1
|
Kelley B, Kiss R, Laird M. A Different Perspective: How Much Innovation Is Really Needed for Monoclonal Antibody Production Using Mammalian Cell Technology? ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2019; 165:443-462. [PMID: 29721583 DOI: 10.1007/10_2018_59] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
As biopharmaceutical companies have optimized cell line and production culture process development, titers of recombinant antibodies have risen steadily to 3-8 g/L for fed-batch mammalian cultures at production scales of 10 kL or larger. Most new antibody products are produced from Chinese Hamster Ovary (CHO) cell lines, and there are relatively few alternative production hosts under active evaluation. Many companies have adopted a strategy of using the same production cell line for early clinical phases as well as commercial production, which reduces the risk of product comparability issues during the development lifecycle. Product quality and consistency expectations rest on the platform knowledge of the CHO host cell line and processes used for the production of many licensed antibodies. The lack of impact of low-level product variants common to this platform on product safety and efficacy also builds on the established commercial history of recombinant antibodies, which dates back to 1997.Efforts to increase titers further will likely yield diminishing returns. Very few products would benefit significantly from a titer greater than 8 g/L; in many cases, a downstream processing bottleneck would preclude full recovery from production-scale bioreactors for high titer processes. The benefits of a process platform based on standard fed-batch production culture include predictable scale-up, process transfer, and production within a company's manufacturing network or at a contract manufacturing organization. Furthermore, the confidence in an established platform provides key support towards regulatory flexibility (e.g., design space) for license applications following a quality-by-design strategy.These factors suggest that novel technologies for antibody production may not provide a substantial return on investment. What, then, should be the focus of future process development efforts for companies that choose to launch antibody products using their current platform? This review proposes key focus areas in an effort to continually improve process consistency, assure acceptable product quality, and establish appropriate process parameter limits to enable flexible manufacturing options.
Collapse
Affiliation(s)
- Brian Kelley
- Vir Biotechnology, Inc., San Francisco, CA, USA.
| | - Robert Kiss
- Sutro Biopharma, Inc., San Francisco, CA, USA
| | - Michael Laird
- Genentech (A Member of the Roche Group), San Francisco, CA, USA
| |
Collapse
|
2
|
Peterknecht E, Keasey MP, Beresford MW. The effectiveness and safety of biological therapeutics in juvenile-onset systemic lupus erythematosus (JSLE): a systematic review. Lupus 2018; 27:2135-2145. [PMID: 30336753 DOI: 10.1177/0961203318804879] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
OBJECTIVE To systematically review and summarize the available literature regarding the effectiveness and safety of biologics in the treatment of juvenile-onset systemic lupus erythematosus. METHODS PubMed was systematically searched for relevant literature (2012-2017 inclusive) using the following criteria: (1) patients diagnosed with juvenile-onset systemic lupus erythematosus (≤18 years at diagnosis); (2) treatment with any biological agent; and (3) outcome measures assessing effectiveness and safety. Systematic literature reviews, meta-analyses, randomized controlled trials, cohort studies, case control studies, cross sectional surveys and case-series with ≥3 patients were included. Independent extraction of articles by two authors using predefined criteria was performed. The quality of each study was assessed using CASP tools and Oxford CEBM Levels of Evidence. RESULTS Nine articles met inclusion criteria: six cohort studies, two case series and one pilot study, totalling 230 patients. All but one article reported the effects of rituximab, the other those of belimumab. Overall, patients had active disease refractory to standard of care regimens using corticosteroids and immunosuppressants. Available evidence for rituximab demonstrated improvements in disease activity, complement levels and anti-dsDNA titres accompanying a steroid-sparing effect. CONCLUSION Rituximab can be considered an effective treatment in juvenile-onset systemic lupus erythematosus patients with severe disease manifestations and/or refractory disease. Based on current evidence, use of belimumab in juvenile-onset systemic lupus erythematosus patients cannot be recommended. The long-term safety of these biological agents remains uncertain. Further prospective studies, ideally robust randomized controlled trials, are urgently needed to obtain more accurate data on the effectiveness and long-term safety of rituximab, belimumab and other biologics in juvenile-onset systemic lupus erythematosus.
Collapse
Affiliation(s)
- E Peterknecht
- 1 University of Liverpool Medical School, University of Liverpool, Liverpool, UK
| | - M P Keasey
- 2 Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, USA
| | - M W Beresford
- 3 Clinical Academic Department of Paediatric Rheumatology, Alder Hey Children's NHS Foundation Trust, Liverpool, UK
- 4 Department of Women's and Children's Health, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| |
Collapse
|
3
|
Vanderlaan M, Zhu-Shimoni J, Lin S, Gunawan F, Waerner T, Van Cott KE. Experience with host cell protein impurities in biopharmaceuticals. Biotechnol Prog 2018; 34:828-837. [PMID: 29693803 DOI: 10.1002/btpr.2640] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Revised: 04/09/2018] [Indexed: 12/29/2022]
Abstract
In the 40-year history of biopharmaceuticals, there have been a few cases where the final products contained residual host cell protein (HCP) impurities at levels high enough to be of concern. This article summarizes the industry experience in these cases where HCP impurities have been presented in public forums and/or published. Regulatory guidance on HCP impurities is limited to advising that products be as pure as practical, with no specified numerical limit because the risk associated with HCP exposure often depends on the clinical setting (route of administration, dose, indication, patient population) and the particular impurity. While the overall safety and purity track record of the industry is excellent, these examples illustrate several important lessons learned about the kinds of HCPs that co-purify with products (e.g., product homologs, and HCPs that react with product), and the kinds of clinical consequences of HCP impurities (e.g., direct biological activity, immunogenicity, adjuvant). The literature on industry experience with HCP impurities is scattered, and this review draws in to one reference documented examples where the data have been presented in meetings, patents, product inserts, or press releases, in addition to peer-reviewed journal articles. © 2018 American Institute of Chemical Engineers Biotechnol. Prog., 34:828-837, 2018.
Collapse
Affiliation(s)
- Martin Vanderlaan
- Department of Analytical Development and Quality Control, Genentech, 1 DNA Way, South San Francisco, CA, 94080
| | - Judith Zhu-Shimoni
- Department of Analytical Development and Quality Control, Genentech, 1 DNA Way, South San Francisco, CA, 94080
| | - Sansan Lin
- Department of Analytical Development and Quality Control, Genentech, 1 DNA Way, South San Francisco, CA, 94080
| | - Feny Gunawan
- Department of Analytical Development and Quality Control, Genentech, 1 DNA Way, South San Francisco, CA, 94080
| | - Thomas Waerner
- Department of Analytical Development Biologicals, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - Kevin E Van Cott
- Department of Chemical and Biomolecular Engineering, University of Nebraska-Lincoln, Lincoln, NE, 68588
| |
Collapse
|
4
|
Musetti C, Bean MF, Quinque GT, Kwiatkowski C, Szewczuk LM, Baldoni J, Zajac MA. High-Throughput Assessment of Structural Continuity in Biologics. Anal Chem 2018; 90:2970-2975. [PMID: 29369625 PMCID: PMC6349355 DOI: 10.1021/acs.analchem.8b00180] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
We demonstrate a high-throughput chemoprinting platform that confirms the consistency in the higher-order structure of protein biologics and is sensitive enough to detect single-point mutations. This method addresses the quality and consistency of the tertiary and quaternary structure of biologic drug products, which is arguably the most important, yet rarely examined, parameter. The method described uses specific small-molecule ligands as molecular probes to assess protein structure. Each library of probe molecules provides a "fingerprint" when taken holistically. After proof-of-concept experiments involving enzymes and antibodies, we were able to detect minor conformational perturbations between four 48 kDa protein mutants that only differ by one amino acid residue.
Collapse
Affiliation(s)
- Caterina Musetti
- Platform Technology and Science, GlaxoSmithKline , 1250 South Collegeville Road, Collegeville, Pennsylvania 19426, United States
| | - Mark F Bean
- Platform Technology and Science, GlaxoSmithKline , 1250 South Collegeville Road, Collegeville, Pennsylvania 19426, United States
| | - Geoffrey T Quinque
- Platform Technology and Science, GlaxoSmithKline , 1250 South Collegeville Road, Collegeville, Pennsylvania 19426, United States
| | - Christopher Kwiatkowski
- Platform Technology and Science, GlaxoSmithKline , 1250 South Collegeville Road, Collegeville, Pennsylvania 19426, United States
| | - Lawrence M Szewczuk
- Platform Technology and Science, GlaxoSmithKline , 1250 South Collegeville Road, Collegeville, Pennsylvania 19426, United States
| | - John Baldoni
- Platform Technology and Science, GlaxoSmithKline , 1250 South Collegeville Road, Collegeville, Pennsylvania 19426, United States
| | - Matthew A Zajac
- Platform Technology and Science, GlaxoSmithKline , 1250 South Collegeville Road, Collegeville, Pennsylvania 19426, United States
| |
Collapse
|
5
|
Improving Biopharmaceutical Safety through Verification-Based Quality Control. Trends Biotechnol 2017; 35:1140-1155. [DOI: 10.1016/j.tibtech.2017.08.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 08/28/2017] [Accepted: 08/29/2017] [Indexed: 12/16/2022]
|
6
|
Hassett B, Singh E, Mahgoub E, O'Brien J, Vicik SM, Fitzpatrick B. Manufacturing history of etanercept (Enbrel ®): Consistency of product quality through major process revisions. MAbs 2017; 10:159-165. [PMID: 29020515 DOI: 10.1080/19420862.2017.1388483] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
Etanercept (ETN) (Enbrel®) is a soluble protein that binds to, and specifically inhibits, tumor necrosis factor (TNF), a proinflammatory cytokine. ETN is synthesized in Chinese hamster ovary cells by recombinant DNA technology as a fusion protein, with a fully human TNFRII ectodomain linked to the Fc portion of human IgG1. Successful manufacture of biologics, such as ETN, requires sophisticated process and product understanding, as well as meticulous control of operations to maintain product consistency. The objective of this evaluation was to show that the product profile of ETN drug substance (DS) has been consistent over the course of production. Multiple orthogonal biochemical analyses, which included evaluation of attributes indicative of product purity, potency, and quality, were assessed on >2,000 batches of ETN from three sites of DS manufacture, during the period 1998-2015. Based on the key quality attributes of product purity (assessed by hydrophobic interaction chromatography HPLC), binding activity (to TNF by ELISA), potency (inhibition of TNF-induced apoptosis by cell-based bioassay) and quality (N-linked oligosaccharide map), we show that the integrity of ETN DS has remained consistent over time. This consistency was maintained through three major enhancements to the initial process of manufacturing that were supported by detailed comparability assessments, and approved by the European Medicines Agency. Examination of results for all major quality attributes for ETN DS indicates a highly consistent process for over 18 years and throughout changes to the manufacturing process, without affecting safety and efficacy, as demonstrated across a wide range of clinical trials of ETN in multiple inflammatory diseases.
Collapse
Affiliation(s)
- Brian Hassett
- a Pfizer, Biotechnology & Aseptic Sciences Group , Dublin , Ireland
| | - Ena Singh
- b Pfizer, Inflammation & Immunology Global Medical Affairs , Collegeville , PA , USA
| | - Ehab Mahgoub
- c Pfizer, Inflammation & Immunology Regional Medical Affairs , Collegeville , PA , USA
| | - Julie O'Brien
- d Pfizer, Europe & International Regulatory Policy , Dublin , Ireland
| | | | | |
Collapse
|
7
|
Bravery CA. Do human leukocyte antigen-typed cellular therapeutics based on induced pluripotent stem cells make commercial sense? Stem Cells Dev 2015; 24:1-10. [PMID: 25244598 DOI: 10.1089/scd.2014.0136] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The promise of off-the-shelf cellular therapeutics (CTPs) based on allogeneic induced pluripotent stem cells (iPSCs) may be hindered by alloimmunity, leading many to suggest that such products could be based on a series of human leukocyte antigen (HLA)-typed iPSC lines allowing at least some degree of tissue matching. While based on sound scientific principles, this suggestion presupposes that other immune responses will not be limiting. Technically this approach would present a number of major challenges, the first being the development of a suitably reliable reprogramming method amenable to validation that results in highly consistent iPSC lines. Further, the resulting array of HLA-typed iPSCs would need to be shown to be capable of being manufactured into the same CTP and exhibit comparable quality, safety, and efficacy. When the enormities of these challenges are laid out, it becomes apparent that the manufacturing and product development challenges would be unprecedented. Given the uncertainties and lack of clinical experience with iPSC-based CTPs at this time, the financial costs and commercial risks do not appear to be acceptable.
Collapse
|
8
|
Abstract
Oncolytic viruses represent a new class of therapeutic agents that promote anti-tumour responses through a dual mechanism of action that is dependent on selective tumour cell killing and the induction of systemic anti-tumour immunity. The molecular and cellular mechanisms of action are not fully elucidated but are likely to depend on viral replication within transformed cells, induction of primary cell death, interaction with tumour cell antiviral elements and initiation of innate and adaptive anti-tumour immunity. A variety of native and genetically modified viruses have been developed as oncolytic agents, and the approval of the first oncolytic virus by the US Food and Drug Administration (FDA) is anticipated in the near future. This Review provides a comprehensive overview of the basic biology supporting oncolytic viruses as cancer therapeutic agents, describes oncolytic viruses in advanced clinical trials and discusses the unique challenges in the development of oncolytic viruses as a new class of drugs for the treatment of cancer.
Collapse
Affiliation(s)
- Howard L. Kaufman
- Rutgers Cancer Institute of New Jersey, 195 Little Albany Street, Room 2004, New Brunswick, 08901 New Jersey USA
| | - Frederick J. Kohlhapp
- Rutgers Cancer Institute of New Jersey, 195 Little Albany Street, Room 2004, New Brunswick, 08901 New Jersey USA
| | - Andrew Zloza
- Rutgers Cancer Institute of New Jersey, 195 Little Albany Street, Room 2004, New Brunswick, 08901 New Jersey USA
| |
Collapse
|
9
|
|
10
|
Implementing high-temperature short-time media treatment in commercial-scale cell culture manufacturing processes. Appl Microbiol Biotechnol 2013; 98:2965-71. [DOI: 10.1007/s00253-013-5451-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Revised: 11/26/2013] [Accepted: 12/02/2013] [Indexed: 10/25/2022]
|