1
|
Li Y, Liu Y, Chang M, Mu R, Zhu J. Effect of RNAi-Mediated Survivin and Hypoxia-Inducible Factor 1α Gene Silencing on Proliferation, Invasion, Migration and Apoptosis of Gastric Cancer BGC-823 Cells. Mol Biotechnol 2024; 66:1872-1882. [PMID: 37440157 DOI: 10.1007/s12033-023-00786-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 06/12/2023] [Indexed: 07/14/2023]
Abstract
In order to investigate the effects of RNAi-mediated survivin and hypoxia-inducible factor 1α (HIF-1α) gene silencing on the proliferation and apoptosis of gastric cancer BGC-823 cells, small interfering RNAs (siRNAs) targeting survivin and HIF-1α mRNAs, respectively, as well as scrambled siRNAs (SCRs) were designed and synthesized, namely siRNA-survivin group, siRNA-HIF-1α group, and SCR group. The hypoxia-sensitive gastric cancer BGC-823 cells were identified and transfected in vitro with Hifectin II under hypoxic conditions, and the expression of survivin and HIF-1α was assessed by RT-PCR and Western blotting assays, respectively. The ability of apoptosis, proliferation, invasion, and migration was measured, and the results showed that HIF-1α expression was significantly increased in BGC-823 cells under hypoxic conditions, and survival-targeted siRNA transfection decreased the expression of survivin under hypoxic conditions, while co-transfection of survivin-targeted siRNA and HIF-1α-targeted siRNA down-regulated both survivin and HIF-1α expression. Compared with the blank control group, the co-transfected siRNA group exhibited distinct characteristics, with decreased invasion and migration ability, increased apoptosis, and significantly decreased cell proliferation under hypoxic conditions. It was confirmed that the downregulation of survivin and HIF-1α in BGC-823 cells may induce anticancer effects by enhancing apoptosis and decreasing proliferation, migration, and invasion ability. The novelty lies in the application of RNAi technology to silence the expression of both survivin and HIF-1α genes in gastric cancer BGC-823 cells by single and combined interference in an established gastric cancer cell model and observed the mechanism of its effect on the proliferation and apoptosis of gastric cancer cells. Concerning the success of this highly active antiretroviral therapy of gene disruption therapies, which is the first of its kind in the world, we wonder whether we can find other better gene targets for more kinds of tumor therapy.
Collapse
Affiliation(s)
- Yupeng Li
- Basic Medical College, Beihua University, Jilin, Jilin, China
| | - Yongchao Liu
- Basic Medical College, Beihua University, Jilin, Jilin, China
- Medical Laboratory Technology College, Beihua University, Jilin, Jilin, China
| | - Mingzhu Chang
- Basic Medical College, Beihua University, Jilin, Jilin, China
| | - Runhong Mu
- Basic Medical College, Beihua University, Jilin, Jilin, China.
| | - Jianyu Zhu
- Basic Medical College, Beihua University, Jilin, Jilin, China.
| |
Collapse
|
2
|
Hamilton AM, Walens A, Van Alsten SC, Olsson LT, Nsonwu-Farley J, Gao X, Kirk EL, Perou CM, Carey LA, Troester MA, Abdou Y. BIRC5 expression by race, age and clinical factors in breast cancer patients. Breast Cancer Res 2024; 26:50. [PMID: 38515208 PMCID: PMC10956264 DOI: 10.1186/s13058-024-01792-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 02/20/2024] [Indexed: 03/23/2024] Open
Abstract
PURPOSE Survivin/BIRC5 is a proliferation marker that is associated with poor prognosis in breast cancer and an attractive therapeutic target. However, BIRC5 has not been well studied among racially diverse populations where aggressive breast cancers are prevalent. EXPERIMENTAL DESIGN We studied BIRC5 expression in association with clinical and demographic variables and as a predictor of recurrence in 2174 participants in the Carolina Breast Cancer Study (CBCS), a population-based study that oversampled Black (n = 1113) and younger (< 50 years; n = 1137) participants with breast cancer. For comparison, similar analyses were conducted in The Cancer Genome Atlas [TCGA N = 1094, Black (n = 183), younger (n = 295)]. BIRC5 was evaluated as a continuous and categorical variable (highest quartile vs. lower three quartiles). RESULTS Univariate, continuous BIRC5 expression was higher in breast tumors from Black women relative to non-Black women in both estrogen receptor (ER)-positive and ER-negative tumors and in analyses stratified by stage (i.e., within Stage I, Stage II, and Stage III/IV tumors). Within CBCS and TCGA, BIRC5-high was associated with young age (< 50 years) and Black race, as well as hormone receptor-negative tumors, non-Luminal A PAM50 subtypes, advanced stage, and larger tumors (> 2 cm). Relative to BIRC5-low, BIRC5-high tumors were associated with poor 5-year recurrence-free survival (RFS) among ER-positive tumors, both in unadjusted models [HR (95% CI): 2.7 (1.6, 4.6)] and after adjustment for age and stage [Adjusted HR (95% CI): 1.87 (1.07, 3.25)]. However, this relationship was not observed among ER-negative tumors [Crude HR (95% CI): 0.7 (0.39, 1.2); Adjusted HR (95% CI): 0.67 (0.37, 1.2)]. CONCLUSION Black and younger women with breast cancer have a higher burden of BIRC5-high tumors than older and non-Black women. Emerging anti-survivin treatment strategies may be an important future direction for equitable breast cancer outcomes.
Collapse
Affiliation(s)
- Alina M Hamilton
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, 27599, USA
- Department of Pathology and Laboratory Medicine, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Andrea Walens
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, 27599, USA
- Department of Epidemiology, Gillings School of Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Sarah C Van Alsten
- Department of Epidemiology, Gillings School of Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Linnea T Olsson
- Department of Epidemiology, Gillings School of Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Joseph Nsonwu-Farley
- Department of Epidemiology, Gillings School of Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Xiaohua Gao
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, 27599, USA
- Department of Epidemiology, Gillings School of Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Erin L Kirk
- Department of Pathology and Laboratory Medicine, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Charles M Perou
- Department of Pathology and Laboratory Medicine, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Department of Genetics, Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Lisa A Carey
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, 27599, USA
- Department of Genetics, Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Melissa A Troester
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, 27599, USA
- Department of Pathology and Laboratory Medicine, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Department of Epidemiology, Gillings School of Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Yara Abdou
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, 27599, USA.
- Department of Medicine, Division of Oncology, University of North Carolina at Chapel Hill, 101 Manning Drive, CB# 7305, Chapel Hill, NC, 27514, USA.
| |
Collapse
|
3
|
Cui Q, Huang C, Liu JY, Zhang JT. Small Molecule Inhibitors Targeting the "Undruggable" Survivin: The Past, Present, and Future from a Medicinal Chemist's Perspective. J Med Chem 2023; 66:16515-16545. [PMID: 38092421 DOI: 10.1021/acs.jmedchem.3c01130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
Survivin, a homodimeric protein and a member of the IAP family, plays a vital function in cell survival and cycle progression by interacting with various proteins and complexes. Its expression is upregulated in cancers but not detectable in normal tissues. Thus, it has been regarded and validated as an ideal cancer target. However, survivin is "undruggable" due to its lack of enzymatic activities or active sites for small molecules to bind/inhibit. Academic and industrial laboratories have explored different strategies to overcome this hurdle over the past two decades, with some compounds advanced into clinical testing. These strategies include inhibiting survivin expression, its interaction with binding partners and homodimerization. Here, we provide comprehensive analyses of these strategies and perspective on different small molecule survivin inhibitors to help drug discovery targeting "undruggable" proteins in general and survivin specifically with a true survivin inhibitor that will prevail in the foreseeable future.
Collapse
Affiliation(s)
- Qingbin Cui
- Department of Cell and Cancer Biology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio 43614, United States
| | - Caoqinglong Huang
- Department of Cell and Cancer Biology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio 43614, United States
| | - Jing-Yuan Liu
- Department of Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio 43614, United States
| | - Jian-Ting Zhang
- Department of Cell and Cancer Biology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio 43614, United States
| |
Collapse
|
4
|
Song L, Ren S, Yue Y, Tian Y, Wang Z. A Gold Nanocage Probe Targeting Survivin for the Diagnosis of Pancreatic Cancer. Pharmaceutics 2023; 15:pharmaceutics15051547. [PMID: 37242788 DOI: 10.3390/pharmaceutics15051547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/06/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023] Open
Abstract
In this paper, Au nanocages (AuNCs) loaded with the MRI contrast agent gadolinium (Gd) and capped with the tumor-targeting gene survivin (Sur-AuNC•Gd-Cy7 nanoprobes) were designed and applied as a targeted imaging agent for pancreatic cancer. With its capacity to transport fluorescent dyes and MR imaging agents, the gold cage is an outstanding platform. Furthermore, it has the potential to transport different drugs in the future, making it a unique carrier platform. The utilization of Sur-AuNC•Gd-Cy7 nanoprobes has proven to be an effective means of targeting and localizing survivin-positive BxPC-3 cells within their cytoplasm. By targeting survivin, an antiapoptotic gene, the Sur-AuNC•Gd-Cy7 nanoprobe was able to induce pro-apoptotic effects in BxPC-3 pancreatic cancer cells. The biocompatibility of AuNCs•Gd, AuNCs•Gd-Cy7 nanoparticles, and Sur-AuNC•Gd-Cy7 nanoprobes is evaluated through the hemolysis rate assay. The stability of AuNCs•Gd, AuNCs•Gd-Cy7 nanoparticles, and Sur-AuNC•Gd-Cy7 nanoprobes was evaluated by determining their hydrodynamic dimensions following storage in different pH solutions for a corresponding duration. Excellent biocompatibility and stability of the Sur-AuNC•Gd-Cy7 nanoprobes will facilitate their further utilization in vivo and in vitro. The surface-bound survivin plays a role in facilitating the Sur-AuNC•Gd-Cy7 nanoprobes' ability to locate the BxPC-3 tumor. The probe was modified to incorporate Gd and Cy7, thereby enabling the simultaneous utilization of magnetic resonance imaging (MRI) and fluorescence imaging (FI) techniques. In vivo, the Sur-AuNC•Gd-Cy7 nanoprobes were found to effectively target and localize survivin-positive BxPC-3 tumors through the use of MRI and FI. After being injected via the caudal vein, the Sur-AuNC•Gd-Cy7 nanoprobes were found to accumulate effectively in an in situ pancreatic cancer model within 24 h. Furthermore, these nanoprobes were observed to be eliminated from the body through the kidneys within 72 h after a single injection. This characteristic is crucial for a diagnostic agent. Based on the aforementioned outcomes, the Sur-AuNC•Gd-Cy7 nanoprobes have significant potential advantages for the theranostic treatment of pancreatic cancer. This nanoprobe possesses distinctive characteristics, such as advanced imaging abilities and specific drug delivery, which offer the possibility of enhancing the precision of diagnosis and efficacy of treatment for this destructive illness.
Collapse
Affiliation(s)
- Lina Song
- Department of Radiology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China
| | - Shuai Ren
- Department of Radiology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China
| | - Yali Yue
- Department of Radiology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China
| | - Ying Tian
- Department of Radiology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China
| | - Zhongqiu Wang
- Department of Radiology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China
| |
Collapse
|
5
|
Chang WH, Liu Y, Hammes EA, Bryant KL, Cerione RA, Antonyak MA. Oncogenic RAS promotes MYC protein stability by upregulating the expression of the inhibitor of apoptosis protein family member Survivin. J Biol Chem 2023; 299:102842. [PMID: 36581205 PMCID: PMC9860443 DOI: 10.1016/j.jbc.2022.102842] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 12/15/2022] [Accepted: 12/18/2022] [Indexed: 12/28/2022] Open
Abstract
The small GTPase KRAS is frequently mutated in pancreatic cancer and its cooperation with the transcription factor MYC is essential for malignant transformation. The key to oncogenic KRAS and MYC working together is the stabilization of MYC expression due to KRAS activating the extracellular signal-regulated kinase 1/2, which phosphorylates MYC at serine 62 (Ser 62). This prevents the proteasomal degradation of MYC while enhancing its transcriptional activity. Here, we identify how this essential signaling connection between oncogenic KRAS and MYC expression is mediated by the inhibitor of apoptosis protein family member Survivin. This discovery stemmed from our finding that Survivin expression is downregulated upon treatment of pancreatic cancer cells with the KRASG12C inhibitor Sotorasib. We went on to show that oncogenic KRAS increases Survivin expression by activating extracellular signal-regulated kinase 1/2 in pancreatic cancer cells and that treating the cells either with siRNAs targeting Survivin or with YM155, a small molecule that potently blocks Survivin expression, downregulates MYC and strongly inhibited their growth. We further determined that Survivin protects MYC from degradation by blocking autophagy, which then prevents cellular inhibitor of protein phosphatase 2A from undergoing autophagic degradation. Cellular inhibitor of protein phosphatase 2A, by inhibiting protein phosphatase 2A, helps to maintain MYC phosphorylation at Ser 62, thereby ensuring its cooperation with oncogenic KRAS in driving cancer progression. Overall, these findings highlight a novel role for Survivin in mediating the cooperative actions of KRAS and MYC during malignant transformation and raise the possibility that targeting Survivin may offer therapeutic benefits against KRAS-driven cancers.
Collapse
Affiliation(s)
- Wen-Hsuan Chang
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York, USA; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Yinzhe Liu
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York, USA
| | - Emma A Hammes
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York, USA
| | - Kirsten L Bryant
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA; Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Richard A Cerione
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York, USA; Department of Molecular Medicine, Cornell University, Ithaca, New York 14853, USA.
| | - Marc A Antonyak
- Department of Molecular Medicine, Cornell University, Ithaca, New York 14853, USA.
| |
Collapse
|
6
|
Wu JY, Chen LG, Hu CW, Chiu KC, Lin W, Ho PC, Weng BBC. Immunotoxicity and Anti-Inflammatory Characterizations of Prenylated Flavonoids-The Lipophilic 7- O-Terpenylated Wogonin. LIFE (BASEL, SWITZERLAND) 2022; 12:life12122116. [PMID: 36556482 PMCID: PMC9786669 DOI: 10.3390/life12122116] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/12/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022]
Abstract
Wogonin, one of the exceptional bioactive flavonoids found abundant in the roots of Huang-Qin (Scutellaria baicalensis Georgi), is a popular health-preserving Chinese medicine. The therapeutic applications can be expanded by improving its bioavailability. The 7-O-terpenylated wogonin consisting one to three prenyl units are chemically synthesized for increasing lipophilic nature for efficient uptake, and also an attempt in mimicry of naturally scarce terpenylated flavonoids found in limited plant families and bee propolis. Wogonin (W) and its lipophilic nature prenyl wogonin (W5), geranyl wogonin (W10), and farnesyl wogonin (W15) were comparatively studied with structure-relationship in immunotoxicity of cell livability on lymphoid, myeloid, and somatic origins cell lines. Anti-inflammatory functions characterized with nitric oxide inhibition and intracellular ROS level of LPS-activated murine macrophage RAW264.7 were assessed. Wogonin and its terpenylated derivatives have selectively influenced livability of lymphoid origin cells but not myeloid and somatic origin cells. The mitotic protein survivin gene expressions analysis further supported the selective suppressions on lymphoid origin YAC-1 cells by wogonin and geranyl wogonin, while oppositely boosted survivin expressions in LPS-activated macrophages. Moreover, wogonin exhibits dose-dependent inhibition on the nitric oxide (NO) production and iNOS gene expressions of LPS-activated RAW264.7 cells. Terpenylated wogonin exhibits profoundly superior control in intracellular ROS level and a sustained action with sound cell integrity than the wogonin. The enhanced cellular uptake with higher lipophilicity to membrane of 7-O-terpenylated wogonin may pose an important biological nature in facilitating better bioavailability and specific immunomodulatory actions of the category of terpenylated flavonoids. The 7-O-terpenylated wogonin having biological merit of fast membrane lipid bilayer integration, lower effective concentration, and better preserving immune cells functions and livability deserved further in-depth investigations and their broadly therapeutic applications.
Collapse
Affiliation(s)
- Jin-Yi Wu
- Department of Microbiology, Immunology, and Biopharmaceuticals, College of Life Sciences, Chiayi University, Chiayi 60000, Taiwan
| | - Lih-Geeng Chen
- Department of Microbiology, Immunology, and Biopharmaceuticals, College of Life Sciences, Chiayi University, Chiayi 60000, Taiwan
| | - Chia-Wen Hu
- Administration Center of Research and Education, Ditmanson Medical Foundation Chiayi Christian Hospital, Chiayi 60002, Taiwan
| | | | - Wenhsin Lin
- Department of Microbiology, Immunology, and Biopharmaceuticals, College of Life Sciences, Chiayi University, Chiayi 60000, Taiwan
| | - Pei-Chun Ho
- Department of Microbiology, Immunology, and Biopharmaceuticals, College of Life Sciences, Chiayi University, Chiayi 60000, Taiwan
| | - Brian Bor-Chun Weng
- Department of Microbiology, Immunology, and Biopharmaceuticals, College of Life Sciences, Chiayi University, Chiayi 60000, Taiwan
- Correspondence: ; Tel.: +886-5-2717922
| |
Collapse
|
7
|
Lisboa RV, de Oliveira FR, Quaresma TO, de Almeida RM, Ribeiro Oliveira RD, Junior PL. The Behaviour of Serum Survivin in Patients With Lupus Nephritis. Biomark Insights 2022; 17:11772719221131470. [PMID: 36311208 PMCID: PMC9597205 DOI: 10.1177/11772719221131470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 09/21/2022] [Indexed: 11/07/2022] Open
Abstract
Background: Systemic lupus erythematosus (SLE) is a chronic, multi phenotypic, autoimmune
inflammatory disease and renal involvement significantly worsens its
prognosis. Apoptosis dysregulation plays a key pathogenic role. Survivin, a
protein from the apoptosis inhibitors family, has been considered a
promising strategy in cancer therapy and evaluated as one of the regulatory
pathways in the scenario of immune-mediated disorders. Objective: This study aims to explore survivin behaviour in SLE patients with lupus
nephritis (LN), assessing its potential as a therapeutic and prognostic
biomarker. Methods: 297 SLE patients were classified based on the American College of
Rheumatology (ACR) 1997 criteria, from 2000 to 2015. In a cross-sectional
study, the serum level of survivin was measured by an ELISA test and
compared between 200 SLE individuals and healthy controls. In a longitudinal
cohort, 97 patients with active LN had the concentration of survinin
measured, before and after treatment with cyclophosphamide pulse
therapy. Results: The serum concentration of survivin was significantly lower in the SLE group
than in healthy controls, regardless of concomitant NL or disease activity.
The longitudinal evaluation revealed a significant reduction in survivin
serum level after treatment. However, survivin rates were not able to
discriminate groups that achieved remission from those that maintained
nephritis activity. Conclusion: Our study suggests that survivin levels in SLE patients are lower than in the
general population. Even so, its use as a biomarker in SLE seems limited,
not reflecting disease activity or response to LN treatment, as in other
contexts.
Collapse
Affiliation(s)
- Renata Valente Lisboa
- Ribeirão Preto Medical School, Ribeirão
Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil,Center of Research in Inflammatory
Diseases (CRID), Ribeirão Preto Medical School, University of São Paulo, Ribeirão
Preto, São Paulo, Brazil,Renata Valente Lisboa, Division of
Rheumatology, Ribeirão Preto Medical School, University of São Paulo, Av.
Bandeirantes, 3900, Ribeirão Preto, São Paulo 14049-900, Brazil.
| | - Fabiola Reis de Oliveira
- Ribeirão Preto Medical School, Ribeirão
Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil,Center of Research in Inflammatory
Diseases (CRID), Ribeirão Preto Medical School, University of São Paulo, Ribeirão
Preto, São Paulo, Brazil
| | - Thaise Oliveira Quaresma
- Ribeirão Preto Medical School, Ribeirão
Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil,Center of Research in Inflammatory
Diseases (CRID), Ribeirão Preto Medical School, University of São Paulo, Ribeirão
Preto, São Paulo, Brazil
| | | | - Rene Donizeti Ribeiro Oliveira
- Ribeirão Preto Medical School, Ribeirão
Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil,Center of Research in Inflammatory
Diseases (CRID), Ribeirão Preto Medical School, University of São Paulo, Ribeirão
Preto, São Paulo, Brazil
| | - Paulo Louzada Junior
- Ribeirão Preto Medical School, Ribeirão
Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil,Center of Research in Inflammatory
Diseases (CRID), Ribeirão Preto Medical School, University of São Paulo, Ribeirão
Preto, São Paulo, Brazil
| |
Collapse
|
8
|
Kong C, Zhang S, Lei Q, Wu S. State-of-the-Art Advances of Nanomedicine for Diagnosis and Treatment of Bladder Cancer. BIOSENSORS 2022; 12:bios12100796. [PMID: 36290934 PMCID: PMC9599190 DOI: 10.3390/bios12100796] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/17/2022] [Accepted: 09/20/2022] [Indexed: 06/13/2023]
Abstract
Bladder cancer is a common malignant tumor of the urinary system. Cystoscopy, urine cytology, and CT are the routine diagnostic methods. However, there are some problems such as low sensitivity and difficulty in staging, which must be urgently supplemented by novel diagnostic methods. Surgery, intravesical instillation, systemic chemotherapy, and radiotherapy are the main clinical treatments for bladder cancer. It is difficult for conventional treatment to deal with tumor recurrence, progression and drug resistance. In addition, the treatment agents usually have the defects of poor specific distribution ability to target tumor tissues and side effects. The rapid development of nanomedicine has brought hope for the treatment of bladder cancer in reducing side effects, enhancing tumor inhibition effects, and anti-drug resistance. Overall, we review the new progression of nano-platforms in the diagnosis and treatment of bladder cancer.
Collapse
Affiliation(s)
- Chenfan Kong
- Department of Urology, The Third Affiliated Hospital of Shenzhen University, Shenzhen University, Shenzhen 518000, China
- Graduate School, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Shaohua Zhang
- Department of Urology, The Third Affiliated Hospital of Shenzhen University, Shenzhen University, Shenzhen 518000, China
- Department of Urology, The Affiliated South China Hospital of Shenzhen University, Shenzhen University, Shenzhen 518000, China
| | - Qifang Lei
- Department of Urology, The Third Affiliated Hospital of Shenzhen University, Shenzhen University, Shenzhen 518000, China
- Department of Urology, The Affiliated South China Hospital of Shenzhen University, Shenzhen University, Shenzhen 518000, China
| | - Song Wu
- Department of Urology, The Third Affiliated Hospital of Shenzhen University, Shenzhen University, Shenzhen 518000, China
- Department of Urology, The Affiliated South China Hospital of Shenzhen University, Shenzhen University, Shenzhen 518000, China
| |
Collapse
|
9
|
Wang X, Huang Z, Zeng L, Jin X, Yan A, Zhang Y, Tan W. The Role of Survivin and Transcription Factor FOXP1 in Scarring After Glaucoma Surgery. Transl Vis Sci Technol 2022; 11:19. [PMID: 35142784 PMCID: PMC8842717 DOI: 10.1167/tvst.11.2.19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Purpose This study aims to elucidate the role and mechanism of survivin and FOXP1 in scarring after glaucoma surgery and to evaluate the prevention and treatment of excessive wound healing and scar formation in an in vitro model of glaucoma filtration surgery. Methods Human Tenon's capsule fibroblasts (HTFs) were used with TGF-β to establish an in vitro cell model after glaucoma, observe survivin expression in the cell model, and observe HTFs proliferation after treatment with survivin inhibitor YM155 and the expression of α-SMA and collagen type I. In addition, the effects of survivin and cell proliferation in HTFs after knockdown of FOXP1 were observed by Western blot analysis. Results Survivin was upregulated in HTFs after glaucoma surgery, and it could promote the cell proliferation of HTFs. After treatment with its inhibitor YM155, the cell proliferation of HTFs was inhibited, and the expression of α-SMA and collagen type I were decreased. The results showed that in knockdown of FOXP1, the expression of survivin was downregulated, and the cell proliferation of HTFs was significantly reduced. Conclusions This study demonstrates that targeting survivin with an inhibitory YM155 reduced fibrosis and the extracellular matrix (ECM), and it was regulated by the FOXP1 transcription factor. These results suggest that survivin could be a potential target for treating scar formation after glaucoma surgery. Translational Relevance Together with the results from previous survivin and FOXP1 preclinical studies, these data support the evaluation of this gene therapy candidate in clinical trials as a potential durable treatment for antiscarring of glaucoma surgery.
Collapse
Affiliation(s)
- Xiaocong Wang
- Soochow University, Suzhou, Jiangsu, China.,Medical College of Soochow University, Suzhou, Jiangsu, China.,Graduate School of Zunyi Medical University, Zunyi, Guizhou,China.,Department of Ophthalmology, The Third Affiliated Hospital of Zunyi, Medical University (The First People's Hospital of Zunyi), Zunyi, Guizhou, China
| | - Zhihua Huang
- Graduate School of Zunyi Medical University, Zunyi, Guizhou,China.,The Ninth People's Hospital of Chongqing, Chongqing, China
| | - Lan Zeng
- Graduate School of Zunyi Medical University, Zunyi, Guizhou,China.,Department of Ophthalmology, The Third Affiliated Hospital of Zunyi, Medical University (The First People's Hospital of Zunyi), Zunyi, Guizhou, China
| | - Xin Jin
- Department of Ophthalmology, The Third Affiliated Hospital of Zunyi, Medical University (The First People's Hospital of Zunyi), Zunyi, Guizhou, China
| | - Ai Yan
- Department of Ophthalmology, The Third Affiliated Hospital of Zunyi, Medical University (The First People's Hospital of Zunyi), Zunyi, Guizhou, China
| | - Ying Zhang
- Department of Ophthalmology, The Third Affiliated Hospital of Zunyi, Medical University (The First People's Hospital of Zunyi), Zunyi, Guizhou, China
| | - Wei Tan
- Soochow University, Suzhou, Jiangsu, China.,Medical College of Soochow University, Suzhou, Jiangsu, China.,Graduate School of Zunyi Medical University, Zunyi, Guizhou,China.,Department of Ophthalmology, The Third Affiliated Hospital of Zunyi, Medical University (The First People's Hospital of Zunyi), Zunyi, Guizhou, China
| |
Collapse
|
10
|
Hu F, Deng C, Zhou Y, Liu Y, Zhang T, Zhang P, Zhao Z, Miao H, Zheng W, Zhang W, Wang M, Ma X. Multistage targeting and dual inhibiting strategies based on bioengineered tumor matrix microenvironment‐mediated protein nanocages for enhancing cancer biotherapy. Bioeng Transl Med 2022; 7:e10290. [PMID: 35600646 PMCID: PMC9115700 DOI: 10.1002/btm2.10290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 12/20/2021] [Accepted: 12/25/2021] [Indexed: 11/16/2022] Open
Abstract
Regulation of the apoptotic pathway plays a critical role in inducing tumor cell death and circumventing drug resistance. Survivin protein is the strongest inhibitor of apoptosis found so far. It is highly expressed in several cancers and is a promising target for cancer therapy. However, clinical applications are limited by incomplete inhibition of survivin expression. Here, we present a novel strategy that extended the release of YM155 (an effective survivin inhibitor that works by inhibiting the activity of survivin promoter) and TATm‐survivin (T34A) (TmSm) protein (survivin protein mutant with penetrating peptide, a potential anticancer protein therapeutic) via tumor matrix microenvironment‐mediated ferritin heavy chain nanocages (FTH1 NCs), enabling significant inhibition of survivin activity at both transcript and protein levels. FTS (FTH1‐matrix metalloproteinase‐2‐TmSm)/YM155 NC synthesis was easily scaled up, and these NCs could sequentially release TmSm protein through matrix metalloproteinase‐2 and promote YM155 to enter the nucleus via transferrin receptor 1 (TfR1) binding, which increased the cytotoxicity and apoptosis of Capan‐2 and A549 cells compared to that with individual drugs. Moreover, FTS/YM155 NCs enhanced drug accumulation at tumor sites and had a higher tumor inhibition rate (88.86%) than the compounds alone in A549 tumor‐bearing mice. In addition, FTS/YM155 NCs exerted significant survivin downregulation (4.43‐fold) and caspase‐3 upregulation (4.31‐fold) and showed better therapeutic outcomes without inducing organ injury, which highlights their promising future clinical application in precision therapy. This tumor microenvironment‐responsive platform could be harnessed to develop an effective therapy via multilevel inhibition of cancer targets.
Collapse
Affiliation(s)
- Fabiao Hu
- State Key Laboratory of Bioreactor Engineering East China University of Science and Technology Shanghai China
| | - Changping Deng
- State Key Laboratory of Bioreactor Engineering East China University of Science and Technology Shanghai China
| | - Yiwen Zhou
- State Key Laboratory of Bioreactor Engineering East China University of Science and Technology Shanghai China
| | - Yuping Liu
- Shanghai Key Laboratory of New Drug Design School of Pharmacy, East China University of Science and Technology Shanghai China
| | - Tong Zhang
- Shanghai Key Laboratory of New Drug Design School of Pharmacy, East China University of Science and Technology Shanghai China
| | - Peiwen Zhang
- Shanghai Key Laboratory of New Drug Design School of Pharmacy, East China University of Science and Technology Shanghai China
| | - Zhangting Zhao
- State Key Laboratory of Bioreactor Engineering East China University of Science and Technology Shanghai China
| | - Hui Miao
- State Key Laboratory of Bioreactor Engineering East China University of Science and Technology Shanghai China
| | - Wenyun Zheng
- Shanghai Key Laboratory of New Drug Design School of Pharmacy, East China University of Science and Technology Shanghai China
| | - Wenliang Zhang
- Center of Translational Biomedical Research University of North Carolina at Greensboro Greensboro North Carolina USA
| | - Meiyan Wang
- Synthetic Biology and Biomedical Engineering Laboratory, Biomedical Synthetic Biology, Research Center, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical, Sciences and School of Life Sciences East China Normal University Shanghai China
| | - Xingyuan Ma
- State Key Laboratory of Bioreactor Engineering East China University of Science and Technology Shanghai China
| |
Collapse
|
11
|
Cell Penetrating Peptide-Based Self-Assembly for PD-L1 Targeted Tumor Regression. Int J Mol Sci 2021; 22:ijms222413314. [PMID: 34948105 PMCID: PMC8703959 DOI: 10.3390/ijms222413314] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 12/05/2021] [Accepted: 12/07/2021] [Indexed: 01/06/2023] Open
Abstract
Cell penetrating peptides (CPPs) are peptides that can directly adapt to cell membranes and then permeate into cells. CPPs are usually covalently linked to the surface of nanocarriers to endow their permeability to the whole system. However, hybrids with lipids or polymers make the metabolism much more sophisticated and even more difficult to determine. In this study, we present a continuous sequence of 18 amino acids (FFAARTMIWY(d-P)GAWYKRI). It forms nanospheres around 170 nm, which increase slightly after loading with siRNA and DOX. Notably, it can be internalized by cancer cells mainly through electronic interactions and PD-L1-mediated endocytosis. Compared with poly-l-lysine and polyethyleneimine, it has a much higher efficiency (about four times) of gene transduction while lowering toxicity. In the treatment of cancer, it causes apoptosis (21%) and inhibits the expression of SURVIVIN protein in vitro. In vivo, it shows good biocompatibility as there are no changes in mice’s body weight. When administering peptide-siRNA-DOX, tumor growth is inhibited the most (about three times). These results above prove the sequence to be a good candidate for gene therapy and drug delivery.
Collapse
|
12
|
Arista-Romero M, Cascante A, Fornaguera C, Borrós S. Role of Survivin in Bladder Cancer: Issues to Be Overcome When Designing an Efficient Dual Nano-Therapy. Pharmaceutics 2021; 13:pharmaceutics13111959. [PMID: 34834374 PMCID: PMC8618611 DOI: 10.3390/pharmaceutics13111959] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 10/17/2021] [Accepted: 11/04/2021] [Indexed: 12/21/2022] Open
Abstract
Bladder cancer is the 10th most diagnosed cancer, with almost 10 M cancer deaths last year worldwide. Currently, chemotherapy is widely used as adjuvant therapy after surgical transurethral resection. Paclitaxel (PTX) is one of the most promising drugs, but cancer cells acquire resistance, causing failure of this treatment and increasing the recurrence of the disease. This poor chemotherapeutic response has been associated with the overexpression of the protein survivin. In this work, we present a novel dual nano-treatment for bladder cancer based on the hypothesis that the inhibition of survivin in cancer cells, using a siRNA gene therapy strategy, could decrease their resistance to PTX. For this purpose, two different polymeric nanoparticles were developed to encapsulate PTX and survivin siRNA independently. PTX nanoparticles showed sizes around 150 nm, with a paclitaxel loading of around 1.5%, that produced sustained tumor cell death. In parallel, siRNA nanoparticles, with similar sizes and loading efficiency of around 100%, achieved the oligonucleotide transfection and knocking down of survivin expression that also resulted in tumor cell death. However, dual treatment did not show the synergistic effect expected. The root cause of this issue was found to be the cell cycle arrest produced by nuclear survivin silencing, which is incompatible with PTX action. Therefore, we concluded that although the vastly reported role of survivin in bladder cancer, its silencing does not sensitize cells to currently applied chemotherapies.
Collapse
Affiliation(s)
- Maria Arista-Romero
- Grup d’Enginyeria de Materials (Gemat), Institut Químic de Sarrià (IQS), Universitat Ramon Llull (URL), Via Augusta 390, 08017 Barcelona, Spain; (M.A.-R.); (A.C.); (C.F.)
| | - Anna Cascante
- Grup d’Enginyeria de Materials (Gemat), Institut Químic de Sarrià (IQS), Universitat Ramon Llull (URL), Via Augusta 390, 08017 Barcelona, Spain; (M.A.-R.); (A.C.); (C.F.)
- Sagetis Biotech SL, Via Augusta 394, 08017 Barcelona, Spain
| | - Cristina Fornaguera
- Grup d’Enginyeria de Materials (Gemat), Institut Químic de Sarrià (IQS), Universitat Ramon Llull (URL), Via Augusta 390, 08017 Barcelona, Spain; (M.A.-R.); (A.C.); (C.F.)
- Sagetis Biotech SL, Via Augusta 394, 08017 Barcelona, Spain
| | - Salvador Borrós
- Grup d’Enginyeria de Materials (Gemat), Institut Químic de Sarrià (IQS), Universitat Ramon Llull (URL), Via Augusta 390, 08017 Barcelona, Spain; (M.A.-R.); (A.C.); (C.F.)
- Sagetis Biotech SL, Via Augusta 394, 08017 Barcelona, Spain
- Correspondence:
| |
Collapse
|
13
|
Aswathy M, Banik K, Parama D, Sasikumar P, Harsha C, Joseph AG, Sherin DR, Thanathu MK, Kunnumakkara AB, Vasu RK. Exploring the Cytotoxic Effects of the Extracts and Bioactive Triterpenoids from Dillenia indica against Oral Squamous Cell Carcinoma: A Scientific Interpretation and Validation of Indigenous Knowledge. ACS Pharmacol Transl Sci 2021; 4:834-847. [PMID: 33860206 DOI: 10.1021/acsptsci.1c00011] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Indexed: 02/08/2023]
Abstract
Triterpenoids are ubiquitously distributed secondary metabolites, primarily scrutinized as a source of medication and preventive measures for various chronic diseases. The ease of isolation and excellent pharmacological properties of triterpenoids are notable reasons behind the exponential rise of extensive research on the bioactive triterpenoids over the past few decades. Herein, we attempted to explore the anticancer potential of the fruit extract of the ethnomedicinal plant Dillenia indica against oral squamous cell carcinoma (OSCC) and have exclusively attributed the efficacy of the extracts to the presence of two triterpenoids, namely, betulinic acid (BA) and koetjapic acid (KA). Preliminary in vitro screening of both BA and KA unveiled that the entities could impart cytotoxicity and induce apoptosis in OSCC cell lines, which were further well-supported by virtual screening based on ligand binding affinity and molecular dynamic simulations. Additionally, the aforementioned metabolites could significantly modulate the critical players such as Akt/mTOR, NF-κB, and JAK/STAT3 signaling pathways involved in the regulation of important hallmarks of cancer like cell survival, proliferation, invasion, angiogenesis, and metastasis. The present findings provide insight and immense scientific support and integrity to a piece of indigenous knowledge. However, in vivo validation is a requisite for moving to clinical trials and developing it as a commercial drug.
Collapse
Affiliation(s)
- Maniyamma Aswathy
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram 695019, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Kishore Banik
- Cancer Biology Laboratory and DBT-AIST International Center for Translational & Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology, Guwahati 781 039, Assam, India
| | - Dey Parama
- Cancer Biology Laboratory and DBT-AIST International Center for Translational & Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology, Guwahati 781 039, Assam, India
| | - Parameswaran Sasikumar
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram 695019, India
| | - Choudhary Harsha
- Cancer Biology Laboratory and DBT-AIST International Center for Translational & Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology, Guwahati 781 039, Assam, India
| | - Anuja Gracy Joseph
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram 695019, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Daisy R Sherin
- Centre for Computational Modeling and Data Engineering, Indian Institute of Information Technology and Management-Kerala (IIITM-K), Thiruvananthapuram 695581, India
| | - Manojkumar K Thanathu
- Centre for Computational Modeling and Data Engineering, Indian Institute of Information Technology and Management-Kerala (IIITM-K), Thiruvananthapuram 695581, India
| | - Ajaikumar B Kunnumakkara
- Cancer Biology Laboratory and DBT-AIST International Center for Translational & Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology, Guwahati 781 039, Assam, India
| | - Radhakrishnan Kokkuvayil Vasu
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram 695019, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
14
|
Kara A, Özgür A, Tekin Ş, Tutar Y. Computational Analysis of Drug Resistance Network in Lung Adenocarcinoma. Anticancer Agents Med Chem 2021; 22:566-578. [PMID: 33602077 DOI: 10.2174/1871520621666210218175439] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 12/14/2020] [Accepted: 01/12/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Lung cancer is a significant health problem and accounts for one-third of the deaths worldwide. A great majority of these deaths are caused by non-small cell lung cancer (NSCLC). Chemotherapy is the leading treatment method for NSCLC, but resistance to chemotherapeutics is an important limiting factor that reduces the treatment success of patients with NSCLC. OBJECTIVE In this study, the relationship between differentially expressed genes affecting the survival of the patients, according to the bioinformatics analyses, and the mechanism of drug resistance is investigated for non-small cell lung adenocarcinoma patients. METHODS Five hundred thirteen patient samples were compared with fifty-nine control samples. The employed dataset was downloaded from The Cancer Genome Atlas (TCGA) database. The information on how the drug activity altered against the expressional diversification of the genes was extracted from the NCI-60 database. Four hundred thirty-three drugs with known mechanism of action (MoA) were analyzed. Diversifications of the activity of these drugs related to genes were considered based on nine lung cancer cell lines virtually. The analyses were performed using R programming language, GDCRNATools, rcellminer, and Cytoscape. RESULTS This work analyzed the common signaling pathways and expressional alterations of the proteins in these pathways associated with survival and drug resistance in lung adenocarcinoma. Deduced computational data demonstrated that proteins of EGFR, JNK/MAPK, NF-κB, PI3K /AKT/mTOR, JAK/STAT, and Wnt signaling pathways were associated with molecular mechanism of resistance to anticancer drugs in NSCLC cells. CONCLUSION To understand the relationships between resistance to anticancer drugs and EGFR, JNK/MAPK, NF-κB, PI3K /AKT/mTOR, JAK/STAT, and Wnt signaling pathways is an important approach to design effective therapeutics for individuals with NSCLC adenocarcinoma.
Collapse
Affiliation(s)
- Altan Kara
- TUBITAK Marmara Research Center, Gene Engineering and Biotechnology Institute, Gebze, . Turkey
| | - Aykut Özgür
- Tokat Gaziosmanpaşa University, Artova Vocational School, Department of Veterinary Medicine, Laboratory and Veterinary Health Program, Tokat, . Turkey
| | - Şaban Tekin
- University of Health Sciences, Turkey, Hamidiye Faculty of Medicine, Department of Basic Medical Sciences, Division of Biology, İstanbul, . Turkey
| | - Yusuf Tutar
- University of Health Sciences, Hamidiye Institute of Health Sciences, Department of Molecular Oncology, Istanbul, . Turkey
| |
Collapse
|
15
|
Chan PF, Ang KP, Hamid RA. A bismuth diethyldithiocarbamate compound induced apoptosis via mitochondria-dependent pathway and suppressed invasion in MCF-7 breast cancer cells. Biometals 2021; 34:365-391. [PMID: 33555494 DOI: 10.1007/s10534-021-00286-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 01/13/2021] [Indexed: 12/29/2022]
Abstract
Interest in bismuth(III) dithiocarbamate complexes as potential drug candidates is increasing due to their low toxicity compared to other group 15 elements (pnictogen) of the periodic table. Bismuth dithiocarbamate compounds have been reported to induce greater cytotoxicity in various human carcinoma cancer cell lines. Using various in vitro cancer-related assays, we investigated the antiproliferative activity of bismuth diethyldithiocarbamate, denoted as 1, against the MCF-7 human breast adenocarcinoma cell line and the effect on genes that may be involved in antiproliferation, apoptosis, DNA fragmentation, invasion and polyubiquitination functions. In general, 1 exhibited high cytotoxicity in MCF-7 cells, with an IC50 of 1.26 ± 0.02 µM, by inducing the intrinsic apoptotic pathway, as ascertained by measurements of intracellular reactive oxygen species (ROS), caspase activity, the amount of cytochrome c released and the extent of DNA fragmentation and by staining assays that reveal apoptotic cells. In addition, 1 significantly attenuated cell invasion and modulated several cancer-related genes, including PLK2, FIGF, FLT4, PARP4, and HDAC11, as determined via gene expression analysis. The NF-κB signaling pathway was inhibited by 1 upon the activation of Lys48- and Lys63-linked polyubiquitination, thus leading to its degradation via the proteasome. Overall, 1 has the potential to act as an antiproliferative agent and a proteasome inhibitor in estrogen-positive breast cancer.
Collapse
Affiliation(s)
- Pit Foong Chan
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Kok Pian Ang
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Roslida Abd Hamid
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia.
| |
Collapse
|
16
|
Wanandi SI, Limanto A, Yunita E, Syahrani RA, Louisa M, Wibowo AE, Arumsari S. In silico and in vitro studies on the anti-cancer activity of andrographolide targeting survivin in human breast cancer stem cells. PLoS One 2020; 15:e0240020. [PMID: 33211707 PMCID: PMC7676700 DOI: 10.1371/journal.pone.0240020] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 09/17/2020] [Indexed: 02/05/2023] Open
Abstract
Breast cancer stem cells (BCSCs) express high levels of the anti-apoptotic protein, survivin. This study aimed to discover a natural active compound with anti-cancer properties that targeted survivin in human breast cancer stem cells. From the seven examined compounds, andrographolide was selected as a lead compound through in silico molecular docking with survivin, caspase-9, and caspase-3. We found that the affinity between andrographolide and survivin is higher than that with caspase-9 and caspase-3. Human CD24-/CD44+ BCSCs were treated with andrographolide in vitro for 24 hours. The cytotoxic effect of andrographolide on BCSCs was compared to that on human mesenchymal stem cells (MSCs). The expression of survivin, caspase-9, and caspase-3 mRNA was analyzed using qRT-PCR, while Thr34-phosphorylated survivin and total survivin levels were determined using ELISA and Immunoblotting assay. Annexin-V/PI flow cytometry assays were performed to evaluate the apoptotic activity of andrographolide. Our results demonstrate that the CC50 of andrographolide in BCSCs was 0.32mM, whereas there was no cytotoxic effect in MSCs. Moreover, andrographolide decreased survivin and Thr34-phosphorylated survivin, thus inhibiting survivin activation and increasing survivin mRNA in BCSCs. The apoptotic activity of andrographolide was revealed by the increase of caspase-3 mRNA and protein, as well as the increase in both the early and late phases of apoptosis. In conclusion, andrographolide can be considered an anti-cancer compound that targets BCSCs due to its molecular interactions with survivin, caspase-9, and caspase-3, which induce apoptosis. We suggest that the binding of andrographolide to survivin is a critical aspect of the effect of andrographolide.
Collapse
Affiliation(s)
- Septelia Inawati Wanandi
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
- Center for Hypoxia and Oxidative Stress Studies, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
- Molecular Biology and Proteomic Core Facilities, Indonesian Medical Education and Research Institute, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Agus Limanto
- Master Program in Biomedical Sciences, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Elvira Yunita
- Master Program in Biomedical Sciences, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Resda Akhra Syahrani
- Molecular Biology and Proteomic Core Facilities, Indonesian Medical Education and Research Institute, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
- Master Program in Biomedical Sciences, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Melva Louisa
- Department of Pharmacology, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Agung Eru Wibowo
- Laboratory for Development of Industrial Agro and Biomedical Technology (LAPTIAB), Agency for the Assessment and Application of Technology (BPPT), Serpong, Tangerang Selatan, Indonesia
| | - Sekar Arumsari
- Molecular Biology and Proteomic Core Facilities, Indonesian Medical Education and Research Institute, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| |
Collapse
|
17
|
Survivin as a Target for Anti-cancer Phytochemicals According to the Molecular Docking Analysis. Int J Pept Res Ther 2020. [DOI: 10.1007/s10989-019-09914-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
18
|
Batır MB, Şahin E, Çam FS. Evaluation of the CRISPR/Cas9 directed mutant TP53 gene repairing effect in human prostate cancer cell line PC-3. Mol Biol Rep 2019; 46:6471-6484. [PMID: 31571107 DOI: 10.1007/s11033-019-05093-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 09/22/2019] [Indexed: 12/15/2022]
Abstract
Prostate cancer is a common health problem among men worldwide and most of these prostate cancer cases are related to a dysfunctional mutant Tumor Protein p53 (TP53) gene. However, the CRISPR/Cas9 system can be used for repairing of a dysfunctional mutant TP53 gene in combination with donor single-stranded oligodeoxynucleotide (ssODN) via cells' own homology-directed repair (HDR) mechanism. In this study, we aimed to evaluate the CRISPR/Cas9 repairing efficiency on TP53 414delC (p.K139fs*31) null mutation, located in the TP53 gene, of human prostate cancer cell line PC-3 in combination with ssODNs. According to the next-generation sequencing results, TP53 414delC mutation was repaired with an efficiency of 19.95% and 26.0% at the TP53 414delC position with ssODN1 and ssODN2 accompanied by sgRNA2 guided CRISPR/Cas9, respectively. Besides, qPCR and immunofluorescence analysis showed that PC-3 cells, the TP53 414delC mutation of which were repaired, expressed wild type p53 again. Also, significantly increased number of apoptotic cells, driven by the repaired TP53 gene were detected compared to the control cells by flow cytometry analysis. As a result, sgRNA2 guided CRISPR/Cas9 system accompanied by ssODN was shown to effectively repair the TP53 414delC gene region and inhibit the cell proliferation of PC-3 cells. Therefore, the effects of the TP53 414delC mutation repairment in PC-3 cells will be investigated in the in vivo models for tumor clearance analysis in the near future.
Collapse
Affiliation(s)
- Muhammet Burak Batır
- Department of Biology, Faculty of Science and Letters, Manisa Celal Bayar University, Manisa, Turkey.
| | - Ergin Şahin
- Department of Biology, Faculty of Science, Ankara University, Ankara, Turkey
| | - Fethi Sırrı Çam
- Department of Medical Genetics, Faculty of Medicine, Manisa Celal Bayar University, Manisa, Turkey
| |
Collapse
|
19
|
Yoon Lee J, Chung J, Hwa Kim K, Hyun An S, Yi JE, Ae Kwon K, Kwon K. Extracorporeal shock waves protect cardiomyocytes from doxorubicin-induced cardiomyopathy by upregulating survivin via the integrin-ILK-Akt-Sp1/p53 axis. Sci Rep 2019; 9:12149. [PMID: 31434946 PMCID: PMC6704172 DOI: 10.1038/s41598-019-48470-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 08/02/2019] [Indexed: 12/12/2022] Open
Abstract
Doxorubicin (DOX) is a widely used anti-cancer drug; however, it has limited application due to cardiotoxicity. Extracorporeal shock waves (ESW) have been suggested to treat inflammatory and ischemic diseases, but the concrete effect of ESW in DOX-induced cardiomyopathy remain obscure. After H9c2 cells were subjected to ESW (0.04 mJ/cm2), they were treated with 1 μM DOX. As a result, ESW protected cardiomyocytes from DOX-induced cell death. H9c2 cells treated with DOX downregulated p-Akt and survivin expression, whereas the ESW treatment recovered both, suggesting its anti-apoptotic effect. ESW activated integrin αvβ3 and αvβ5, cardiomyocyte mechanosensors, followed by upregulation of ILK, p-Akt and survivin levels. Further, Sp1 and p53 were determined as key transcriptional factors mediating survivin expression via Akt phosphorylation by ESW. In in vivo acute DOX-induced cardiomyopathy model, the echocardiographic results showed that group subjected to ESW recovered from acute DOX-induced cardiomyopathy; left ventricular function was improved. The immunohistochemical staining results showed increased survivin and Bcl2 expression in ESW + DOX group compared to those in the DOX-injected group. In conclusion, non-invasive shockwaves protect cardiomyocytes from DOX-induced cardiomyopathy by upregulating survivin via integrin-ILK-Akt-Sp1/p53 pathway. In vivo study proposed ESW as a new kind of specific and safe therapy against acute DOX-induced cardiomyopathy.
Collapse
Affiliation(s)
- Ji Yoon Lee
- Medical Research Institute, School of Medicine, Ewha Womans University, Seoul, 158-710, Korea
| | - Jihwa Chung
- Medical Research Institute, School of Medicine, Ewha Womans University, Seoul, 158-710, Korea
| | - Kyoung Hwa Kim
- Medical Research Institute, School of Medicine, Ewha Womans University, Seoul, 158-710, Korea
| | - Shung Hyun An
- Medical Research Institute, School of Medicine, Ewha Womans University, Seoul, 158-710, Korea
| | - Jeong-Eun Yi
- Department of Internal Medicine, Cardiology Division, School of medicine, Ewha Womans University, Seoul, 158-710, Korea
| | - Kyoung Ae Kwon
- Graduate School of Industrial Pharmaceutical Sciences, Ewha Womans University, Seoul, Korea
| | - Kihwan Kwon
- Medical Research Institute, School of Medicine, Ewha Womans University, Seoul, 158-710, Korea. .,Department of Internal Medicine, Cardiology Division, School of medicine, Ewha Womans University, Seoul, 158-710, Korea.
| |
Collapse
|
20
|
Han W, Yuan Y, Li H, Fu Z, Wang M, Guan S, Wang L. Design and anti-tumor activity of self-loaded nanocarriers of siRNA. Colloids Surf B Biointerfaces 2019; 183:110385. [PMID: 31408781 DOI: 10.1016/j.colsurfb.2019.110385] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 07/15/2019] [Accepted: 07/22/2019] [Indexed: 12/26/2022]
Abstract
Polypeptide carriers have a good cell compatibility, rich functionality, and facile synthesis and modification, make them promising materials as siRNA vectors. Phenylalanine dipeptide (FF) has been previously assessed as an siRNA vector and showed to have two major drawbacks, namely poor water solubility and poor serum stability. Herein, the FF backbone was modified by ligating a PEG-Arg-Ala (PEG-RA) sequence at the N-terminus to increase its hydrophilicity and serum stability. Arg is a typical amino acid in the cell penetrating peptide, which can increase the efficiency of cell internalization. Ala acts as a spacer to avoid steric hindrance. The target sequence PEG-RAFF was synthesized by a solid phase peptide synthesis. The morphology, particle size, and siRNA ratio were assessed by SEM, TEM, DLS, and gel electrophoresis. Further, MCF-7 cells were used as a model and survivin-siRNA as a passenger to assess cell internalization, inhibition of gene expression rate, and apoptosis rate using confocal microscopy, real-time PCR, and flow cytometry. At a concentration of 1 mg/mL, PEG-RAFF took the form of nanovesicles with a diameter of 154.74 ± 14.36 nm. The optimal PEG-RAFF to siRNA ratio was N/P = 100:1. Compared with the control group, the red fluorescence of TAMRA(Carboxytetramethylrhodamine, Red fluorescence)-siRNA transfected into cells was clearly visible in the confocal microscope image. The inhibition rate of survivin was 67.99 ± 10.31%, and the apoptotic rate was 16.07%. Therefore, PEG-RAFF has potential as an siRNA carrier in cancer treatment.
Collapse
Affiliation(s)
- Wenzhao Han
- School of Life Sciences, Jilin University, Changchun 130012, PR China
| | - Ye Yuan
- School of Life Sciences, Jilin University, Changchun 130012, PR China
| | - Hui Li
- School of Life Sciences, Jilin University, Changchun 130012, PR China
| | - Zhendong Fu
- School of Life Sciences, Jilin University, Changchun 130012, PR China
| | - Mingyang Wang
- School of Life Sciences, Jilin University, Changchun 130012, PR China
| | - Shuwen Guan
- School of Life Sciences, Jilin University, Changchun 130012, PR China; Engineering Laboratory for AIDS Vaccine, Jilin University, Changchun 130012, PR China; Key Laboratory for Molecular Enzymology and Engineering, Ministry of Education, Jilin Universtiy, Changchun 130012, PR China
| | - Liping Wang
- School of Life Sciences, Jilin University, Changchun 130012, PR China; Engineering Laboratory for AIDS Vaccine, Jilin University, Changchun 130012, PR China; Key Laboratory for Molecular Enzymology and Engineering, Ministry of Education, Jilin Universtiy, Changchun 130012, PR China.
| |
Collapse
|
21
|
Wang JP, Yan JP, Xu J, Yin TH, Zheng RQ, Wang W. Paclitaxel-loaded nanobubble targeted to pro-gastrin-releasing peptide inhibits the growth of small cell lung cancer. Cancer Manag Res 2019; 11:6637-6649. [PMID: 31406477 PMCID: PMC6642650 DOI: 10.2147/cmar.s199175] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 05/29/2019] [Indexed: 01/24/2023] Open
Abstract
Objective The aim of this work was to study the effects of paclitaxel-loaded nanobubbles targeting pro-gastrin-releasing peptide, designated as paclitaxel targeting nanobubbles, on small cell lung cancer (SCLC). Methods Paclitaxel targeting nanobubbles were prepared by Thin-film hydration method. Subsequently, the prepared nanomaterials were tested for their in vitro effects on SCLC H446 cells proliferation, apoptosis and motility using the CCK-8 assay, flow cytometry and cell scratch test. Next, the potential molecular regulatory mechanisms of the prepared nanomaterials on H446 cells were evaluated by RT-PCR, Western blot and immunohistochemical detection. Finally, the in vivo effects of the constructed nanomaterials were assessed on SCLC tumor using tumor-burdened nude mice models. Results Paclitaxel targeting nanobubbles significantly inhibited SCLC cell proliferation and migration, and promoted cell apoptosis. Moreover, the expression levels of Bcl-2, survivin, CDK2 and MMP-2 significantly decreased in SCLC cells treated with paclitaxel targeting nanobubbles, whereas the expression of caspase-3 and Rb were increased. There was a notable decrease in tumor size in vivo in SCLC nude mice models treated with paclitaxel targeting nanobubbles. Conclusion Paclitaxel targeting nanobubbles effectively inhibited the proliferation, migration and invasion of SCLC cells and induced SCLC cells apoptosis. Hence, these nanobubbles show potential in SCLC-targeted drug treatment application.
Collapse
Affiliation(s)
- Jin-Ping Wang
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan, Shanxi 030006, People's Republic of China.,Department of Ultrasound, Shanxi Province People's Hospital, Taiyuan, Shanxi 030012, People's Republic of China
| | - Ji-Ping Yan
- Department of Ultrasound, Shanxi Province People's Hospital, Taiyuan, Shanxi 030012, People's Republic of China
| | - Jing Xu
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan, Shanxi 030006, People's Republic of China
| | - Ting-Hui Yin
- Department of Medical Ultrasonic, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510630, People's Republic of China
| | - Rong-Qin Zheng
- Department of Medical Ultrasonic, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510630, People's Republic of China
| | - Wei Wang
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan, Shanxi 030006, People's Republic of China
| |
Collapse
|
22
|
Role of Survivin and p53 Expression in Response of Primary Culture of Ovarian Cancer Cells to Treatment With Chemotherapeutic Agents. Int J Gynecol Cancer 2019; 28:1239-1246. [PMID: 29727353 DOI: 10.1097/igc.0000000000001281] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Ovarian cancer is associated with a high relapse rate and is the fifth leading cause of cancer deaths in women. The genetic profile of a tumor is responsible for deciding response to chemotherapeutic agents. In this study, we investigate the relation between survivin and p53 expression and response to chemotherapeutic agents of primary cultures of ovarian cancer cells established from ascitic fluid. MATERIALS AND METHOD Ascitic fluid and Dulbecco's modified Eagle medium was mixed in equal proportion in culture flasks and incubated to establish primary culture. The cells were treated with different combinations of carboplatin and paclitaxel with and without survivin small interfering RNA transfection. Cell survival was estimated by MTT assay. Survivin and p53 expression was quantified by real-time polymerase chain reaction. RESULTS Out of 19 ascitic fluid samples, 13 primary cultures of ovarian cancer cells were established. The half maximal inhibitory concentration doses of carboplatin (≥70 μg/mL) and paclitaxel (≥18 μg/mL) were high for 10/13 and 5/13 patients, respectively. Survivin messenger RNA expression was significantly downregulated on treatment with carboplatin (100 μg/mL), paclitaxel (12.5 μg/mL), and a combination of carboplatin (50 μg/mL) and paclitaxel (6.25 μg/mL). Only paclitaxel-treated ovarian cancer cells showed decrease in expression of p53. Survivin small interfering RNA increased sensitivity of the primary cultures to chemotherapeutic agents. CONCLUSIONS The present study highlights the fact that establishing primary cultures from ascitic fluid may help to develop personalized treatment regime for individual patients based on their molecular profile. Our study also shows that supplementing taxols drugs with survivin inhibitors may prove to be beneficial in the treatment of ovarian cancer patients.
Collapse
|
23
|
Xiao M, Xue Y, Wu Z, Lei ZN, Wang J, Chen ZS, Li W. Design, synthesis and biological evaluation of selective survivin inhibitors. J Biomed Res 2019; 33:82-100. [PMID: 30174320 PMCID: PMC6477172 DOI: 10.7555/jbr.31.20160173] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The differential distribution between cancer cells and normal adult tissues makes survivin a very attractive cancer drug target. We have previously reported a series of novel selective survivin inhibitors with the most potent compound MX106 reaching nanomolar activity in several cancer cell lines. Further optimization of the MX106 scaffold leads to the discovery of more potent and more selective survivin inhibitors. Various structural modifications were synthesized and their anticancer activities were evaluated to determine the structure activity relationships for this MX106 scaffold. In vitro anti-proliferative assays using two human melanoma cell lines showed that several new analogs have improved potency compared to MX106. Very interestingly, these new analogs generally showed significantly higher potency against P-glycoprotein overexpressed cells compared with the corresponding parental cells, suggesting that these compounds may strongly sensitize tumors that have high expressions of the P-glycoprotein drug efflux pumps. Western blotting analysis confirmed that the new MX106 analogs maintained their mechanism of actions by selectively suppressing survivin expression level among major inhibitors of apoptotic proteins and induced strong apoptosis in melanoma tumor cells.
Collapse
Affiliation(s)
- Min Xiao
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Yi Xue
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Zhongzhi Wu
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Zi-Ning Lei
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
| | - Jin Wang
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
| | - Wei Li
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| |
Collapse
|
24
|
Sakka L, Delétage N, Chalus M, Aissouni Y, Sylvain-Vidal V, Gobron S, Coll G. Assessment of citalopram and escitalopram on neuroblastoma cell lines. Cell toxicity and gene modulation. Oncotarget 2018; 8:42789-42807. [PMID: 28467792 PMCID: PMC5522106 DOI: 10.18632/oncotarget.17050] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 03/15/2017] [Indexed: 12/13/2022] Open
Abstract
Selective serotonin reuptake inhibitors (SSRI) are common antidepressants which cytotoxicity has been assessed in cancers notably colorectal carcinomas and glioma cell lines. We assessed and compared the cytotoxicity of 2 SSRI, citalopram and escitalopram, on neuroblastoma cell lines. The study was performed on 2 non-MYCN amplified cell lines (rat B104 and human SH-SY5Y) and 2 human MYCN amplified cell lines (IMR32 and Kelly). Citalopram and escitalopram showed concentration-dependent cytotoxicity on all cell lines. Citalopram was more cytotoxic than escitalopram. IMR32 was the most sensitive cell line. The absence of toxicity on human primary Schwann cells demonstrated the safety of both molecules for myelin. The mechanisms of cytotoxicity were explored using gene-expression profiles and quantitative real-time PCR (qPCR). Citalopram modulated 1 502 genes and escitalopram 1 164 genes with a fold change ≥ 2. 1 021 genes were modulated by both citalopram and escitalopram; 481 genes were regulated only by citalopram while 143 genes were regulated only by escitalopram. Citalopram modulated 69 pathways (KEGG) and escitalopram 42. Ten pathways were differently modulated by citalopram and escitalopram. Citalopram drastically decreased the expression of MYBL2, BIRC5 and BARD1 poor prognosis factors of neuroblastoma with fold-changes of -107 (p<2.26 10−7), -24.1 (p<5.6 10−9) and -17.7 (p<1.2 10−7). CCNE1, AURKA, IGF2, MYCN and ERBB2 were more moderately down-regulated by both molecules. Glioma markers E2F1, DAPK1 and CCND1 were down-regulated. Citalopram displayed more powerful action with broader and distinct spectrum of action than escitalopram.
Collapse
Affiliation(s)
- Laurent Sakka
- Laboratoire d'Anatomie et d'Organogenèse, Laboratoire de Biophysique Sensorielle, NeuroDol, Faculté de Médecine, Université Clermont Auvergne, F-63000 Clermont-Ferrand, France.,Service de Neurochirurgie, Pole RMND, CHU de Clermont-Ferrand, Hôpital Gabriel-Montpied, 63003 Clermont-Ferrand Cedex, France
| | - Nathalie Delétage
- Neuronax SAS, Biopôle Clermont-Limagne, F-63360 Saint-Beauzire, France
| | - Maryse Chalus
- Laboratoire d'Anatomie et d'Organogenèse, Laboratoire de Biophysique Sensorielle, NeuroDol, Faculté de Médecine, Université Clermont Auvergne, F-63000 Clermont-Ferrand, France
| | - Youssef Aissouni
- Laboratoire de Pharmacologie Fondamentale et Clinique de la Douleur, NeuroDol, Faculté de Médecine, Université Clermont Auvergne, F-63000 Clermont-Ferrand, France
| | | | - Stéphane Gobron
- Neuronax SAS, Biopôle Clermont-Limagne, F-63360 Saint-Beauzire, France
| | - Guillaume Coll
- Service de Neurochirurgie, Pole RMND, CHU de Clermont-Ferrand, Hôpital Gabriel-Montpied, 63003 Clermont-Ferrand Cedex, France
| |
Collapse
|
25
|
Nuncia-Cantarero M, Martinez-Canales S, Andrés-Pretel F, Santpere G, Ocaña A, Galan-Moya EM. Functional transcriptomic annotation and protein-protein interaction network analysis identify NEK2, BIRC5, and TOP2A as potential targets in obese patients with luminal A breast cancer. Breast Cancer Res Treat 2018; 168:613-623. [PMID: 29330624 PMCID: PMC5842257 DOI: 10.1007/s10549-017-4652-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 12/29/2017] [Indexed: 12/22/2022]
Abstract
PURPOSE Although obesity is a risk factor for breast cancer, little effort has been made in the identification of druggable molecular alterations in obese-breast cancer patients. Tumors are controlled by their surrounding microenvironment, in which the adipose tissue is a main component. In this work, we intended to describe molecular alterations at a transcriptomic and protein-protein interaction (PPI) level between obese and non-obese patients. METHODS AND RESULTS Gene expression data of 269 primary breast tumors were compared between normal-weight (BMI < 25, n = 130) and obese (IMC > 30, n = 139) patients. No significant differences were found for the global breast cancer population. However, within the luminal A subtype, upregulation of 81 genes was observed in the obese group (FC ≥ 1.4). Next, we explored the association of these genes with patient outcome, observing that 39 were linked with detrimental outcome. Their PPI map formed highly compact cluster and functional annotation analyses showed that cell cycle, cell proliferation, cell differentiation, and cellular response to extracellular stimuli were the more altered functions. Combined analyses of genes within the described functions are correlated with poor outcome. PPI network analyses for each function were to search for druggable opportunities. We identified 16 potentially druggable candidates. Among them, NEK2, BIRC5, and TOP2A were also found to be amplified in breast cancer, suggesting that they could act as strategic players in the obese-deregulated transcriptome. CONCLUSION In summary, our in silico analysis describes molecular alterations of luminal A tumors and proposes a druggable PPI network in obese patients with potential for translation to the clinical practice.
Collapse
Affiliation(s)
- Miriam Nuncia-Cantarero
- Translational Oncology Laboratory, Centro Regional de Investigaciones Biomédicas (CRIB), Universidad de Castilla La Mancha (UCLM), C/Almansa 14, 02008, Albacete, Spain
| | | | | | - Gabriel Santpere
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, USA
| | - Alberto Ocaña
- Translational Research Unit, University Hospital, Albacete, Spain
| | - Eva Maria Galan-Moya
- Translational Oncology Laboratory, Centro Regional de Investigaciones Biomédicas (CRIB), Universidad de Castilla La Mancha (UCLM), C/Almansa 14, 02008, Albacete, Spain.
| |
Collapse
|
26
|
Gleichenhagen J, Arndt C, Casjens S, Meinig C, Gerullis H, Raiko I, Brüning T, Ecke T, Johnen G. Evaluation of a New Survivin ELISA and UBC ® Rapid for the Detection of Bladder Cancer in Urine. Int J Mol Sci 2018; 19:ijms19010226. [PMID: 29324722 PMCID: PMC5796175 DOI: 10.3390/ijms19010226] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 12/20/2017] [Accepted: 01/08/2018] [Indexed: 12/21/2022] Open
Abstract
Urine-based biomarkers for non-invasive diagnosis of bladder cancer are urgently needed. No single marker with sufficient sensitivity and specificity has been described so far. Thus, a combination of markers appears to be a promising approach. The aim of this case-control study was to evaluate the performance of an in-house developed enzyme-linked immunosorbent assay (ELISA) for survivin, the UBC®Rapid test, and the combination of both assays. A total of 290 patients were recruited. Due to prior bladder cancer, 46 patients were excluded. Urine samples were available from 111 patients with bladder cancer and 133 clinical controls without urologic diseases. Antibodies generated from recombinant survivin were utilized to develop a sandwich ELISA. The ELISA and the UBC®Rapid test were applied to all urine samples. Receiver operating characteristic (ROC) analysis was used to evaluate marker performance. The survivin ELISA exhibited a sensitivity of 35% with a specificity of 98%. The UBC®Rapid test showed a sensitivity of 56% and a specificity of 96%. Combination of both assays increased the sensitivity to 66% with a specificity of 95%. For high-grade tumors, the combination showed a sensitivity of 82% and a specificity of 95%. The new survivin ELISA and the UBC®Rapid test are both able to detect bladder cancer, especially high-grade tumors. However, the performance of each individual marker is moderate and efforts to improve the survivin assay should be pursued. A combination of both assays confirmed the benefit of using marker panels. The results need further testing in a prospective study and with a high-risk population.
Collapse
Affiliation(s)
- Jan Gleichenhagen
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr-University Bochum (IPA), 44789 Bochum, Germany.
| | - Christian Arndt
- Department of Urology, Lukaskrankenhaus Neuss, 41464 Neuss, Germany.
| | - Swaantje Casjens
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr-University Bochum (IPA), 44789 Bochum, Germany.
| | - Carmen Meinig
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr-University Bochum (IPA), 44789 Bochum, Germany.
| | - Holger Gerullis
- University Hospital for Urology, Klinikum Oldenburg, 26133 Oldenburg, Germany.
| | - Irina Raiko
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr-University Bochum (IPA), 44789 Bochum, Germany.
| | - Thomas Brüning
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr-University Bochum (IPA), 44789 Bochum, Germany.
| | - Thorsten Ecke
- Department of Urology, HELIOS Hospital, 15526 Bad Saarow, Germany.
| | - Georg Johnen
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr-University Bochum (IPA), 44789 Bochum, Germany.
| |
Collapse
|
27
|
Habib AGK, Sugiura K, Ueno M. Chromosome passenger complex is required for the survival of cells with ring chromosomes in fission yeast. PLoS One 2018; 13:e0190523. [PMID: 29298360 PMCID: PMC5752009 DOI: 10.1371/journal.pone.0190523] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 12/15/2017] [Indexed: 11/25/2022] Open
Abstract
Ring chromosomes are circular chromosomal abnormalities that have been reported in association with some genetic disorders and cancers. In Schizosaccharomyces pombe, lack of function of protection of telomere 1 (Pot1) or telomerase catalytic subunit (Trt1) results in survivors with circular chromosomes. Hitherto, it is poorly understood how cells with circular chromosomes survive and how circular chromosomes are maintained. Fission yeast Cut17/Bir1, Ark1, Pic1, and Nbl1 is a conserved chromosome passenger complex (CPC) functioning mainly throughout mitosis. Here, using a temperature-sensitive mutant of CPC subunits, we determined that CPC is synthetically lethal in combination with either Pot1 or Trt1. The pot1Δ pic1-T269 double mutant, which has circular chromosomes, showed a high percentage of chromosome mis-segregation and DNA damage foci at 33°C. We furthermore found that neither Shugoshin Sgo2 nor heterochromatin protein Swi6, which contribute to the centromeric localization of CPC, were required for the survival in the absence of Pot1. Both the pot1Δ sgo2Δ and pot1Δ swi6Δ double mutants displayed a high percentage of DNA damage foci, but a low percentage of chromosome mis-segregation, suggesting the link between the high percentage of chromosome mis-segregation and the lethality of the CPC pot1Δ double mutant. Our results suggest that CPC is required for the survival of cells with circular chromosomes and sheds light on the possible roles of CPC in the maintenance of circular chromosomes.
Collapse
Affiliation(s)
- Ahmed G. K. Habib
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, Kagamiyama, Higashi-Hiroshima, Japan
- Department of Biotechnology and Life Sciences, Faculty of Postgraduate Studies for Advanced Sciences (PSAS), Beni-Suef University, Beni-Suef, Egypt
| | - Kanako Sugiura
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, Kagamiyama, Higashi-Hiroshima, Japan
| | - Masaru Ueno
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, Kagamiyama, Higashi-Hiroshima, Japan
- * E-mail:
| |
Collapse
|
28
|
Dioxonaphthoimidazoliums AB1 and YM155 disrupt phosphorylation of p50 in the NF-κB pathway. Oncotarget 2017; 7:11625-36. [PMID: 26872379 PMCID: PMC4905498 DOI: 10.18632/oncotarget.7299] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2015] [Accepted: 01/27/2016] [Indexed: 12/11/2022] Open
Abstract
The NF-κB pathway is overexpressed in non-small cell lung cancers (NSCLC) and contributes to the poor prognosis and high mortality characterizing this malignancy. Silencing the p50 and p65 NF-κB subunits in the NSCLC H1299 cell line led to profound loss in cell viability and downregulated anti-apoptotic proteins survivin and Mcl1. We also showed that a survivin suppressant, the dioxonaphthoimidazolium YM155, and its structural analog AB1 arrested the growth of H1299 cells at nanomolar concentrations. Both compounds were apoptogenic and suppressed survivin and other anti-apoptotic proteins (Mcl1, Bcl-2, Bcl-xl) in a dose- and/or time-dependent manner. YM155 and AB1 did not affect the expression of key proteins (IκBα, p65, p50) involved in NF-κB signaling. Stable IκBα levels suggest that the NF-κB/IκB complex and proteins upstream of IκBα, were not targeted. Neither did the compounds intercept the nuclear translocation of the p50 and p65 subunits. On the other hand, YM155 and AB1 suppressed the phosphorylation of the p50 subunit at Ser337 which is critical in promoting the binding of NF-κB dimers to DNA. Both compounds duly impeded the binding of NF-κB dimers to DNA and attenuated transcriptional activity of luciferase-transfected HEK293 cells controlled by NF-κB response elements. We propose that the “silencing” the NF-κB pathway effected by these compounds contributed to their potent apoptogenic effects on H1299. Notwithstanding, the mechanism(s) involved in their ability to abolish phosphorylation of p50 remains to be elucidated. Taken together, these results disclose a novel facet of functionalized dioxonaphthoimidazoliums that could account for their potent cell killing property.
Collapse
|
29
|
Wang S, Shen Y, Qiu R, Chen Z, Chen Z, Chen W. 18 β-glycyrrhetinic acid exhibits potent antitumor effects against colorectal cancer via inhibition of cell proliferation and migration. Int J Oncol 2017; 51:615-624. [PMID: 28656212 DOI: 10.3892/ijo.2017.4059] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 06/13/2017] [Indexed: 11/06/2022] Open
Abstract
Accumulating evidence shows that 18 β-glycyr-rhetinic acid (GRA) has antitumor activities in breast, ovarian cancer and leukemia, while its role in colorectal cancer remains unknown. In the present study, we investigated the effect of GRA in colorectal cancer cells LoVo, SW480 and SW620 and studied the underlying molecular mechanisms. Results showed that GRA had potent inhibitory effects on colorectal cancer cell proliferation in a dose- and time-dependent manner in vitro and in vivo. Growth inhibition was mediated by pro-apoptosis, as evident from Annexin V-FITC staining, the reduced expression of survivin and the induced expression of cleaved PARP. Furthermore, GRA treatment resulted in marked reduction of cell migration, invasion and wound healing capability, accompanying by the downregulated MMP expression. Moreover, GRA decreased the protein levels of p-PI3K, p-AKT, p-STAT3, p-JNK, p-p38 and p-NF-κB p65, of which the phosphorylation of PI3K and STAT3 decreased as early as 2 h after the GRA treatment. These results suggest that regulation of the apoptosis, invasion and migration of colorectal cancer cells by GRA might be through suppressing PI3K and STAT3 signaling pathways. the present study indicated that GRA could be a potential effective therapy for patients with colorectal cancer.
Collapse
Affiliation(s)
- Saisai Wang
- Department of Colorectal Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, P.R. China
| | - Yong Shen
- Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, The Second Affiliated Hospital, Cancer Institute, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, P.R. China
| | - Runfeng Qiu
- Department of Colorectal Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, P.R. China
| | - Zhiliang Chen
- Department of Colorectal Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, P.R. China
| | - Zhehang Chen
- Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, P.R. China
| | - Wenbin Chen
- Department of Colorectal Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, P.R. China
| |
Collapse
|
30
|
Sim MY, Huynh H, Go ML, Yuen JSP. Action of YM155 on clear cell renal cell carcinoma does not depend on survivin expression levels. PLoS One 2017; 12:e0178168. [PMID: 28582447 PMCID: PMC5459331 DOI: 10.1371/journal.pone.0178168] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2016] [Accepted: 05/08/2017] [Indexed: 12/12/2022] Open
Abstract
The dioxonapthoimidazolium YM155 is a survivin suppressant which has been investigated as an anticancer agent in clinical trials. Here, we investigated its growth inhibitory properties on a panel of immortalized and patient derived renal cell carcinoma (RCC) cell lines which were either deficient in the tumour suppressor von Hippel-Lindau (VHL) protein or possessed a functional copy. Neither the VHL status nor the survivin expression levels of these cell lines influenced their susceptibility to growth inhibition by YM155. Of the various RCC lines, the papillary subtype was more resistant to YM155, suggesting that the therapeutic efficacy of YM155 may be restricted to clear cell subtypes. YM155 was equally potent in cells (RCC786.0) in which survivin expression had been stably silenced or overexpressed, implicating a limited reliance on survivin in the mode of action of YM155. A follow-up in-vitro high throughput RNA microarray identified possible targets of YM155 apart from survivin. Selected genes (ID1, FOXO1, CYLD) that were differentially expressed in YM155-sensitive RCC cells and relevant to RCC pathology were validated with real-time PCR and western immunoblotting analyses. Thus, there is corroboratory evidence that the growth inhibitory activity of YM155 in RCC cell lines is not exclusively mediated by its suppression of survivin. In view of the growing importance of combination therapy in oncology, we showed that a combination of YM155 and sorafenib at ½ x IC50 concentrations was synergistic on RCC786.0 cells. However, when tested intraperitoneally on a murine xenograft model derived from a nephrectomised patient with clear cell RCC, a combination of suboptimal doses of both drugs failed to arrest tumour progression. The absence of synergy in vivo highlighted the need to further optimize the dosing schedules of YM155 and sorafenib, as well as their routes of administration. It also implied that the expression of other oncogenic proteins which YM155 may target is either low or absent in this clear cell RCC.
Collapse
Affiliation(s)
- Mei Yi Sim
- Department of Urology, Singapore General Hospital, Republic of Singapore
- * E-mail:
| | - Hung Huynh
- Laboratory of Molecular Endocrinology, Division of Molecular and Cellular Research, National Cancer Centre, Republic of Singapore
| | - Mei Lin Go
- Department of Pharmacy, National University of Singapore, Republic of Singapore
| | | |
Collapse
|
31
|
Peery RC, Liu JY, Zhang JT. Targeting survivin for therapeutic discovery: past, present, and future promises. Drug Discov Today 2017; 22:1466-1477. [PMID: 28577912 DOI: 10.1016/j.drudis.2017.05.009] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 05/12/2017] [Accepted: 05/23/2017] [Indexed: 12/11/2022]
Abstract
Survivin, the smallest member of the inhibitor of apoptosis protein (IAP) family, is overexpressed in cells of almost all cancers but not in most normal tissues in adults. Survivin expression is required for cancer cell survival and knocking down its expression or inhibiting its function using molecular approaches results in spontaneous apoptosis. Thus, survivin is an attractive and perhaps ideal target for cancer drug discovery. However, a US Food and Drug Administration (FDA)-approved drug targeting survivin has yet to emerge. In this Foundation Review, we examine and evaluate various strategies that have been used to target survivin and the stages of each survivin inhibitor to help understand this lack of success. We also provide future perspectives moving forward in targeting survivin for drug discovery.
Collapse
Affiliation(s)
- Robert C Peery
- Department of Pharmacology & Toxicology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Jing-Yuan Liu
- Department of Pharmacology & Toxicology, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Department of Computer and Information Science, Indiana University Purdue University, Indianapolis, IN 46202, USA
| | - Jian-Ting Zhang
- Department of Pharmacology & Toxicology, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Simon Cancer Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| |
Collapse
|
32
|
Nyquist MD, Corella A, Burns J, Coleman I, Gao S, Tharakan R, Riggan L, Cai C, Corey E, Nelson PS, Mostaghel EA. Exploiting AR-Regulated Drug Transport to Induce Sensitivity to the Survivin Inhibitor YM155. Mol Cancer Res 2017; 15:521-531. [PMID: 28465296 PMCID: PMC5471626 DOI: 10.1158/1541-7786.mcr-16-0315-t] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 12/03/2016] [Accepted: 12/22/2016] [Indexed: 12/12/2022]
Abstract
Androgen receptor (AR) signaling is fundamental to prostate cancer and is the dominant therapeutic target in metastatic disease. However, stringent androgen deprivation therapy regimens decrease quality of life and have been largely unsuccessful in curtailing mortality. Recent clinical and preclinical studies have taken advantage of the dichotomous ability of AR signaling to elicit growth-suppressive and differentiating effects by administering hyperphysiologic levels of testosterone. In this study, high-throughput drug screening identified a potent synergy between high-androgen therapy and YM155, a transcriptional inhibitor of survivin (BIRC5). This interaction was mediated by the direct transcriptional upregulation of the YM155 transporter SLC35F2 by the AR. Androgen-mediated YM155-induced cell death was completely blocked by the overexpression of multidrug resistance transporter ABCB1. SLC35F2 expression was significantly correlated with intratumor androgen levels in four distinct patient-derived xenograft models, and with AR activity score in a large gene expression dataset of castration-resistant metastases. A subset of tumors had significantly elevated SLC35F2 expression and, therefore, may identify patients who are highly responsive to YM155 treatment. IMPLICATIONS The combination of androgen therapy with YM155 represents a novel drug synergy, and SLC35F2 may serve as a clinical biomarker of response to YM155.
Collapse
Affiliation(s)
- Michael D Nyquist
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Alexandra Corella
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - John Burns
- Virginia Mason Medical Center, Seattle, Washington
| | - Ilsa Coleman
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Shuai Gao
- Center for Personalized Cancer Therapy, University of Massachusetts Boston, Boston, Massachusetts
- Hematology-Oncology Division, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Robin Tharakan
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Luke Riggan
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Changmeng Cai
- Center for Personalized Cancer Therapy, University of Massachusetts Boston, Boston, Massachusetts
- Hematology-Oncology Division, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Eva Corey
- Department of Urology, University of Washington, Seattle, Washington
| | - Peter S Nelson
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington
- Department of Urology, University of Washington, Seattle, Washington
- Division of Oncology, Department of Medicine, University of Washington, Seattle, Washington
| | - Elahe A Mostaghel
- Division of Oncology, Department of Medicine, University of Washington, Seattle, Washington.
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| |
Collapse
|
33
|
Finlay D, Teriete P, Vamos M, Cosford NDP, Vuori K. Inducing death in tumor cells: roles of the inhibitor of apoptosis proteins. F1000Res 2017; 6:587. [PMID: 28529715 PMCID: PMC5414821 DOI: 10.12688/f1000research.10625.1] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/24/2017] [Indexed: 12/17/2022] Open
Abstract
The heterogeneous group of diseases collectively termed cancer results not just from aberrant cellular proliferation but also from a lack of accompanying homeostatic cell death. Indeed, cancer cells regularly acquire resistance to programmed cell death, or apoptosis, which not only supports cancer progression but also leads to resistance to therapeutic agents. Thus, various approaches have been undertaken in order to induce apoptosis in tumor cells for therapeutic purposes. Here, we will focus our discussion on agents that directly affect the apoptotic machinery itself rather than on drugs that induce apoptosis in tumor cells indirectly, such as by DNA damage or kinase dependency inhibition. As the roles of the Bcl-2 family have been extensively studied and reviewed recently, we will focus in this review specifically on the inhibitor of apoptosis protein (IAP) family. IAPs are a disparate group of proteins that all contain a baculovirus IAP repeat domain, which is important for the inhibition of apoptosis in some, but not all, family members. We describe each of the family members with respect to their structural and functional similarities and differences and their respective roles in cancer. Finally, we also review the current state of IAPs as targets for anti-cancer therapeutics and discuss the current clinical state of IAP antagonists.
Collapse
Affiliation(s)
- Darren Finlay
- NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Peter Teriete
- NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Mitchell Vamos
- NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Nicholas D P Cosford
- NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Kristiina Vuori
- NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA, 92037, USA
| |
Collapse
|
34
|
Dihydromyricetin Induces Apoptosis and Reverses Drug Resistance in Ovarian Cancer Cells by p53-mediated Downregulation of Survivin. Sci Rep 2017; 7:46060. [PMID: 28436480 PMCID: PMC5402300 DOI: 10.1038/srep46060] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 03/03/2017] [Indexed: 01/15/2023] Open
Abstract
Ovarian cancer is one of the leading causes of death in gynecological malignancies, and the resistance to chemotherapeutic agents remains a major challenge to successful ovarian cancer chemotherapy. Dihydromyricetin (DHM), a natural flavonoid derived from Ampeopsis Grossdentata, has been widely applied in food industry and medicine for a long time. However, little is known about the effects of DHM on ovarian cancer and the underlying mechanisms. In this study, we demonstrated that DHM could effectively inhibit the proliferation of ovarian cancer cells and induce cell apoptosis. Survivin, an inhibitor of apoptosis (IAPs) family member, exhibited a decreased expression level after DHM treatment, which may be attributed to the activation of p53. Moreover, DHM markedly sensitized paclitaxel (PTX) and doxorubicin (DOX) resistant ovarian cancer cells to PTX and DOX by inhibiting survivin expression. Collectively, our findings highlight a previously undiscovered effect of DHM, which induces apoptosis and reverses multi-drug resistance against ovarian cancer cells through downregulation of survivin.
Collapse
|
35
|
Nyquist MD, Prasad B, Mostaghel EA. Harnessing Solute Carrier Transporters for Precision Oncology. Molecules 2017; 22:E539. [PMID: 28350329 PMCID: PMC5570559 DOI: 10.3390/molecules22040539] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 03/21/2017] [Accepted: 03/22/2017] [Indexed: 12/11/2022] Open
Abstract
Solute Carrier (SLC) transporters are a large superfamily of transmembrane carriers involved in the regulated transport of metabolites, nutrients, ions and drugs across cellular membranes. A subset of these solute carriers play a significant role in the cellular uptake of many cancer therapeutics, ranging from chemotherapeutics such as antimetabolites, topoisomerase inhibitors, platinum-based drugs and taxanes to targeted therapies such as tyrosine kinase inhibitors. SLC transporters are co-expressed in groups and patterns across normal tissues, suggesting they may comprise a coordinated regulatory circuit serving to mediate normal tissue functions. In cancer however, there are dramatic changes in expression patterns of SLC transporters. This frequently serves to feed the increased metabolic demands of the tumor cell for amino acids, nucleotides and other metabolites, but also presents a therapeutic opportunity, as increased transporter expression may serve to increase intracellular concentrations of substrate drugs. In this review, we examine the regulation of drug transporters in cancer and how this impacts therapy response, and discuss novel approaches to targeting therapies to specific cancers via tumor-specific aberrations in transporter expression. We propose that among the oncogenic changes in SLC transporter expression there exist emergent vulnerabilities that can be exploited therapeutically, extending the application of precision medicine from tumor-specific drug targets to tumor-specific determinants of drug uptake.
Collapse
Affiliation(s)
- Michael D Nyquist
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.
| | - Bhagwat Prasad
- Department of Pharmaceutics, University of Washington, Seattle, WA 98195, USA.
| | - Elahe A Mostaghel
- Division of Oncology, Department of Medicine, University of Washington, Seattle, WA 98195 USA.
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.
| |
Collapse
|
36
|
Novel multi-substituted benzyl acridone derivatives as survivin inhibitors for hepatocellular carcinoma treatment. Eur J Med Chem 2017; 129:337-348. [PMID: 28237663 DOI: 10.1016/j.ejmech.2017.02.027] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 02/07/2017] [Accepted: 02/10/2017] [Indexed: 11/24/2022]
Abstract
Sorafenib was the only small-molecule drug approved by FDA for treatment of the advanced hepatocellular carcinoma (HCC). Recent study indicated that YM155 was a promising agent for HCC cells with high survivin expression, however, the antitumor activity needs to be further improved. Based on molecular docking and rational design method, a series of multi-substituted benzyl acridone derivatives were designed and synthesized. MTT assay indicated that some of the synthesized compounds displayed better antiproliferative activity against HepG2 cells than YM155. Later study indicated that the representive compound 8u may directly interact with survivin protein and induce HepG2 cells apoptosis, which is different from YM155. In addition, ADME property was predicted in silico, and it performed well. Moreover, in vivo preliminary experiments showed that 8u may be a good lead compound in the treatment of HCC.
Collapse
|
37
|
Saxena S, Jha S. Role of NOD- like Receptors in Glioma Angiogenesis: Insights into future therapeutic interventions. Cytokine Growth Factor Rev 2017; 34:15-26. [PMID: 28233643 DOI: 10.1016/j.cytogfr.2017.02.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 02/02/2017] [Accepted: 02/02/2017] [Indexed: 12/16/2022]
Abstract
Gliomas are the most common solid tumors among central nervous system tumors. Most glioma patients succumb to their disease within two years of the initial diagnosis. The median survival of gliomas is only 14.6 months, even after aggressive therapy with surgery, radiation, and chemotherapy. Gliomas are heavily infiltrated with myeloid- derived cells and endothelial cells. Increasing evidence suggests that these myeloid- derived cells interact with tumor cells promoting their growth and migration. NLRs (nucleotide-binding oligomerization domain (NOD)-containing protein like receptors) are a class of pattern recognition receptors that are critical to sensing pathogen and danger associated molecular patterns. Mutations in some NLRs lead to autoinflammatory diseases in humans. Moreover, dysregulated NLR signaling is central to the pathogenesis of several cancers, autoimmune and neurodegenerative diseases. Our review explores the role of angiogenic factors that contribute to upstream or downstream signaling pathways leading to NLRs. Angiogenesis plays a significant role in the pathogenesis of variety of tumors including gliomas. Though NLRs have been detected in several cancers including gliomas and NLR signaling contributes to angiogenesis, the exact role and mechanism of involvement of NLRs in glioma angiogenesis remain largely unexplored. We discuss cellular, molecular and genetic studies of NLR signaling and convergence of NLR signaling pathways with angiogenesis signaling in gliomas. This may lead to re-appropriation of existing anti-angiogenic therapies or development of future strategies for targeted therapeutics in gliomas.
Collapse
Affiliation(s)
- Shivanjali Saxena
- Department of Bioscience and Bioengineering, Indian Institute of Technology Jodhpur, Old Residency Road, Jodhpur, Rajasthan, 342011, India
| | - Sushmita Jha
- Department of Bioscience and Bioengineering, Indian Institute of Technology Jodhpur, Old Residency Road, Jodhpur, Rajasthan, 342011, India.
| |
Collapse
|
38
|
Hardie J, Jiang Y, Tetrault E, Ghazi P, Tonga GY, Farkas M, Rotello VM. Simultaneous cytosolic delivery of a chemotherapeutic and siRNA using nanoparticle-stabilized nanocapsules. NANOTECHNOLOGY 2016; 27:374001. [PMID: 27505356 PMCID: PMC5011398 DOI: 10.1088/0957-4484/27/37/374001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
We report on nanoparticle-stabilized capsules (NPSCs) as a platform for the co-delivery of survivin-targeted siRNA and tamoxifen. These capsules feature an inner oil core that provides a carrier for tamoxifen, and is coated on the surface with positively charged nanoparticles self-assembled with siRNA. The multifaceted chemical nature of the NPSC system enables the simultaneous delivery of both payloads directly into the cytosol in vitro. The NPSC co-delivery of tamoxifen and survivin-targeted siRNA into breast cancer cells disables the pathways that inhibit apoptosis, resulting in enhanced breast cell death.
Collapse
Affiliation(s)
| | | | - Emily Tetrault
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant St, Amherst, MA 01003, USA
| | - Phaedra Ghazi
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant St, Amherst, MA 01003, USA
| | - Gulen Yesilbag Tonga
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant St, Amherst, MA 01003, USA
| | - Michelle Farkas
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant St, Amherst, MA 01003, USA
| | - Vincent M. Rotello
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant St, Amherst, MA 01003, USA
| |
Collapse
|
39
|
Salman T, Argon A, Kebat T, Vardar E, Erkan N, Alacacıoğlu A. The prognostic significance of survivin expression in gallbladder carcinoma. APMIS 2016; 124:633-8. [DOI: 10.1111/apm.12551] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 04/12/2016] [Indexed: 12/15/2022]
Affiliation(s)
- Tarik Salman
- Department of Medical Oncology; Izmir Katip Celebi University; Atatürk Training and Research Hospital; Izmir Turkey
| | - Asuman Argon
- Department of Pathology; Izmir Bozyaka Training and Research Hospital; Izmir Turkey
| | - Tulu Kebat
- Department of Pathology; Izmir Bozyaka Training and Research Hospital; Izmir Turkey
| | - Enver Vardar
- Department of Pathology; Izmir Bozyaka Training and Research Hospital; Izmir Turkey
| | - Nazif Erkan
- Department of General Surgery; Izmir Bozyaka Training and Research Hospital; Izmir Turkey
| | - Ahmet Alacacıoğlu
- Department of Medical Oncology; Izmir Katip Celebi University; Atatürk Training and Research Hospital; Izmir Turkey
| |
Collapse
|
40
|
Abstract
Survivin, a member of the inhibitor of apoptosis (IAP) protein family that inhibits caspases and blocks cell death, is highly expressed in most cancers and is associated with a poor clinical outcome. Survivin has consistently been identified by molecular profiling analysis to be associated with high tumour grade cancers, different disease survival and recurrence. Polymorphisms in the survivin gene are emerging as powerful tools to study the biology of the disease and have the potential to be used in disease prognosis and diagnosis. The survivin gene polymorphisms have also been reported to influence tumour aggressiveness as well as survival of cancer patients. The differential expression of survivin in cancer cells compared to normal tissues and its role as a nodal protein in a number of cellular pathways make it a high target for different therapeutics. This review discusses the complex circuitry of survivin in human cancers and gene variants of survivin, and highlights novel therapy that targets this important protein.
Collapse
Affiliation(s)
| | | | - R D Mittal
- Department of Urology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, India
| |
Collapse
|
41
|
Malherbe JAJ, Fuller KA, Mirzai B, Kavanagh S, So CC, Ip HW, Guo BB, Forsyth C, Howman R, Erber WN. Dysregulation of the intrinsic apoptotic pathway mediates megakaryocytic hyperplasia in myeloproliferative neoplasms. J Clin Pathol 2016; 69:jclinpath-2016-203625. [PMID: 27060176 PMCID: PMC5136711 DOI: 10.1136/jclinpath-2016-203625] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 03/08/2016] [Accepted: 03/10/2016] [Indexed: 12/24/2022]
Abstract
AIMS Megakaryocyte expansion in myeloproliferative neoplasms (MPNs) is due to uncontrolled proliferation accompanied by dysregulation of proapoptotic and antiapoptotic mechanisms. Here we have investigated the intrinsic and extrinsic apoptotic pathways of megakaryocytes in human MPNs to further define the mechanisms involved. METHODS The megakaryocytic expression of proapoptotic caspase-8, caspase-9, Diablo, p53 and antiapoptotic survivin proteins was investigated in bone marrow specimens of the MPNs (n=145) and controls (n=15) using immunohistochemistry. The megakaryocyte percentage positivity was assessed by light microscopy and correlated with the MPN entity, JAK2V617F/CALR mutation status and platelet count. RESULTS The proportion of megakaryocytes in the MPNs expressing caspase-8, caspase-9, Diablo, survivin and p53 was significantly greater than controls. A greater proportion of myeloproliferative megakaryocytes expressed survivin relative to its reciprocal inhibitor, Diablo. Differences were seen between myelofibrosis, polycythaemia vera and essential thrombocythaemia for caspase-9 and p53. CALR-mutated cases had greater megakaryocyte p53 positivity compared to those with the JAK2V617F mutation. Proapoptotic caspase-9 expression showed a positive correlation with platelet count, which was most marked in myelofibrosis and CALR-mutated cases. CONCLUSIONS Disruptions targeting the intrinsic apoptotic cascade promote megakaryocyte hyperplasia and thrombocytosis in the MPNs. There is progressive dysfunction of apoptosis as evidenced by the marked reduction in proapoptotic caspase-9 and accumulation of p53 in myelofibrosis. The dysfunction of caspase-9, which is necessary for proplatelet formation, may be the mechanism for the excess thrombocytosis associated with CALR mutations. Survivin seems to be the key protein mediating the megakaryocyte survival signature in the MPNs and is a potential therapeutic target.
Collapse
Affiliation(s)
- Jacques A J Malherbe
- Schoolof Pathology and Laboratory Medicine, University of Western Australia, Crawley, Western Australia, Australia
| | - Kathryn A Fuller
- Schoolof Pathology and Laboratory Medicine, University of Western Australia, Crawley, Western Australia, Australia
- PathWest Laboratory Medicine, Nedlands, Western Australia, Australia
| | - Bob Mirzai
- Schoolof Pathology and Laboratory Medicine, University of Western Australia, Crawley, Western Australia, Australia
- PathWest Laboratory Medicine, Nedlands, Western Australia, Australia
| | - Simon Kavanagh
- Schoolof Pathology and Laboratory Medicine, University of Western Australia, Crawley, Western Australia, Australia
- PathWest Laboratory Medicine, Nedlands, Western Australia, Australia
| | - Chi-Chiu So
- Department of Pathology, Faculty of Medicine, University of Hong Kong, Hong Kong, Hong Kong
| | - Ho-Wan Ip
- Department of Pathology & Clinical Biochemistry, Queen Mary Hospital, Hong Kong, Hong Kong
| | - Belinda B Guo
- Schoolof Pathology and Laboratory Medicine, University of Western Australia, Crawley, Western Australia, Australia
| | - Cecily Forsyth
- Jarrett Street Specialist Centre, North Gosford, New South Wales, Australia
| | - Rebecca Howman
- PathWest Laboratory Medicine, Nedlands, Western Australia, Australia
| | - Wendy N Erber
- Schoolof Pathology and Laboratory Medicine, University of Western Australia, Crawley, Western Australia, Australia
- PathWest Laboratory Medicine, Nedlands, Western Australia, Australia
| |
Collapse
|
42
|
Ferreiro-Neira I, Torres NE, Liesenfeld LF, Chan CHF, Penson T, Landesman Y, Senapedis W, Shacham S, Hong TS, Cusack JC. XPO1 Inhibition Enhances Radiation Response in Preclinical Models of Rectal Cancer. Clin Cancer Res 2016; 22:1663-73. [PMID: 26603256 DOI: 10.1158/1078-0432.ccr-15-0978] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 11/04/2015] [Indexed: 11/16/2022]
Abstract
PURPOSE Combination of radiation with radiosensitizing chemotherapeutic agents improves outcomes for locally advanced rectal cancer. Current treatment includes 5-fluorouracil-based chemoradiation prior to surgical resection; however pathologic complete response varies from 15% to 20%, prompting the need to identify new radiosensitizers. Exportin 1 (XPO1, also known as chromosome region 1, CRM1) mediates the nuclear export of critical proteins required for rectal cancer proliferation and treatment resistance. We hypothesize that inhibition of XPO1 may radiosensitize cancer cells by altering the function of these critical proteins resulting in decreased radiation resistance and enhanced antitumoral effects. EXPERIMENTAL DESIGN To test our hypothesis, we used the selective XPO1 inhibitor, selinexor, to inhibit nuclear export in combination with radiation fractions similar to that given in clinical practice for rectal cancer: hypofractionated short-course radiation dosage of 5 Gy per fraction or the conventional long-course radiation dosage of 1 Gy fractions. Single and combination treatments were tested in colorectal cancer cell lines and xenograft tumor models. RESULTS Combination treatment of radiotherapy and selinexor resulted in an increase of apoptosis and decrease of proliferation compared with single treatment, which correlated with reduced tumor size. We found that the combination promoted nuclear survivin accumulation and subsequent depletion, resulting in increased apoptosis and enhanced radiation antitumoral effects. CONCLUSIONS Our findings suggest a novel therapeutic option for improving radiation sensitivity in the setting of rectal cancer and provide the scientific rationale to evaluate this combination strategy for clinical trials.
Collapse
Affiliation(s)
- Isabel Ferreiro-Neira
- Division of Surgical Oncology, Massachusetts General Hospital, Boston, Massachusetts. Harvard Medical School, Boston, Massachusetts.
| | - Nancy E Torres
- Division of Surgical Oncology, Massachusetts General Hospital, Boston, Massachusetts. Harvard Medical School, Boston, Massachusetts
| | - Lukas F Liesenfeld
- Division of Surgical Oncology, Massachusetts General Hospital, Boston, Massachusetts. Harvard Medical School, Boston, Massachusetts
| | - Carlos H F Chan
- Division of Surgical Oncology, Massachusetts General Hospital, Boston, Massachusetts. Harvard Medical School, Boston, Massachusetts
| | - Tristan Penson
- Division of Surgical Oncology, Massachusetts General Hospital, Boston, Massachusetts. Harvard Medical School, Boston, Massachusetts
| | | | | | | | - Theodore S Hong
- Division of Surgical Oncology, Massachusetts General Hospital, Boston, Massachusetts. Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts
| | - James C Cusack
- Division of Surgical Oncology, Massachusetts General Hospital, Boston, Massachusetts. Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
43
|
Shah P, Djisam R, Damulira H, Aganze A, Danquah M. Embelin inhibits proliferation, induces apoptosis and alters gene expression profiles in breast cancer cells. Pharmacol Rep 2016; 68:638-44. [PMID: 27031050 DOI: 10.1016/j.pharep.2016.01.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Revised: 01/04/2016] [Accepted: 01/05/2016] [Indexed: 01/21/2023]
Abstract
PURPOSE To investigate effect of embelin on proliferation, apoptosis and gene expression profile changes in breast cancer cells. METHODS Cell viability was determined by MTT assay and apoptosis assayed using flow cytometry. Differential expression of 84 genes commonly involved in breast cancer carcinogenesis was assessed by real-time PCR using the Human Breast Cancer RT(2) Profiler PCR Array. RESULTS MCF-7 and MDA-MB-231 cells were treated with embelin (0-25μM) for 24 and 96h. Embelin exhibited time and dose dependence in both cell lines and was more potent in inhibiting MDA-MB-231 cell proliferation compared to MCF-7 cells. IC50 for embelin in MDA-MB-231 cells was ∼4.45μM and 3.28μM at 24h and 96h, respectively. In contrast, IC50 for embelin in MCF-7 cells was ∼6.04μM and 4.51μM at 24h and 96h, respectively. Embelin (50μM) induced apoptosis and activated caspase 3 activity in both cell lines when exposed for 72h. Treatment of MDA-MB-231 cells with embelin (10μM) for 24h resulted in significant differential expression of 27 genes commonly involved in breast cancer carcinogenesis. CONCLUSIONS Our findings show that embelin inhibits cell proliferation, induces apoptosis and alters expression of breast cancer focused genes in MCF-7 and MDA-MB-231 cells. Based on RT(2)-PCR array analysis, embelin down-regulated expression of pivotal oncogenes. This knowledge could be beneficial in the development of effective embelin-based therapies for treating breast cancer.
Collapse
Affiliation(s)
- Priyank Shah
- Department of Pharmaceutical Sciences, Chicago State University, Chicago, USA
| | - Ransford Djisam
- Department of Pharmaceutical Sciences, Chicago State University, Chicago, USA
| | - Hamidah Damulira
- Department of Pharmaceutical Sciences, Chicago State University, Chicago, USA
| | - Alice Aganze
- Department of Pharmaceutical Sciences, Chicago State University, Chicago, USA
| | - Michael Danquah
- Department of Pharmaceutical Sciences, Chicago State University, Chicago, USA.
| |
Collapse
|
44
|
(Intrinsically disordered) splice variants in the proteome: implications for novel drug discovery. Genes Genomics 2016. [DOI: 10.1007/s13258-015-0384-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
45
|
Liu Y, Teng Z, Wang Y, Gao P, Chen J. Prognostic Significance of Survivin Expression in Osteosarcoma Patients: A Meta-Analysis. Med Sci Monit 2015; 21:2877-85. [PMID: 26408642 PMCID: PMC4588668 DOI: 10.12659/msm.894448] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Background Osteosarcoma is the most common primary bone malignancy and has poor prognosis. Survivin has been identified as an independent prognostic factor for a majority of cancers. In the present study, we evaluated the effect of survivin expression on the clinical outcome of osteosarcoma patients. Material/Methods Online electronic databases were searched for related articles published between 2000 and 2015. Odds ratio (OR) and risk ratio (RR) with their 95% confidence intervals (CI) were employed to calculate the significance. Results Overall, a total of 20 relevant studies were selected, including 1030 patients. No significant heterogeneity was observed among included studies (P>0.01, I2<50%). Survivin was expressed in 68.6% of all cases. Our results show that survivin expression increased the 5-year overall survival (RR=0.48, 95% CI=0.32–0.71, P=0.0002) and rate of postoperative recurrence (RR=1.80, 95% CI=1.09–2.97, P=0.02). It was associated with the grade of osteosarcoma (Enneking clinical stage, IIb–III vs. I–IIa: OR=5.26, 95% CI=3.76–7.34, P<0.00001; Price’s grade, III vs. I+II: OR=2.04, 95% CI=1.16–3.61, P=0.01), metastasis, and soft tissue invasion of osteosarcoma (OR=6.25, 95% CI=3.74–10.45, P<0.00001; OR=6.15, 95% CI=3.74–10.11, P<0.00001). No relationship was found between survivin expression and sex, age, or tumor size in patients with osteosarcoma. Conclusions Our results suggest that survivin can function as a new diagnostic biomarker for osteosarcoma and be used as a reference index to determine pathology classification of osteosarcoma, providing new targets for gene therapy of osteosarcoma.
Collapse
Affiliation(s)
- Yugang Liu
- Department of Orthopedics, Affiliated Hospital of Hebei University of Engineering, Handan, Hebei, China (mainland)
| | - Zhaowei Teng
- Department of Orthopedics, The People's Hospital of Yuxi City, The 6th Affiliated Hospital of Kunming Medical University, Yuxi, Yunan, China (mainland)
| | - Ying Wang
- Department of Pharmacy, Medical College of Hebei University of Engineering, Handan, Hebei, China (mainland)
| | - Pengfei Gao
- Department of Pharmacy, Medical College of Hebei University of Engineering, Handan, Hebei, China (mainland)
| | - Junli Chen
- Department of Orthopedics, Affiliated Hospital of Hebei University of Engineering, Handan, Hebei, China (mainland)
| |
Collapse
|
46
|
Lin JY, Ke YM, Lai JS, Ho TF. Tanshinone IIA enhances the effects of TRAIL by downregulating survivin in human ovarian carcinoma cells. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2015; 22:929-938. [PMID: 26321742 DOI: 10.1016/j.phymed.2015.06.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Revised: 06/20/2015] [Accepted: 06/23/2015] [Indexed: 06/04/2023]
Abstract
BACKGROUND Tanshinone IIA (TIIA), a diterpene quinone from the medicinal plant Salvia miltiorrhiza Bunge (Lamiaceae) was shown to possess apoptotic and TRAIL-sensitizing effects. Still, the molecular mechanisms whereby TIIA induces apoptosis remain largely unknown. PURPOSE The role of survivin, an inhibitor of apoptosis protein, in TIIA-induced apoptosis has never been addressed before and hence was the primary goal of this study. METHODS In this study, we explored the anticancer effect of TIIA in TOV-21G, SKOV3, and OVCAR3 ovarian carcinoma cells. Cytotoxicity was determined by MTS assay. Real-time RT-PCR and Western blotting were used to assess the mRNA and protein expression of related signaling proteins. RESULTS Our results illustrated that TIIA's cytotoxic effect was caused by apoptosis with the involvement of caspases activity. Moreover, TIIA downregulated survivin in a concentration-dependent manner without affecting the expression of Bcl-2, Bcl-xL, and Bax. TIIA-induced survivin downregulation is regulated by both transcriptional processes and proteasomal degradation. Using TOV-21G cells as our cellular model, we demonstrated that TIIA-induced survivin downregulation requires p38 MAPK activation. Importantly, genetic overexpression of survivin rendered cells more resistant to TIIA, indicating an essential role of survivin downregulation in TIIA-induced apoptosis. This TRAIL sensitization effect of TIIA is ascribed to survivin downregulation because the effect was abrogated in cells that overexpressed survivin. CONCLUSION Our findings provide new insights into the action modes of TIIA-mediated anticancer effects and further implicate a rational design for cancer therapeutic regimens by combining TIIA-sensitized TRAIL via downregulating survivin to elicit ovarian cancer cell death.
Collapse
Affiliation(s)
- Jyun-Yi Lin
- Department of Medical Laboratory Science and Biotechnology, Central Taiwan University of Science and Technology, Taichung, Taiwan
| | - Yu-Min Ke
- Department of Obstetrics and Gynecology, Taichung Veterans General Hospital, Taichung, Taiwan; Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Jui-Sheng Lai
- Division of Biotechnology, Taiwan Agricultural Research Institute, Taichung, Taiwan
| | - Tsing-Fen Ho
- Department of Medical Laboratory Science and Biotechnology, Central Taiwan University of Science and Technology, Taichung, Taiwan.
| |
Collapse
|
47
|
Hagenbuchner J, Kiechl-Kohlendorfer U, Obexer P, Ausserlechner MJ. BIRC5/Survivin as a target for glycolysis inhibition in high-stage neuroblastoma. Oncogene 2015; 35:2052-61. [DOI: 10.1038/onc.2015.264] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 06/03/2015] [Accepted: 06/06/2015] [Indexed: 12/19/2022]
|
48
|
Xu W, Ding J, Xiao C, Li L, Zhuang X, Chen X. Versatile preparation of intracellular-acidity-sensitive oxime-linked polysaccharide-doxorubicin conjugate for malignancy therapeutic. Biomaterials 2015; 54:72-86. [DOI: 10.1016/j.biomaterials.2015.03.021] [Citation(s) in RCA: 127] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Revised: 02/26/2015] [Accepted: 03/09/2015] [Indexed: 01/08/2023]
|
49
|
Hu CD, Choo R, Huang J. Neuroendocrine differentiation in prostate cancer: a mechanism of radioresistance and treatment failure. Front Oncol 2015; 5:90. [PMID: 25927031 PMCID: PMC4396194 DOI: 10.3389/fonc.2015.00090] [Citation(s) in RCA: 112] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2014] [Accepted: 03/26/2015] [Indexed: 12/20/2022] Open
Abstract
Neuroendocrine differentiation (NED) in prostate cancer is a well-recognized phenotypic change by which prostate cancer cells transdifferentiate into neuroendocrine-like (NE-like) cells. NE-like cells lack the expression of androgen receptor and prostate specific antigen, and are resistant to treatments. In addition, NE-like cells secrete peptide hormones and growth factors to support the growth of surrounding tumor cells in a paracrine manner. Accumulated evidence has suggested that NED is associated with disease progression and poor prognosis. The importance of NED in prostate cancer progression and therapeutic response is further supported by the fact that therapeutic agents, including androgen-deprivation therapy, chemotherapeutic agents, and radiotherapy, also induce NED. We will review the work supporting the overall hypothesis that therapy-induced NED is a mechanism of resistance to treatments, as well as discuss the relationship between therapy-induced NED and therapy-induced senescence, epithelial-to-mesenchymal transition, and cancer stem cells. Furthermore, we will use radiation-induced NED as a model to explore several NED-based targeting strategies for development of novel therapeutics. Finally, we propose future studies that will specifically address therapy-induced NED in the hope that a better treatment regimen for prostate cancer can be developed.
Collapse
Affiliation(s)
- Chang-Deng Hu
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University Center for Cancer Research, Purdue University , West Lafayette, IN , USA
| | - Richard Choo
- Department of Radiation Oncology, Mayo Clinic , Rochester, MN , USA
| | - Jiaoti Huang
- Department of Pathology, David Geffen School of Medicine at UCLA , Los Angeles, CA , USA
| |
Collapse
|
50
|
Chan-On W, Huyen NTB, Songtawee N, Suwanjang W, Prachayasittikul S, Prachayasittikul V. Quinoline-based clioquinol and nitroxoline exhibit anticancer activity inducing FoxM1 inhibition in cholangiocarcinoma cells. Drug Des Devel Ther 2015; 9:2033-47. [PMID: 25897210 PMCID: PMC4396583 DOI: 10.2147/dddt.s79313] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Purpose Fork head box M1 (FoxM1) is an oncogenic transcription factor frequently elevated in numerous cancers, including cholangiocarcinoma (CCA). A growing body of evidence documents its diverse functions contributing to tumorigenesis and cancer progression. As such, discovery of agents that can target FoxM1 would be valuable for the treatment of CCA. The quinoline-based compounds, namely clioquinol (CQ) and nitroxoline (NQ), represent a new class of anticancer drug. However, their efficacy and underlying mechanisms have not been elucidated in CCA. In this study, anticancer activities and inhibitory effects of CQ and NQ on FoxM1 signaling were explored using CCA cells. Methods The effects of CQ and NQ on cell viability and proliferation were evaluated using the colorimetric 3-(4,5-dimethylthiazol-2yl)-5-(3-carboxymethoxyphenyl)-(4-sulfophenyl)-2H-tetrazolium (MTS assay). Colony formation and cell migration affected by CQ and NQ were investigated using a clonogenic and a wound healing assay, respectively. To demonstrate the agents’ effects on FoxM1 signaling, expression levels of the target genes were quantitatively determined using real-time polymerase chain reaction. Results CQ and NQ significantly inhibited cell survival of HuCCT1 and Huh28 in a dose- and a time-dependent fashion. Further investigations using the rapidly proliferating HuCCT1 cells revealed significant suppression of cell proliferation and colony formation induced by low doses of the compounds. Treatment of CQ and NQ repressed expression of cyclin D1 but enhanced expression of p21. Most importantly, upon CQ and NQ treatment, expression of oncogenic FoxM1 was markedly decreased concomitant with downregulation of various FoxM1’s downstream targets including cdc25b, CENP-B, and survivin. In addition, the compounds distinctly impaired HuCCT1 migration as well as inhibited expression of matrix metalloproteinase (MMP)-2 and MMP-9. Conclusion Collectively, this study reports for the first time the anticancer effects of CQ and NQ against CCA cells, and highlights new insights into the mechanism of actions of the quinoline-based compounds to disrupt FoxM1 signaling.
Collapse
Affiliation(s)
- Waraporn Chan-On
- Center for Research and Innovation, Mahidol University, Bangkok, Thailand
| | - Nguyen Thi Bich Huyen
- Department of Clinical Microbiology and Applied Technology, Mahidol University, Bangkok, Thailand
| | - Napat Songtawee
- Center of Data Mining and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok, Thailand
| | | | - Supaluk Prachayasittikul
- Center of Data Mining and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok, Thailand
| | | |
Collapse
|