1
|
Steeghs N, Gomez-Roca C, Rohrberg KS, Mau-Sørensen M, Robbrecht D, Tabernero J, Ahmed S, Rodríguez-Ruiz ME, Ardeshir C, Schmid D, Sleiman N, Watson C, Piper-Lepoutre H, Dejardin D, Evers S, Boetsch C, Charo J, Teichgräber V, Melero I. Safety, Pharmacokinetics, Pharmacodynamics, and Antitumor Activity from a Phase I Study of Simlukafusp Alfa (FAP-IL2v) in Advanced/Metastatic Solid Tumors. Clin Cancer Res 2024; 30:2693-2701. [PMID: 38630781 PMCID: PMC11215403 DOI: 10.1158/1078-0432.ccr-23-3567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 02/29/2024] [Accepted: 04/15/2024] [Indexed: 04/19/2024]
Abstract
PURPOSE Simlukafusp alfa [fibroblast activation protein α-targeted IL2 variant (FAP-IL2v)], a tumor-targeted immunocytokine, comprising an IL2 variant moiety with abolished CD25 binding fused to human IgG1, is directed against fibroblast activation protein α. This phase I, open-label, multicenter, dose-escalation, and extension study (NCT02627274) evaluated the safety, pharmacokinetics, pharmacodynamics, and antitumor activity of FAP-IL2v in patients with advanced/metastatic solid tumors. PATIENTS AND METHODS Participants received FAP-IL2v intravenously once weekly. Dose escalation started at 5 mg; flat dosing (≤25 mg) and intraparticipant uptitration regimens (15/20, 20/25, 20/20/35, and 20/35/35 mg) were evaluated. Primary objectives were dose-limiting toxicities, maximum tolerated dose, recommended expansion dose, and pharmacokinetics. RESULTS Sixty-one participants were enrolled. Dose-limiting toxicities included fatigue (flat dose 20 mg: n = 1), asthenia (25 mg: n = 1), drug-induced liver injury (uptitration regimen 20/25 mg: n = 1), transaminase increase (20/25 mg: n = 1), and pneumonia (20/35/35 mg: n = 1). The uptitration regimen 15/20 mg was determined as the maximum tolerated dose and was selected as the recommended expansion dose. Increases in peripheral blood absolute immune cell counts were seen for all tested doses [NK cells, 13-fold; CD4+ T cells (including regulatory T cells), 2-fold; CD8+ T cells, 3.5-fold] but without any percentage change in regulatory T cells. Clinical activity was observed from 5 mg [objective response rate, 5.1% (n = 3); disease control rate, 27.1% (n = 16)]. Responses were durable [n = 3, 2.8 (censored), 6.3, and 43.4 months]. CONCLUSIONS FAP-IL2v had a manageable safety profile and showed initial signs of antitumor activity in advanced/metastatic solid tumors.
Collapse
Affiliation(s)
| | | | | | | | | | - Josep Tabernero
- Vall d’Hebron Hospital Campus and Institute of Oncology (VHIO), CIBERONC, Barcelona, Spain.
| | - Samreen Ahmed
- University Hospitals of Leicester NHS Trust, Leicester, United Kingdom.
| | | | | | - Daniela Schmid
- Roche Pharma Research and Early Development, Early Clinical Development Oncology, Roche Innovation Center, Munich, Germany.
| | - Nassim Sleiman
- Pharmaceutical Sciences, Roche Innovation Center, Basel, Switzerland.
| | - Carl Watson
- A4P Consulting Ltd., Sandwich, United Kingdom.
| | | | - David Dejardin
- Pharmaceutical Sciences, Roche Innovation Center, Basel, Switzerland.
| | - Stefan Evers
- Roche Pharma Research and Early Development, Early Clinical Development Oncology, Roche Innovation Center, Basel, Switzerland.
| | | | - Jehad Charo
- Roche Pharma Research and Early Development, Early Clinical Development Oncology, Roche Innovation Center Zurich, Schlieren, Switzerland.
| | - Volker Teichgräber
- Netherlands Cancer Institute, Amsterdam, the Netherlands.
- Institut Universitaire du Cancer, Toulouse, France.
| | - Ignacio Melero
- Clinica Universidad de Navarra, CIBERONC, Pamplona, Spain.
| |
Collapse
|
2
|
Vanamee ÉS, Faustman DL. The benefits of clustering in TNF receptor superfamily signaling. Front Immunol 2023; 14:1225704. [PMID: 37662920 PMCID: PMC10469783 DOI: 10.3389/fimmu.2023.1225704] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 08/02/2023] [Indexed: 09/05/2023] Open
Abstract
The tumor necrosis factor (TNF) receptor superfamily is a structurally and functionally related group of cell surface receptors that play crucial roles in various cellular processes, including apoptosis, cell survival, and immune regulation. This review paper synthesizes key findings from recent studies, highlighting the importance of clustering in TNF receptor superfamily signaling. We discuss the underlying molecular mechanisms of signaling, the functional consequences of receptor clustering, and potential therapeutic implications of targeting surface structures of receptor complexes.
Collapse
Affiliation(s)
- Éva S. Vanamee
- Immunobiology Department, Massachusetts General Hospital, Boston, MA, United States
| | - Denise L. Faustman
- Immunobiology Department, Massachusetts General Hospital, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
| |
Collapse
|
3
|
Optimization for Simultaneous Removal of Product/Process-Related Impurities of Peptide Fc-Fusion Protein Using Cation Exchange Chromatography. Processes (Basel) 2022. [DOI: 10.3390/pr10112359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Fc fusion proteins are used as therapeutic agents with unique structures by combining the Fc domain of an antibody with other active proteins, cytokines, and enzymes. Peptide Fc-fusion proteins are complex fusion molecules that possess a structure different from that of monoclonal antibodies (mAbs) and are difficult to express, thereby affecting their quality. Many product/process-related impurities generated during the production of peptide Fc-fusion proteins pose a risk to the robustness of pre-existing three-column platforms for the purification of mAbs. Thus, we first evaluated the effect of pH, conductivity, and dynamic binding capacity (DBC; g of product per liter of resin) on the separation of host cell protein (HCP) and high molecular weight (HMW) and low molecular weight (LMW) proteins in strong cation exchange chromatography and then established an operating range using the design of experiments (DoE). Based on our studies, the optimal removal rates of HCP and HMW were achieved under the following conditions: 8 CV of wash buffer, 20–23 g/L of resin DBC, and an elution buffer conductivity of 63–66 mS/cm. The conductivity of the wash buffer used to remove the LMW was 50 mS/cm. In addition, reproducibility was confirmed by scaling up two batches using the Fractogel® EMD SO3− (M) resin. As a result of confirming with a validated test method in all batches, >55% yield, >98.2% purity, and >27% HCP reduction rate were satisfied. The cation exchanger exhibited an acceptable step yield and effectively reduced product/process-related impurities within the established range.
Collapse
|
4
|
Han Z, Zhang S, Fujiwara K, Zhang J, Li Y, Liu J, van Zijl PCM, Lu ZR, Zheng L, Liu G. Extradomain-B Fibronectin-Targeted Dextran-Based Chemical Exchange Saturation Transfer Magnetic Resonance Imaging Probe for Detecting Pancreatic Cancer. Bioconjug Chem 2019; 30:1425-1433. [PMID: 30938983 PMCID: PMC6896991 DOI: 10.1021/acs.bioconjchem.9b00161] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
A dextran-peptide conjugate was developed for magnetic resonance (MR) molecular imaging of pancreatic ductal adenocarcinoma (PDAC) through its overexpressed microenvironment biomarker, extradomain-B fibronectin (EDB-FN). This new agent consists of diamagnetic and biocompatible dextran and a targeting peptide. Dextrans can be directly detected by chemical exchange saturation transfer magnetic resonance imaging (CEST MRI) without the need for radionuclide or metallic labeling. In addition, large molecular weight dextran, dextran 10 (MW ∼ 10 kDa), provides an approximately 50 times higher sensitivity per molecule than a single glucose unit. The potential of this highly biocompatible diamagnetic probe is demonstrated in a murine syngeneic allograft PDAC tumor model. The biocompatibility and sensitivity of this new agent clearly show potential for a path to clinical translation.
Collapse
Affiliation(s)
- Zheng Han
- Department of Radiology, Johns Hopkins University, Baltimore, Maryland 21205, United States
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland 21205, United States
| | - Shuixing Zhang
- Department of Radiology, Johns Hopkins University, Baltimore, Maryland 21205, United States
- Department of Radiology, The First Affiliated Hospital of Jinan University, Guangzhou, Guandong 510630, China
| | - Kenji Fujiwara
- Department of Oncology, Johns Hopkins University, Baltimore, Maryland 21231, United States
| | - Jia Zhang
- Department of Radiology, Johns Hopkins University, Baltimore, Maryland 21205, United States
| | - Yuguo Li
- Department of Radiology, Johns Hopkins University, Baltimore, Maryland 21205, United States
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland 21205, United States
| | - Jing Liu
- Department of Radiology, Johns Hopkins University, Baltimore, Maryland 21205, United States
- Radiology Department, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, China
| | - Peter C. M. van Zijl
- Department of Radiology, Johns Hopkins University, Baltimore, Maryland 21205, United States
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland 21205, United States
| | - Zheng-Rong Lu
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Lei Zheng
- Department of Oncology, Johns Hopkins University, Baltimore, Maryland 21231, United States
| | - Guanshu Liu
- Department of Radiology, Johns Hopkins University, Baltimore, Maryland 21205, United States
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland 21205, United States
| |
Collapse
|
5
|
Affiliation(s)
- Yingqin Hou
- Beijing National Laboratory for Molecular Sciences, Center for Soft Matter Science and Engineering, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, People’s Republic of China
| | - Hua Lu
- Beijing National Laboratory for Molecular Sciences, Center for Soft Matter Science and Engineering, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, People’s Republic of China
| |
Collapse
|
6
|
Fellermeier-Kopf S, Gieseke F, Sahin U, Müller D, Pfizenmaier K, Kontermann RE. Duokines: a novel class of dual-acting co-stimulatory molecules acting in cis or trans. Oncoimmunology 2018; 7:e1471442. [PMID: 30228940 PMCID: PMC6140609 DOI: 10.1080/2162402x.2018.1471442] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 04/25/2018] [Accepted: 04/27/2018] [Indexed: 11/23/2022] Open
Abstract
Co-stimulatory signals induced by ligands of the tumor necrosis factor superfamily (TNFSF) play a central role in T cell activation and have emerged as a promising strategy in cancer immunotherapy. Here, we established a novel class of bifunctional co-stimulatory fusion proteins with the aim to boost T cell activation at the level of T cell – antigen-presenting cell (APC) interaction. These novel dual-acting cytokine fusion proteins were created by connecting two different homotrimeric TNFSF ligands to form homotrimeric bifunctional molecules (Duokines) or by connecting single-chain derivatives of two different homotrimeric TNFSF with a single, flexible linker (single-chain Duokines, scDuokines). By linking the TNFSF ligands 4-1BBL, OX40L and CD27L in all possible combinations, cis-acting Duokines were generated that act on the same or adjacent T cells, while combining CD40L with 4-1BBL, OX40L and CD27L resulted in trans-acting Duokines acting simultaneously on APCs and T cells. In vitro, co-stimulation of T cells was seen for cis- and trans-acting Duokines and scDuokines in an antigen-independent as well as antigen-specific setting. Trans-acting molecules furthermore activated B cells, which represent a subclass of APCs. In a pilot experiment using the syngeneic B16-FAP mouse tumor model scDuokines displayed antitumoral activity in vivo in combination with a primary T cell-activating bispecific antibody, evident from reduced number of lung metastasis compared to the antibody-only treated group. Our data show that the bifunctional, co-stimulatory duokines are capable to enhance T cell-mediated anti-tumor immune responses, suggesting that they can serve as a new class of immuno-stimulatory molecules for use in cancer immunotherapy strategies.
Collapse
Affiliation(s)
- Sina Fellermeier-Kopf
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany.,BioNTech RNA Pharmaceuticals GmbH, Mainz, Germany
| | | | - Ugur Sahin
- BioNTech RNA Pharmaceuticals GmbH, Mainz, Germany
| | - Dafne Müller
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany
| | - Klaus Pfizenmaier
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany
| | - Roland E Kontermann
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany
| |
Collapse
|
7
|
Hickey JW, Kosmides AK, Schneck JP. Engineering Platforms for T Cell Modulation. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2018; 341:277-362. [PMID: 30262034 DOI: 10.1016/bs.ircmb.2018.06.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
T cells are crucial contributors to mounting an effective immune response and increasingly the focus of therapeutic interventions in cancer, infectious disease, and autoimmunity. Translation of current T cell immunotherapies has been hindered by off-target toxicities, limited efficacy, biological variability, and high costs. As T cell therapeutics continue to develop, the application of engineering concepts to control their delivery and presentation will be critical for their success. Here, we outline the engineer's toolbox and contextualize it with the biology of T cells. We focus on the design principles of T cell modulation platforms regarding size, shape, material, and ligand choice. Furthermore, we review how application of these design principles has already impacted T cell immunotherapies and our understanding of T cell biology. Recent, salient examples from protein engineering, synthetic particles, cellular and genetic engineering, and scaffolds and surfaces are provided to reinforce the importance of design considerations. Our aim is to provide a guide for immunologists, engineers, clinicians, and the pharmaceutical sector for the design of T cell-targeting platforms.
Collapse
Affiliation(s)
- John W Hickey
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, United States; Institute for NanoBiotechnology, Johns Hopkins University School of Medicine, Baltimore, MD, United States; Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Alyssa K Kosmides
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, United States; Institute for NanoBiotechnology, Johns Hopkins University School of Medicine, Baltimore, MD, United States; Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Jonathan P Schneck
- Institute for NanoBiotechnology, Johns Hopkins University School of Medicine, Baltimore, MD, United States; Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, United States; Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
8
|
Valedkarimi Z, Nasiri H, Aghebati-Maleki L, Majidi J. Antibody-cytokine fusion proteins for improving efficacy and safety of cancer therapy. Biomed Pharmacother 2017; 95:731-742. [DOI: 10.1016/j.biopha.2017.07.160] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 07/25/2017] [Accepted: 07/30/2017] [Indexed: 12/23/2022] Open
|
9
|
Zhu Y, Choi SH, Shah K. Multifunctional receptor-targeting antibodies for cancer therapy. Lancet Oncol 2015; 16:e543-e554. [DOI: 10.1016/s1470-2045(15)00039-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 05/28/2015] [Accepted: 06/01/2015] [Indexed: 12/29/2022]
|
10
|
Müller D. Antibody fusions with immunomodulatory proteins for cancer therapy. Pharmacol Ther 2015; 154:57-66. [PMID: 26145167 DOI: 10.1016/j.pharmthera.2015.07.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 06/29/2015] [Indexed: 01/02/2023]
Abstract
The potential of immunomodulatory proteins, in particular cytokines, for cancer therapy is well recognized, but hampered by the toxicity associated with their systemic application. In order to address this problem, targeted delivery by antibody fusion proteins has been early proposed and their development intensively pursued over the last decade. Here, factors influencing the selection and modification of cytokines and antibody formats for this approach are being discussed, indicating current developments and translational advances in the field.
Collapse
Affiliation(s)
- Dafne Müller
- Institute of Cell Biology and Immunology, University of Stuttgart, Allmandring 31, 70569 Stuttgart, Germany.
| |
Collapse
|
11
|
Rosalia RA, Arenas-Ramirez N, Bouchaud G, Raeber ME, Boyman O. Use of enhanced interleukin-2 formulations for improved immunotherapy against cancer. Curr Opin Chem Biol 2014; 23:39-46. [PMID: 25271022 DOI: 10.1016/j.cbpa.2014.09.006] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Revised: 09/02/2014] [Accepted: 09/08/2014] [Indexed: 02/02/2023]
Abstract
The use of interleukin-2 (IL-2) for the stimulation of an effector immune response against metastatic cancer dates back to the early 1980s. Administration of unmodified IL-2, either alone or together with antigen-specific approaches, has resulted in remarkably long-term survival of some patients suffering from metastatic melanoma. However, such treatment is usually hampered by the appearance of toxic adverse effects, which has motivated the engineering of modified IL-2 formulations showing reduced toxicity while being more potent at stimulating anti-tumor effector immune cells. In this review we summarize and discuss the features and biological relevance of several enhanced IL-2 formulations, compare these to IL-15-based therapeutics, and try to foreshadow their potential in immunological research and immunotherapy.
Collapse
Affiliation(s)
- Rodney A Rosalia
- Department of Immunology, University Hospital Zurich, Gloriastrasse 30, 8091 Zurich, Switzerland
| | - Natalia Arenas-Ramirez
- Department of Immunology, University Hospital Zurich, Gloriastrasse 30, 8091 Zurich, Switzerland
| | - Grégory Bouchaud
- Institut National de la Recherche Agronomique (INRA), Rue de la Géraudière, BP 71627 Cedex 03, 44316 Nantes, France
| | - Miro E Raeber
- Department of Immunology, University Hospital Zurich, Gloriastrasse 30, 8091 Zurich, Switzerland
| | - Onur Boyman
- Department of Immunology, University Hospital Zurich, Gloriastrasse 30, 8091 Zurich, Switzerland.
| |
Collapse
|