1
|
Swetha KL, Maravajjala KS, Li SD, Singh MS, Roy A. Breaking the niche: multidimensional nanotherapeutics for tumor microenvironment modulation. Drug Deliv Transl Res 2023; 13:105-134. [PMID: 35697894 DOI: 10.1007/s13346-022-01194-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/01/2022] [Indexed: 12/13/2022]
Abstract
Most of the current antitumor therapeutics were developed targeting the cancer cells only. Unfortunately, in the majority of tumors, this single-dimensional therapy is found to be ineffective. Advanced research has shown that cancer is a multicellular disorder. The tumor microenvironment (TME), which is made by a complex network of the bulk tumor cells and other supporting cells, plays a crucial role in tumor progression. Understanding the importance of the TME in tumor growth, different treatment modalities have been developed targeting these supporting cells. Recent clinical results suggest that simultaneously targeting multiple components of the tumor ecosystem with drug combinations can be highly effective. This type of "multidimensional" therapy has a high potential for cancer treatment. However, tumor-specific delivery of such multi-drug combinations remains a challenge. Nanomedicine could be utilized for the tumor-targeted delivery of such multidimensional therapeutics. In this review, we first give a brief overview of the major components of TME. We then highlight the latest developments in nanoparticle-based combination therapies, where one drug targets cancer cells and other drug targets tumor-supporting components in the TME for a synergistic effect. We include the latest preclinical and clinical studies and discuss innovative nanoparticle-mediated targeting strategies.
Collapse
Affiliation(s)
- K Laxmi Swetha
- Department of Pharmacy, Birla Institute of Technology & Science, Vidya Vihar, Pilani, Rajasthan, 333031, India
| | - Kavya Sree Maravajjala
- Department of Pharmacy, Birla Institute of Technology & Science, Vidya Vihar, Pilani, Rajasthan, 333031, India
| | - Shyh-Dar Li
- Faculty of Pharmaceutical Sciences, The University of British Columbia, 2405 Westbrook Mall, Vancouver, BC, Canada
| | - Manu Smriti Singh
- Department of Biotechnology, Bennett University, Greater Noida, Uttar Pradesh, 201310, India. .,Center of Excellence for Nanosensors and Nanomedicine, Bennett University, Greater Noida, Uttar Pradesh, 201310, India.
| | - Aniruddha Roy
- Department of Pharmacy, Birla Institute of Technology & Science, Vidya Vihar, Pilani, Rajasthan, 333031, India.
| |
Collapse
|
2
|
Nagaraja TN, Elmghirbi R, Brown SL, Rey JA, Schultz L, Mukherjee A, Cabral G, Panda S, Lee IY, Sarntinoranont M, Keenan KA, Knight RA, Ewing JR. Imaging acute effects of bevacizumab on tumor vascular kinetics in a preclinical orthotopic model of U251 glioma. NMR IN BIOMEDICINE 2021; 34:e4516. [PMID: 33817893 PMCID: PMC8978145 DOI: 10.1002/nbm.4516] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 03/12/2021] [Accepted: 03/13/2021] [Indexed: 05/05/2023]
Abstract
The effect of a human vascular endothelial growth factor antibody on the vasculature of human tumor grown in rat brain was studied. Using dynamic contrast-enhanced magnetic resonance imaging, the effects of intravenous bevacizumab (Avastin; 10 mg/kg) were examined before and at postadministration times of 1, 2, 4, 8, 12 and 24 h (N = 26; 4-5 per time point) in a rat model of orthotopic, U251 glioblastoma (GBM). The commonly estimated vascular parameters for an MR contrast agent were: (i) plasma distribution volume (vp ), (ii) forward volumetric transfer constant (Ktrans ) and (iii) reverse transfer constant (kep ). In addition, extracellular distribution volume (VD ) was estimated in the tumor (VD-tumor ), tumor edge (VD-edge ) and the mostly normal tumor periphery (VD-peri ), along with tumor blood flow (TBF), peri-tumoral hydraulic conductivity (K) and interstitial flow (Flux) and tumor interstitial fluid pressure (TIFP). Studied as % changes from baseline, the 2-h post-treatment time point began showing significant decreases in vp , VD-tumor, VD-edge and VD-peri , as well as K, with these changes persisting at 4 and 8 h in vp , K, VD-tumor, -edge and -peri (t-tests; p < 0.05-0.01). Decreases in Ktrans were observed at the 2- and 4-h time points (p < 0.05), while interstitial volume fraction (ve ; = Ktrans /kep ) showed a significant decrease only at the 2-h time point (p < 0.05). Sustained decreases in Flux were observed from 2 to 24 h (p < 0.01) while TBF and TIFP showed delayed responses, increases in the former at 12 and 24 h and a decrease in the latter only at 12 h. These imaging biomarkers of tumor vascular kinetics describe the short-term temporal changes in physical spaces and fluid flows in a model of GBM after Avastin administration.
Collapse
Affiliation(s)
| | - Rasha Elmghirbi
- Department of Neurology, Henry Ford Hospital, Detroit, Michigan, USA
- Department of Physics, Oakland University, Rochester, Michigan, USA
| | - Stephen L. Brown
- Department of Radiation Oncology, Henry Ford Hospital, Detroit, Michigan, USA
| | - Julian A. Rey
- Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, Florida, USA
| | - Lonni Schultz
- Department of Neurosurgery, Henry Ford Hospital, Detroit, Michigan, USA
| | - Abir Mukherjee
- Department of Pathology, Henry Ford Hospital, Detroit, Michigan, USA
| | - Glauber Cabral
- Department of Neurology, Henry Ford Hospital, Detroit, Michigan, USA
| | - Swayamprava Panda
- Department of Neurology, Henry Ford Hospital, Detroit, Michigan, USA
| | - Ian Y. Lee
- Department of Neurosurgery, Henry Ford Hospital, Detroit, Michigan, USA
| | - Malisa Sarntinoranont
- Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, Florida, USA
| | - Kelly A. Keenan
- Department of Neurosurgery, Henry Ford Hospital, Detroit, Michigan, USA
| | - Robert A. Knight
- Department of Neurology, Henry Ford Hospital, Detroit, Michigan, USA
- Department of Physics, Oakland University, Rochester, Michigan, USA
| | - James R. Ewing
- Department of Neurology, Henry Ford Hospital, Detroit, Michigan, USA
- Department of Physics, Oakland University, Rochester, Michigan, USA
- Department of Neurology, Wayne State University, Detroit, Michigan, USA
| |
Collapse
|
3
|
Zhang D, Huang J, Sun Y, Guo Q. Long-term progression-free survival of apatinib monotherapy for relapsed ovarian cancer: a case report and literature review. Onco Targets Ther 2019; 12:3635-3644. [PMID: 31190866 PMCID: PMC6529614 DOI: 10.2147/ott.s198946] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 03/27/2019] [Indexed: 12/30/2022] Open
Abstract
Ovarian cancer is the deadliest gynecologic malignancy, which poses a great threat to female health. Anti-angiogenic therapy could bring clinical benefit for patients with ovarian cancer. Apatinib, an oral small-molecule vascular endothelial growth factor receptor-2 inhibitor, has shown notable therapeutic effect in a wide variety of tumors. We report a woman with advanced ovarian cancer who received apatinib at 250 mg/day after failure of multiple-line treatment regimens, followed by discussion through review of literature. The patient has quite a long progression-free survival time of 24 months, with a satisfactory quality of life. Apatinib monotherapy may provide an additional option for advanced ovarian cancer,but it still needs further observation and exploration.
Collapse
Affiliation(s)
- Di Zhang
- Shandong Cancer Hospital Affiliated to Shandong University, Shandong University, Jinan 250117, People's Republic of China.,Shandong Academy of Medical Sciences, Shandong Cancer Hospital and Institute, Shandong Cancer Hospital affiliated to Shandong University, Jinan 250117, People's Republic of China
| | - Jiaqi Huang
- Shandong Cancer Hospital Affiliated to Shandong University, Shandong University, Jinan 250117, People's Republic of China.,Shandong Academy of Medical Sciences, Shandong Cancer Hospital and Institute, Shandong Cancer Hospital affiliated to Shandong University, Jinan 250117, People's Republic of China
| | - Yulan Sun
- Shandong Academy of Medical Sciences, Shandong Cancer Hospital and Institute, Shandong Cancer Hospital affiliated to Shandong University, Jinan 250117, People's Republic of China
| | - Qisen Guo
- Shandong Cancer Hospital Affiliated to Shandong University, Shandong University, Jinan 250117, People's Republic of China
| |
Collapse
|
4
|
Li Q, Zhang J, Zhou J, Yang B, Liu P, Cao L, Jing L, Liu H. lncRNAs are novel biomarkers for differentiating between cisplatin-resistant and cisplatin-sensitive ovarian cancer. Oncol Lett 2018; 15:8363-8370. [PMID: 29805570 PMCID: PMC5950027 DOI: 10.3892/ol.2018.8433] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 12/05/2017] [Indexed: 12/16/2022] Open
Abstract
Cisplatin-resistant ovarian cancer occurs in patients with ovarian cancer treated with cisplatin-based chemotherapy, which results in tumor progression during treatment, or recurrence of the tumor within 6 months of the treatment. It is vital that a novel biomarker for diagnosis, or an efficient therapeutic target of cisplatin-resistant ovarian is identified. Long non-coding (lnc)RNAs were determined to serve critical functions in a variety of distinct types of cancer, including ovarian cancer; however, there is limited knowledge regarding the differential expression levels of lncRNAs in cisplatin-resistant and cisplatin-sensitive ovarian cancer. Therefore, in the present study, the expression levels were determined for these cancer types. The lncRNA expression profile in cisplatin-resistant ovarian cancer was analyzed and compared with the results for cisplatin-sensitive ovarian cancer; gene ontology and pathway analysis demonstrated that the dysregulated lncRNAs participated in important biological processes. Subsequently, it was identified that these dysregulated lncRNAs were present in other ovarian cancer tissues and in SKOV3 ovarian cancer cells, as well as its cisplatin-resistant clone, SKOV3/CDDP. In addition, it was revealed that 8 lncRNAs (Enst0000435726, Enst00000585612, Enst00000566734, Enst00000453783, NR_023915, RP11_697E22.2, uc010jub.1 and tcons_00008505) were associated with cisplatin-resistant ovarian cancer. The present study may assist in improving understanding of the initiation and developmental mechanisms underlying cisplatin-resistant ovarian cancer, which could aid future studies in discovering potential biomarkers for diagnosis or therapeutic targets that may be used in clinical treatment.
Collapse
Affiliation(s)
- Qing Li
- Department of Pathology, Shanghai Pudong New Area People's Hospital, Shanghai 201299, P.R. China
| | - Juan Zhang
- Department of Pathology, Affiliated Nanjing Maternal and Child Health Hospital, Nanjing Medical University, Nanjing, Jiangsu 210004, P.R. China
| | - Juan Zhou
- Department of Pathology, Shanghai Pudong New Area People's Hospital, Shanghai 201299, P.R. China
| | - Binglie Yang
- Department of Gynecology and Obstetrics, Shanghai Pudong New Area People's Hospital, Shanghai 201299, P.R. China
| | - Pingping Liu
- Department of Gynecology and Obstetrics, Shanghai Pudong New Area People's Hospital, Shanghai 201299, P.R. China
| | - Lei Cao
- Department of Pathology, Shanghai Pudong New Area People's Hospital, Shanghai 201299, P.R. China
| | - Lei Jing
- Department of Pathology, Shanghai Pudong New Area People's Hospital, Shanghai 201299, P.R. China
| | - Hua Liu
- Department of Pathology, Shanghai Pudong New Area People's Hospital, Shanghai 201299, P.R. China
| |
Collapse
|
5
|
Zhao YY, Wang N, Liu WH, Tao WJ, Liu LL, Shen ZD. Charge Variants of an Avastin Biosimilar Isolation, Characterization, In Vitro Properties and Pharmacokinetics in Rat. PLoS One 2016; 11:e0151874. [PMID: 26987122 PMCID: PMC4795741 DOI: 10.1371/journal.pone.0151874] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 03/04/2016] [Indexed: 12/22/2022] Open
Abstract
The similarity between a proposed biosimilar product and the reference product can be affected by many factors. This study is designed to examine whether any subtle difference in the distribution of the charge variants of an Avastin biosimilar can affect its in vitro potency and in vivo PK. Here, the acidic, basic and main peak fractions of a biosimilar product were isolated using high-performance cation-exchange chromatography and were subjected to various studies to compare their in vitro properties and in vivo PK profile. A serial of analytical methods, including size exclusion chromatography (SEC), imaged capillary isoelectric focusing (icIEF) capillary zone electrophoresis (CZE) and cation-exchange chromatography (CEX-HPLC) were also used to characterize the isolated charge variants. The kinetics constant was measured using a Biacore X100 system. The study indicates the biosimilar product has a high similarity with avastin in physicochemical properties. The potency in vitro and PK profile in rat of charge variants and biosimilar product are consistent with avastin.
Collapse
Affiliation(s)
- Yan-Yan Zhao
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai, 264005, P.R. China
- State Key Laboratory of Long-acting and Targeting Drug Delivery System, Luye Pharma Group Ltd., Yantai, 264005, P.R. China
| | - Ning Wang
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai, 264005, P.R. China
| | - Wan-Hui Liu
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai, 264005, P.R. China
- State Key Laboratory of Long-acting and Targeting Drug Delivery System, Luye Pharma Group Ltd., Yantai, 264005, P.R. China
- * E-mail:
| | - Wen-Jie Tao
- State Key Laboratory of Long-acting and Targeting Drug Delivery System, Luye Pharma Group Ltd., Yantai, 264005, P.R. China
| | - Li-Li Liu
- State Key Laboratory of Long-acting and Targeting Drug Delivery System, Luye Pharma Group Ltd., Yantai, 264005, P.R. China
| | - Zhen-Duo Shen
- State Key Laboratory of Long-acting and Targeting Drug Delivery System, Luye Pharma Group Ltd., Yantai, 264005, P.R. China
| |
Collapse
|
6
|
Stagg BC, Uehara H, Lambert N, Rai R, Gupta I, Radmall B, Bates T, Ambati BK. Morpholino-Mediated Isoform Modulation of Vascular Endothelial Growth Factor Receptor-2 (VEGFR2) Reduces Colon Cancer Xenograft Growth. Cancers (Basel) 2014; 6:2330-42. [PMID: 25534570 PMCID: PMC4276969 DOI: 10.3390/cancers6042330] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2014] [Revised: 10/12/2014] [Accepted: 11/18/2014] [Indexed: 12/22/2022] Open
Abstract
Angiogenesis plays a key role in tumor growth. Vascular endothelial growth factor (VEGF) is a pro-angiogenic that is involved in tumor angiogenesis. When VEGF binds to membrane-bound vascular endothelial growth factor receptor 2 (mVEGFR2), it promotes angiogenesis. Through alternative polyadenylation, VEGFR2 is also expressed in a soluble form (sVEGFR2). sVEGFR2 sequesters VEGF and is therefore anti-angiogenic. The aim of this study was to show that treatment with a previously developed and reported antisense morpholino oligomer that shifts expression from mVEGFR2 to sVEGFR2 would lead to reduced tumor vascularization and growth in a murine colon cancer xenograft model. Xenografts were generated by implanting human HCT-116 colon cancer cells into the flanks of NMRI nu/nu mice. Treatment with the therapeutic morpholino reduced both tumor growth and tumor vascularization. Because the HCT-116 cells used for the experiments did not express VEGFR2 and because the treatment morpholino targeted mouse rather than human VEGFR2, it is likely that treatment morpholino was acting on the mouse endothelial cells rather than directly on the tumor cells.
Collapse
Affiliation(s)
- Brian C Stagg
- John A Moran Eye Center, University of Utah, Salt Lake City, UT, 65 Mario Capecchi Drive, Salt Lake City, UT 84132, USA.
| | - Hironori Uehara
- John A Moran Eye Center, University of Utah, Salt Lake City, UT, 65 Mario Capecchi Drive, Salt Lake City, UT 84132, USA.
| | - Nathan Lambert
- John A Moran Eye Center, University of Utah, Salt Lake City, UT, 65 Mario Capecchi Drive, Salt Lake City, UT 84132, USA.
| | - Ruju Rai
- John A Moran Eye Center, University of Utah, Salt Lake City, UT, 65 Mario Capecchi Drive, Salt Lake City, UT 84132, USA.
| | - Isha Gupta
- John A Moran Eye Center, University of Utah, Salt Lake City, UT, 65 Mario Capecchi Drive, Salt Lake City, UT 84132, USA.
| | - Bryce Radmall
- John A Moran Eye Center, University of Utah, Salt Lake City, UT, 65 Mario Capecchi Drive, Salt Lake City, UT 84132, USA.
| | - Taylor Bates
- John A Moran Eye Center, University of Utah, Salt Lake City, UT, 65 Mario Capecchi Drive, Salt Lake City, UT 84132, USA.
| | - Balamurali K Ambati
- John A Moran Eye Center, University of Utah, Salt Lake City, UT, 65 Mario Capecchi Drive, Salt Lake City, UT 84132, USA.
| |
Collapse
|
7
|
Karki R, Seagle BLL, Nieves-Neira W, Shahabi S. Taxanes in combination with biologic agents for ovarian and breast cancers. Anticancer Drugs 2013; 25:536-54. [PMID: 24300916 DOI: 10.1097/cad.0000000000000056] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Taxane-based cytotoxic therapy is commonly prescribed for breast and ovarian cancers. Although these cancers are often sensitive to such therapy, clinical benefit and overall survival are limited owing to the development of chemoresistance and recurrence. Biologic agents that specifically target proteins of growth factor signaling pathways, which are hyperactivated in cancers, offer attractive targets for cancer therapeutics and may work synergistically with standard taxane-based chemotherapy to improve patient outcomes. We review clinical trials of biologic agents--angiogenic, tyrosine kinase, and antibody inhibitors--in combination with taxane-based therapy for ovarian and breast cancers. Many clinical trials have shown promising results. However, some biologic agents still need larger trials to assess safety and efficacy. As research into the heterogeneity and complexity of ovarian and breast cancers improves our understanding of the molecular pathways involved, there is no question that targeted therapies with biologic agents will expand the future array of available cancer therapeutics.
Collapse
Affiliation(s)
- Roshan Karki
- aReproductive Tumor Biology Research, Department of Obstetrics and Gynecology, Danbury Hospital, Danbury, Connecticut bDivision of Gynecologic Oncology, Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey, USA
| | | | | | | |
Collapse
|