disorders of skin-homing mature T-cells causing severe symptoms and high mortality through chronic inflammation, tissue destruction, and serious infections. Despite numerous genomic sequencing efforts, recurrent driver mutations have not been identified, but chromosomal losses and gains are frequent and dominant. We integrated genomic landscape analyses with innovative pharmacologic interference studies to identify key vulnerable nodes in L-CTCL. We detected copy number gains of loci containing the STAT3/5 oncogenes in 74% (n = 17/23) of L-CTCL, which correlated with the increased clonal T-cell count in the blood. Dual inhibition of STAT3/5 using small-molecule degraders and multi-kinase blockers abolished L-CTCL cell growth in vitro and ex vivo, whereby PAK kinase inhibition was specifically selective for L-CTCL patient cells carrying STAT3/5 gains. Importantly, the PAK inhibitor FRAx597 demonstrated encouraging anti-leukemic activity in vivo by inhibiting tumor growth and disease dissemination in intradermally xenografted mice. We conclude that STAT3/5 and PAK kinase interaction represents a new therapeutic node to be further explored in L-CTCL.
Collapse
Affiliation(s)
- Helena Sorger
- Unit of Functional Cancer Genomics, Institute of Animal Breeding and GeneticsUniversity of Veterinary MedicineViennaAustria
- Department of Pediatric and Adolescent Surgery, Vienna General HospitalMedical University of ViennaViennaAustria
| | - Saptaswa Dey
- Department of Dermatology and VenereologyMedical University of GrazGrazAustria
- Department of PathologyMedical University of ViennaViennaAustria
| | | | - Daniel Pölöske
- Unit of Functional Cancer Genomics, Institute of Animal Breeding and GeneticsUniversity of Veterinary MedicineViennaAustria
| | | | - Elvin D de Araujo
- Department of Chemical and Physical SciencesUniversity of Toronto MississaugaMississaugaONCanada
- Centre for Medicinal ChemistryUniversity of Toronto MississaugaMississaugaONCanada
| | - Abootaleb Sedighi
- Department of Chemical and Physical SciencesUniversity of Toronto MississaugaMississaugaONCanada
- Centre for Medicinal ChemistryUniversity of Toronto MississaugaMississaugaONCanada
| | - Ricarda Graf
- Diagnostic & Research Center for Molecular Bio‐Medicine, Institute of Human GeneticsMedical University of GrazGrazAustria
| | - Benjamin Spiegl
- Diagnostic & Research Center for Molecular Bio‐Medicine, Institute of Human GeneticsMedical University of GrazGrazAustria
| | - Isaac Lazzeri
- Diagnostic & Research Center for Molecular Bio‐Medicine, Institute of Human GeneticsMedical University of GrazGrazAustria
| | - Till Braun
- Department of Medicine ICIO‐ABCD, CECAD and CMMC Cologne UniversityCologneGermany
| | - Ines Garces de los Fayos Alonso
- Department of PathologyMedical University of ViennaViennaAustria
- Unit of Laboratory Animal PathologyUniversity of Veterinary Medicine ViennaViennaAustria
| | | | | | - Petra Kodajova
- Unit of Laboratory Animal PathologyUniversity of Veterinary Medicine ViennaViennaAustria
| | - Christine Pirker
- Centre for Cancer ResearchMedical University of ViennaViennaAustria
- Comprehensive Cancer CenterMedical University of ViennaViennaAustria
| | - Marta Surbek
- Unit of Functional Cancer Genomics, Institute of Animal Breeding and GeneticsUniversity of Veterinary MedicineViennaAustria
| | - Michael Machtinger
- Unit of Functional Cancer Genomics, Institute of Animal Breeding and GeneticsUniversity of Veterinary MedicineViennaAustria
| | - Thomas Graier
- Department of Dermatology and VenereologyMedical University of GrazGrazAustria
| | | | - Yi Pan
- Department of Dermatology and VenereologyMedical University of GrazGrazAustria
| | - Regina Fink‐Puches
- Department of Dermatology and VenereologyMedical University of GrazGrazAustria
| | - Lorenzo Cerroni
- Department of Dermatology and VenereologyMedical University of GrazGrazAustria
| | - Jennifer Ober
- Core Facility Flow Cytometry, Center for Medical Research (ZMF)Medical University of GrazGrazAustria
| | - Moritz Otte
- Department of Medicine ICIO‐ABCD, CECAD and CMMC Cologne UniversityCologneGermany
| | - Jana D Albrecht
- Department of DermatologyUniversity Hospital MannheimMannheimGermany
| | - Gary Tin
- Department of Chemical and Physical SciencesUniversity of Toronto MississaugaMississaugaONCanada
- Centre for Medicinal ChemistryUniversity of Toronto MississaugaMississaugaONCanada
| | - Ayah Abdeldayem
- Department of Chemical and Physical SciencesUniversity of Toronto MississaugaMississaugaONCanada
- Centre for Medicinal ChemistryUniversity of Toronto MississaugaMississaugaONCanada
| | - Pimyupa Manaswiyoungkul
- Department of Chemical and Physical SciencesUniversity of Toronto MississaugaMississaugaONCanada
- Centre for Medicinal ChemistryUniversity of Toronto MississaugaMississaugaONCanada
| | - Olasunkanmi O Olaoye
- Department of Chemical and Physical SciencesUniversity of Toronto MississaugaMississaugaONCanada
- Centre for Medicinal ChemistryUniversity of Toronto MississaugaMississaugaONCanada
| | - Martin L Metzelder
- Department of Pediatric and Adolescent Surgery, Vienna General HospitalMedical University of ViennaViennaAustria
| | - Anna Orlova
- Unit of Functional Cancer Genomics, Institute of Animal Breeding and GeneticsUniversity of Veterinary MedicineViennaAustria
| | - Walter Berger
- Centre for Cancer ResearchMedical University of ViennaViennaAustria
- Comprehensive Cancer CenterMedical University of ViennaViennaAustria
| | - Marion Wobser
- Department of DermatologyUniversity Hospital WuerzburgWuerzburgGermany
| | - Jan P Nicolay
- Department of DermatologyUniversity Hospital MannheimMannheimGermany
| | - Fiona André
- University Clinic for Dermatology, Venereology and Allergology InnsbruckMedical University of InnsbruckInnsbruckAustria
| | - Van Anh Nguyen
- University Clinic for Dermatology, Venereology and Allergology InnsbruckMedical University of InnsbruckInnsbruckAustria
| | - Heidi A Neubauer
- Unit of Functional Cancer Genomics, Institute of Animal Breeding and GeneticsUniversity of Veterinary MedicineViennaAustria
| | | | - Olaf Merkel
- Department of PathologyMedical University of ViennaViennaAustria
| | - Marco Herling
- Department of Medicine ICIO‐ABCD, CECAD and CMMC Cologne UniversityCologneGermany
- Department of Hematology, Cellular Therapy, and HemostaseologyUniversity of LeipzigLeipzigGermany
| | - Ellen Heitzer
- Diagnostic & Research Center for Molecular Bio‐Medicine, Institute of Human GeneticsMedical University of GrazGrazAustria
| | - Patrick T Gunning
- Department of Chemical and Physical SciencesUniversity of Toronto MississaugaMississaugaONCanada
- Centre for Medicinal ChemistryUniversity of Toronto MississaugaMississaugaONCanada
- Janpix, a Centessa CompanyLondonUK
| | - Lukas Kenner
- Department of PathologyMedical University of ViennaViennaAustria
- Unit of Laboratory Animal PathologyUniversity of Veterinary Medicine ViennaViennaAustria
- Comprehensive Cancer CenterMedical University of ViennaViennaAustria
- Christian Doppler Laboratory for Applied Metabolomics (CDL‐AM), Division of Nuclear MedicineMedical University of ViennaViennaAustria
- CBmed GmbH Center for Biomarker Research in MedicineGrazAustria
| | - Richard Moriggl
- Unit of Functional Cancer Genomics, Institute of Animal Breeding and GeneticsUniversity of Veterinary MedicineViennaAustria
| | - Peter Wolf
- Department of Dermatology and VenereologyMedical University of GrazGrazAustria
- BioTechMed GrazGrazAustria
| |
Collapse
|
6
|
Hristov AC, Tejasvi T, Wilcox RA. Cutaneous T-cell lymphomas: 2021 update on diagnosis, risk-stratification, and management. Am J Hematol 2021; 96:1313-1328. [PMID: 34297414 PMCID: PMC8486344 DOI: 10.1002/ajh.26299] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/20/2021] [Accepted: 07/21/2021] [Indexed: 11/08/2022]
Abstract
DISEASE OVERVIEW Cutaneous T-cell lymphomas are a heterogenous group of T-cell neoplasms involving the skin, the majority of which may be classified as Mycosis Fungoides (MF) or Sézary Syndrome (SS). DIAGNOSIS The diagnosis of MF or SS requires the integration of clinical and histopathologic data. RISK-ADAPTED THERAPY TNMB (tumor, node, metastasis, blood) staging remains the most important prognostic factor in MF/SS and forms the basis for a "risk-adapted," multi-disciplinary approach to treatment. For patients with disease limited to the skin, expectant management or skin-directed therapies is preferred, as both disease-specific and overall survival for these patients is favorable. In contrast, patients with advanced-stage disease with significant nodal, visceral or blood involvement are generally approached with systemic therapies, including biologic-response modifiers, histone deacetylase inhibitors, or antibody-based strategies, in an escalating fashion. In highly-selected patients, allogeneic stem-cell transplantation may be considered, as this may be curative in some patients.
Collapse
Affiliation(s)
- Alexandra C. Hristov
- Departments of Pathology and Dermatology, North Campus Research Complex, Ann Arbor, Michigan, USA
| | - Trilokraj Tejasvi
- Director Cutaneous Lymphoma program, Department of Dermatology, A. Alfred Taubman Health Care Center, Ann Arbor, Michigan, USA
| | - Ryan A. Wilcox
- Division of Hematology/Oncology, Department of Internal Medicine, University of Michigan Rogel Cancer Center, Ann Arbor, Michigan, USA
| |
Collapse
|
7
|
Cortés JR, Palomero T. Biology and Molecular Pathogenesis of Mature T-Cell Lymphomas. Cold Spring Harb Perspect Med 2021; 11:cshperspect.a035402. [PMID: 32513675 DOI: 10.1101/cshperspect.a035402] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Peripheral T-cell lymphomas (PTCLs) constitute a highly heterogeneous group of hematological diseases with complex clinical and molecular features consistent with the diversity of the T-cell type from which they originate. In the past several years, the systematic implementation of high-throughput genomic technologies for the analysis of T-cell malignancies has supported an exponential progress in our understanding of the genetic drivers of oncogenesis and unraveled the molecular complexity of these diseases. Recent findings have helped redefine the classification of T-cell malignancies and provided novel biomarkers to improve diagnosis accuracy and analyze the response to therapy. In addition, multiple novel targeted therapies including small-molecule inhibitors, antibody-based approaches, and immunotherapy have shown promising results in early clinical analysis and have the potential to completely change the way T-cell malignancies have been treated traditionally.
Collapse
Affiliation(s)
| | - Teresa Palomero
- Institute for Cancer Genetics.,Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, New York 10032, USA
| |
Collapse
|
8
|
Karagianni F, Piperi C, Mpakou V, Spathis A, Foukas PG, Dalamaga M, Pappa V, Papadavid E. Ruxolitinib with resminostat exert synergistic antitumor effects in Cutaneous T-cell Lymphoma. PLoS One 2021; 16:e0248298. [PMID: 33705488 PMCID: PMC7951910 DOI: 10.1371/journal.pone.0248298] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 02/23/2021] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND The combination of JAK/STAT and HDAC inhibitors exerted beneficial effects in haematological malignancies, presenting promising therapeutic CTCL targets. We aim to investigate the efficacy of JAK1/2i ruxolitinib in combination with HDACi resminostat in CTCL in vitro. MATERIAL & METHODS Non-toxic concentrations of ruxolitinib and/or resminostat were administered to MyLa (MF) and SeAx (SS) cells for 24h. Cytotoxicity, cell proliferation and apoptosis were estimated through MTT, BrdU/7AAD and Annexin V/PI assay. Multi-pathway analysis was performed to investigate the effect of JAK1/2i and/or HDACi on JAK/STAT, Akt/mTOR and MAPK signalling pathways. RESULTS Both drugs and their combination were cytotoxic in MyLa (p<0.05) and in SeAx cell line (p<0.001), inhibited proliferation of MyLa (p<0.001) and SeAx (p<0.001) at 24h, compared to untreated cells. Moreover, combined drug treatment induced apoptosis after 24h (p<0.001) in MyLa, and SeAx (p<0.001). The combination of drugs had a strong synergistic effect with a CI<1. Importantly, the drugs' combination inhibited phosphorylation of STAT3 (p<0.001), Akt (p<0.05), ERK1/2 (p<0.001) and JNK (p<0.001) in MyLa, while it reduced activation of Akt (p<0.05) and JNK (p<0.001) in SeAx. CONCLUSION The JAKi/HDACi combination exhibited substantial anti-tumor effects in CTCL cell lines, and may represent a promising novel therapeutic modality for CTCL patients.
Collapse
Affiliation(s)
- Fani Karagianni
- 2nd Department of Dermatology and Venereal Diseases, NKUA, Athens, Greece
- * E-mail:
| | | | - Vassiliki Mpakou
- Second Department of Internal Medicine and Research Institute, Attikon University General Hospital, NKUA, Athens, Greece
| | - Aris Spathis
- Second Department of Pathology, National and Kapodistrian University of Athens, Athens, Greece
| | - Periklis G. Foukas
- Second Department of Pathology, National and Kapodistrian University of Athens, Athens, Greece
| | - Maria Dalamaga
- 2nd Department of Dermatology and Venereal Diseases, NKUA, Athens, Greece
- Department of Biological Chemistry, NKUA, Athens, Greece
| | - Vasiliki Pappa
- Second Department of Internal Medicine and Research Institute, Attikon University General Hospital, NKUA, Athens, Greece
| | | |
Collapse
|
9
|
Neuwelt A, Al-Juhaishi T, Davila E, Haverkos B. Enhancing antitumor immunity through checkpoint blockade as a therapeutic strategy in T-cell lymphomas. Blood Adv 2020; 4:4256-4266. [PMID: 32898250 PMCID: PMC7479955 DOI: 10.1182/bloodadvances.2020001966] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 07/20/2020] [Indexed: 02/08/2023] Open
Abstract
The majority of historical therapies for managing T-cell lymphomas (TCLs) have consisted of T-cell-depleting strategies. Unfortunately, these forms of therapies can hamper the ability to mount effective antitumor immune responses. Recently, the use of checkpoint inhibitors has revolutionized the therapy of solid and hematologic malignancies. The development of immunotherapies for the management of TCL has lagged behind other malignancies given 2 central reasons: (1) the competing balance of depleting malignant T cells while simultaneously enhancing an antitumor T-cell response and (2) concern for tumor hyperprogression by blocking inhibitory signals on the surface of the malignant T cell, thereby leading to further proliferation of the malignant cells. These challenges were highlighted with the discovery that programmed cell death protein 1 (PD-1) functions paradoxically as a haploinsufficient tumor suppressor in preclinical TCL models. In contrast, some preclinical and clinical evidence suggests that PD-1/programmed death ligand 1 may become an important therapeutic tool in the management of patients with TCL. Improved understanding of the immune landscape of TCL is necessary in order to identify subsets of patients most likely to benefit from checkpoint-inhibitor therapy. With increased preclinical research focus on the tumor microenvironment, substantial strides are being made in understanding how to harness the power of the immune system to treat TCLs. In this review, designed to be a "call to action," we discuss the challenges and opportunities of using immune-modulating therapies, with a focus on checkpoint inhibitors, for the treatment of patients with TCL.
Collapse
Affiliation(s)
- Alexander Neuwelt
- Division of Hematology and Oncology, Richmond Veterans Affairs Medical Center, Richmond, VA
- Division of Hematology and Oncology, Virginia Commonwealth University, Richmond, VA; and
| | - Taha Al-Juhaishi
- Division of Hematology and Oncology, Richmond Veterans Affairs Medical Center, Richmond, VA
- Division of Hematology and Oncology, Virginia Commonwealth University, Richmond, VA; and
| | | | | |
Collapse
|
10
|
Wang H, Wang Z, Zhang H, Qi Z, Johnson AC, Mathes D, Pomfret EA, Rubin E, Huang CA, Wang Z. Bispecific human IL2-CCR4 immunotoxin targets human cutaneous T-cell lymphoma. Mol Oncol 2020; 14:991-1000. [PMID: 32107846 PMCID: PMC7191189 DOI: 10.1002/1878-0261.12653] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 02/12/2020] [Accepted: 02/24/2020] [Indexed: 12/17/2022] Open
Abstract
The majority of clinically diagnosed cutaneous T-cell lymphomas (CTCL) highly express the cell-surface markers CC chemokine receptor 4 (CCR4) and/or CD25. Recently, we have developed diphtheria toxin-based recombinant Ontak®-like human IL2 fusion toxin (IL2 fusion toxin) and anti-human CCR4 immunotoxin (CCR4 IT). In this study, we first compared the efficacy of the CCR4 IT vs IL2 fusion toxin for targeting human CD25+ CCR4+ CTCL. We demonstrated that CCR4 IT was more effective than IL2 fusion toxin. We further constructed an IL2-CCR4 bispecific IT. The bispecific IT was significantly more effective than either IL2 fusion toxin or CCR4 IT alone. The bispecific IT is a promising novel targeted therapeutic drug candidate for the treatment of refractory and recurrent human CD25+ and/or CCR4+ CTCL.
Collapse
Affiliation(s)
- Haoyu Wang
- Division of Plastic and Reconstructive Surgery, Department of Surgery, School of Medicine, University of Colorado Denver, Aurora, CO, USA.,Division of Transplant Surgery, Department of Surgery, School of Medicine, University of Colorado Denver, Aurora, CO, USA.,Center for Transplantation Sciences, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.,College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, China
| | - Zhaohui Wang
- Division of Plastic and Reconstructive Surgery, Department of Surgery, School of Medicine, University of Colorado Denver, Aurora, CO, USA.,Division of Transplant Surgery, Department of Surgery, School of Medicine, University of Colorado Denver, Aurora, CO, USA.,Center for Transplantation Sciences, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Huiping Zhang
- Division of Plastic and Reconstructive Surgery, Department of Surgery, School of Medicine, University of Colorado Denver, Aurora, CO, USA.,Division of Transplant Surgery, Department of Surgery, School of Medicine, University of Colorado Denver, Aurora, CO, USA.,Center for Transplantation Sciences, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Zeng Qi
- Division of Plastic and Reconstructive Surgery, Department of Surgery, School of Medicine, University of Colorado Denver, Aurora, CO, USA.,Division of Transplant Surgery, Department of Surgery, School of Medicine, University of Colorado Denver, Aurora, CO, USA.,Center for Transplantation Sciences, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Ariel C Johnson
- Division of Plastic and Reconstructive Surgery, Department of Surgery, School of Medicine, University of Colorado Denver, Aurora, CO, USA
| | - David Mathes
- Division of Plastic and Reconstructive Surgery, Department of Surgery, School of Medicine, University of Colorado Denver, Aurora, CO, USA
| | - Elizabeth A Pomfret
- Division of Transplant Surgery, Department of Surgery, School of Medicine, University of Colorado Denver, Aurora, CO, USA
| | - Erin Rubin
- Transplantation Pathology, Department of Pathology, School of Medicine, University of Colorado Denver, Aurora, CO, USA
| | - Christene A Huang
- Division of Plastic and Reconstructive Surgery, Department of Surgery, School of Medicine, University of Colorado Denver, Aurora, CO, USA.,Division of Transplant Surgery, Department of Surgery, School of Medicine, University of Colorado Denver, Aurora, CO, USA.,Center for Transplantation Sciences, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Zhirui Wang
- Division of Plastic and Reconstructive Surgery, Department of Surgery, School of Medicine, University of Colorado Denver, Aurora, CO, USA.,Division of Transplant Surgery, Department of Surgery, School of Medicine, University of Colorado Denver, Aurora, CO, USA.,Center for Transplantation Sciences, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
11
|
Cheng JW, Hon KL, Leung AKC. A polymorphic papulosquamous rash with micaceous scales. Paediatr Child Health 2019; 26:67-68. [PMID: 33747298 DOI: 10.1093/pch/pxz140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 06/06/2019] [Indexed: 11/14/2022] Open
Affiliation(s)
- James Wesley Cheng
- Department of Paediatrics and Adolescent medicine, United Christian Hospital, Kowloon, Hong Kong
| | - Kam Lun Hon
- Department of Paediatrics, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong.,Department of Paediatrics, The Hong Kong Children's Hospital, Kowloon, Hong Kong
| | - Alexander K C Leung
- Department of Pediatrics, the University of Calgary and, the Alberta Children's Hospital, Calgary, Alberta
| |
Collapse
|
12
|
Hristov AC, Tejasvi T, Wilcox RA. Mycosis fungoides and Sézary syndrome: 2019 update on diagnosis, risk-stratification, and management. Am J Hematol 2019; 94:1027-1041. [PMID: 31313347 DOI: 10.1002/ajh.25577] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 07/09/2019] [Accepted: 07/10/2019] [Indexed: 01/04/2023]
Abstract
DISEASE OVERVIEW Cutaneous T-cell lymphomas (CTCL) are a heterogenous group of T-cell neoplasms involving the skin, the majority of which may be classified as Mycosis fungoides (MF) or Sézary syndrome (SS). DIAGNOSIS The diagnosis of MF or SS requires the integration of clinical and histopathologic data. RISK-ADAPTED THERAPY TNMB (tumor, node, metastasis, blood) staging remains the most important prognostic factor in MF/SS and forms the basis for a "risk-adapted," multi-disciplinary approach to treatment. For patients with disease limited to the skin, skin-directed therapies are preferred, as both disease-specific and overall survival for these patients is favorable. In contrast, patients with advanced-stage disease with significant nodal, visceral or blood involvement are generally approached with systemic therapies. These include biologic-response modifiers, histone deacetylase (HDAC) inhibitors, or antibody-based strategies, in an escalating fashion. In highly-selected patients, allogeneic stem-cell transplantation may be considered, as this may be curative in some patients.
Collapse
Affiliation(s)
- Alexandra C. Hristov
- Departments of Pathology and DermatologyUniversity of Michigan Ann Arbor Michigan
| | | | - Ryan A. Wilcox
- Division of Hematology/Oncology, Department of Internal MedicineUniversity of Michigan Rogel Cancer Center Ann Arbor Michigan
| |
Collapse
|
13
|
Demina OM, Akilov OE, Rumyantsev AG. Cutaneous T-cell lymphomas: modern data of pathogenesis, clinics and therapy. ONCOHEMATOLOGY 2018. [DOI: 10.17650/1818-8346-2018-13-3-25-38] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/11/2023]
Abstract
Cutaneous T-cell lymphomas (CTCL) are a heterogeneous group of extranodal non-Hodgkin’s lymphomas that are characterized by skin infiltration with malignant monoclonal T lymphocytes. More common in adults aged 55 to 60 years, the annual incidence is about 0.5 per 100 000 people. Mycosis fungoides, Sézary syndrome and CD30+ lymphoproliferative diseases are the main subtypes of CTCL. To date, CTCL have a complex concept of etiopathogenesis, diagnosis, therapy and prognosis. The article presented summary data on these issues.
Collapse
Affiliation(s)
- O. M. Demina
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Ministry of Health of Russia
| | - O. E. Akilov
- University of Pittsburgh, Department of Dermatology, Cutaneous Lymphoma Clinics
| | - A. G. Rumyantsev
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Ministry of Health of Russia
| |
Collapse
|
14
|
Zic JA, Straka BT, McGirt LY, Nian H, Yu C, Brown NJ. Aprepitant for the Treatment of Pruritus in Sézary Syndrome: A Randomized Crossover Clinical Trial. JAMA Dermatol 2018; 154:1221-1222. [PMID: 30140912 PMCID: PMC6233739 DOI: 10.1001/jamadermatol.2018.2510] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Affiliation(s)
- John A. Zic
- Department of Dermatology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Brittany T. Straka
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee,now in private practice, Westerville, Ohio
| | - Laura Y. McGirt
- Division of Dermatology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee,now with Department of Hematology/Oncology, Levine Cancer Institute, Carolinas Medical Center, Charlotte, North Carolina
| | - Hui Nian
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Chang Yu
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Nancy J. Brown
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| |
Collapse
|
15
|
Berg S, Villasenor-Park J, Haun P, Kim EJ. Multidisciplinary Management of Mycosis Fungoides/Sézary Syndrome. Curr Hematol Malig Rep 2017; 12:234-243. [PMID: 28540671 DOI: 10.1007/s11899-017-0387-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
PURPOSE OF REVIEW Diagnosis and management of mycosis fungoides and Sézary syndrome (MF/SS) require accurate clinicopathological correlation and a multidisciplinary approach. We reviewed major advances in the field regarding diagnostic and prognostic tools as well as skin-directed therapies (SDTs) and systemic agents for MF/SS published in the past 2 years. RECENT FINDINGS Improved technology (T-cell receptor high-throughput sequencing) and increased multicenter collaboration (Cutaneous Lymphoma International Consortium) have led to diagnostic/prognostic advances. Concurrently, numerous genomic studies have enhanced understanding of disease pathogenesis. Advances in SDTs include topical resiquimod, a novel potent Toll-like receptor (TLR) agonist; consensus CTCL phototherapy guidelines; and use of low-dose radiation therapy. Novel systemic therapies for advanced disease of note include targeted antibody drug conjugates (brentuximab vedotin), immune checkpoint inhibitors, and allogeneic hematopoietic stem cell transplantation (HSCT). Our "toolbox" to diagnose and treat the spectrum of MF/SS continues to expand. Further characterization of genomic data going forward will enable a rational approach to selecting and combining therapies to improve patient care.
Collapse
Affiliation(s)
- Sara Berg
- Penn Cutaneous Lymphoma Program, Department of Dermatology, Perelman Center for Advanced Medicine, Perelman School of Medicine at the University of Pennsylvania, 1st Floor South Pavilion, 3400 Civic Center Boulevard, Philadelphia, PA, 19104, USA
| | - Jennifer Villasenor-Park
- Penn Cutaneous Lymphoma Program, Department of Dermatology, Perelman Center for Advanced Medicine, Perelman School of Medicine at the University of Pennsylvania, 1st Floor South Pavilion, 3400 Civic Center Boulevard, Philadelphia, PA, 19104, USA
| | - Paul Haun
- Penn Cutaneous Lymphoma Program, Department of Dermatology, Perelman Center for Advanced Medicine, Perelman School of Medicine at the University of Pennsylvania, 1st Floor South Pavilion, 3400 Civic Center Boulevard, Philadelphia, PA, 19104, USA
| | - Ellen J Kim
- Penn Cutaneous Lymphoma Program, Department of Dermatology, Perelman Center for Advanced Medicine, Perelman School of Medicine at the University of Pennsylvania, 1st Floor South Pavilion, 3400 Civic Center Boulevard, Philadelphia, PA, 19104, USA.
| |
Collapse
|
16
|
Wilcox RA. Cutaneous T-cell lymphoma: 2017 update on diagnosis, risk-stratification, and management. Am J Hematol 2017; 92:1085-1102. [PMID: 28872191 DOI: 10.1002/ajh.24876] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 07/27/2017] [Indexed: 12/12/2022]
Abstract
DISEASE OVERVIEW Cutaneous T-cell lymphomas are a heterogenous group of T-cell lymphoproliferative disorders involving the skin, the majority of which may be classified as Mycosis Fungoides (MF) or Sézary Syndrome (SS). DIAGNOSIS The diagnosis of MF or SS requires the integration of clinical and histopathologic data. RISK-ADAPTED THERAPY TNMB (tumor, node, metastasis, blood) staging remains the most important prognostic factor in MF/SS and forms the basis for a "risk-adapted," multi-disciplinary approach to treatment. For patients with disease limited to the skin, expectant management or skin-directed therapies is preferred, as both disease-specific and overall survival for these patients is favorable. In contrast, patients with advanced-stage disease with significant nodal, visceral or blood involvement are generally approached with biologic-response modifiers or histone deacetylase inhibitors prior to escalating therapy to include systemic, single-agent chemotherapy. In highly-selected patients, allogeneic stem-cell transplantation may be considered, as this may be curative in some patients.
Collapse
Affiliation(s)
- Ryan A. Wilcox
- Division of Hematology/Oncology; University of Michigan Comprehensive Cancer Center; Ann Arbor Michigan 48109-5948
| |
Collapse
|
17
|
Apoptosis Induction and Gene Expression Profile Alterations of Cutaneous T-Cell Lymphoma Cells following Their Exposure to Bortezomib and Methotrexate. PLoS One 2017; 12:e0170186. [PMID: 28107479 PMCID: PMC5249051 DOI: 10.1371/journal.pone.0170186] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 12/30/2016] [Indexed: 01/11/2023] Open
Abstract
Mycosis fungoides (MF) and its leukemic variant Sézary syndrome (SS) comprise the majority of CTCL, a heterogenous group of non-Hodgkins lymphomas involving the skin. The CTCL’s resistance to chemotherapy and the lack of full understanding of their pathogenesis request further investigation. With the view of a more targeted therapy, we evaluated in vitro the effectiveness of bortezomib and methotrexate, as well as their combination in CTCL cell lines, regarding apoptosis induction. Our data are of clinical value and indicate that the bortezomib/methotrexate combinational therapy has an inferior impact on the apoptosis of CTCL compared to monotherapy, with bortezomib presenting as the most efficient treatment option for SS and methotrexate for MF. Using PCR arrays technology, we also investigated the alterations in the expression profile of genes related to DNA repair pathways in CTCL cell lines after treatment with bortezomib or methotrexate. We found that both agents, but mostly bortezomib, significantly deregulate a large number of genes in SS and MF cell lines, suggesting another pathway through which these agents could induce apoptosis in CTCL. Finally, we show that SS and MF respond differently to treatment, verifying their distinct nature and further emphasizing the need for discrete treatment approaches.
Collapse
|
18
|
Phillips T, Devata S, Wilcox RA. Challenges and opportunities for checkpoint blockade in T-cell lymphoproliferative disorders. J Immunother Cancer 2016; 4:95. [PMID: 28031823 PMCID: PMC5170899 DOI: 10.1186/s40425-016-0201-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 12/01/2016] [Indexed: 01/05/2023] Open
Abstract
The T-cell lymphoproliferative disorders are a heterogeneous group of non-Hodgkin’s lymphomas (NHL) for which current therapeutic strategies are inadequate, as most patients afflicted with these NHL will succumb to disease progression within 2 years of diagnosis. Appreciation of the genetic and immunologic landscape of these aggressive NHL, including PD-L1 (B7-H1, CD274) expression by malignant T cells and within the tumor microenvironment, provides a strong rationale for therapeutic targeting this immune checkpoint. While further studies are needed, the available data suggests that responses with PD-1 checkpoint blockade alone will unlikely approach those achieved in other lymphoproliferative disorders. Herein, we review the unique challenges posed by the T-cell lymphoproliferative disorders and discuss potential strategies to optimize checkpoint blockade in these T-cell derived malignancies.
Collapse
Affiliation(s)
- Tycel Phillips
- Department of Internal Medicine, Division of Hematology and Oncology, University of Michigan, Ann Arbor, MI USA
| | - Sumana Devata
- Department of Internal Medicine, Division of Hematology and Oncology, University of Michigan, Ann Arbor, MI USA
| | - Ryan A Wilcox
- Department of Internal Medicine, Division of Hematology and Oncology, University of Michigan, Ann Arbor, MI USA ; University of Michigan Comprehensive Cancer Center, 4310 Cancer Center, 1500 East Medical Center Drive, Ann Arbor, MI 48109 USA
| |
Collapse
|
19
|
Hanel W, Briski R, Ross CW, Anderson TF, Kaminski MS, Hristov AC, Wilcox RA. A retrospective comparative outcome analysis following systemic therapy in Mycosis fungoides and Sezary syndrome. Am J Hematol 2016; 91:E491-E495. [PMID: 27649045 DOI: 10.1002/ajh.24564] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 08/27/2016] [Accepted: 09/17/2016] [Indexed: 12/24/2022]
Abstract
Cutaneous T-cell lymphomas (CTCL), with few exceptions, remain incurable and treatment is largely palliative. We performed a retrospective analysis of systemic treatment outcomes of patients diagnosed with MF/SS. We identified 223 patients with MF/SS evaluated at a single institution from 1997 to 2013. Disease stage at diagnosis, time of treatment, and treatments received were retrospectively analyzed using our CTCL database. The primary endpoint was time to next treatment (TTNT). Treatment outcomes were analyzed using Kaplan-Meier method and comparisons among groups were made using log-rank analysis. A superior TTNT was associated with retinoid or interferon therapies when compared with HDAC inhibitors or systemic chemotherapy. Retinoids and interferon were associated with superior TTNT in both limited-stage and advanced stage disease. Extracorporeal photophoresis (ECP) had a superior TTNT in Sezary Syndrome. HDAC inhibitors and chemotherapy were associated with inferior TTNT in both limited stage disease and advanced stage disease. With the exception of interferon, retinoids, or ECP, durable responses are rarely achieved with systemic therapies in MF/SS patients, particularly those with advanced-stage disease. Therefore, clinical trial participation with novel agents should be encouraged. Am. J. Hematol. 91:E491-E495, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Walter Hanel
- Department of Internal MedicineUniversity of Michigan Comprehensive Cancer CenterAnn Arbor Michigan
| | - Robert Briski
- Department of Internal Medicine, Division of Hematology/OncologyUniversity of Michigan Comprehensive Cancer CenterAnn Arbor Michigan
| | - Charles W. Ross
- Department of PathologyUniversity of Michigan Comprehensive Cancer CenterAnn Arbor Michigan
| | - Thomas F. Anderson
- Department of DermatologyUniversity of Michigan Comprehensive Cancer CenterAnn Arbor Michigan
| | - Mark S. Kaminski
- Department of Internal Medicine, Division of Hematology/OncologyUniversity of Michigan Comprehensive Cancer CenterAnn Arbor Michigan
| | - Alexandra C. Hristov
- Department of Dermatology and PathologyUniversity of Michigan Comprehensive Cancer CenterAnn Arbor Michigan
| | - Ryan A Wilcox
- Department of Internal Medicine, Division of Hematology/OncologyUniversity of Michigan Comprehensive Cancer CenterAnn Arbor Michigan
| |
Collapse
|
20
|
Abstract
Cutaneous T cell lymphomas (CTCLs) are a heterogeneous group of extranodal non-Hodgkin’s lymphomas that are characterized by a cutaneous infiltration of malignant monoclonal T lymphocytes. They typically afflict adults with a median age of 55 to 60 years, and the annual incidence is about 0.5 per 100,000. Mycosis fungoides, Sézary syndrome, and primary cutaneous peripheral T cell lymphomas not otherwise specified are the most important subtypes of CTCL. CTCL is a complicated concept in terms of etiopathogenesis, diagnosis, therapy, and prognosis. Herein, we summarize advances which have been achieved in these fields.
Collapse
Affiliation(s)
| | - Bruce R Smoller
- Department of Dermatology, School of Medicine and Dentistry, University of Rochester, Rochester, New York, USA
| |
Collapse
|