1
|
Ni L, Cao Z, Jiang J, Zhang W, Hu W, Zhang Q, Shen C, Chen X, Zheng L. Evaluating Drug Interactions between Ritonavir and Opioid Analgesics: Implications from Physiologically Based Pharmacokinetic Simulation. Pharmaceuticals (Basel) 2024; 17:640. [PMID: 38794210 PMCID: PMC11124264 DOI: 10.3390/ph17050640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/05/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024] Open
Abstract
Several commonly used opioid analgesics, such as fentanyl, sufentanil, alfentanil, and hydrocodone, are by report primarily metabolized by the CYP3A4 enzyme. The concurrent use of ritonavir, a potent CYP3A4 inhibitor, can lead to significant drug interactions. Using physiologically based pharmacokinetic (PBPK) modeling and simulation, this study examines the effects of different dosing regimens of ritonavir on the pharmacokinetics of these opioids. The findings reveal that co-administration of ritonavir significantly increases the exposure of fentanyl analogs, with over a 10-fold increase in the exposure of alfentanil and sufentanil when given with ritonavir. Conversely, the effect of ritonavir on fentanyl exposure is modest, likely due to additional metabolism pathways. Additionally, the study demonstrates that the steady-state exposure of hydrocodone and its active metabolite hydromorphone can be increased by up to 87% and 95%, respectively, with concurrent use of ritonavir. The extended-release formulation of hydrocodone is particularly affected. These insights from PBPK modeling provide valuable guidance for optimizing opioid dosing and minimizing the risk of toxicity when used in combination with ritonavir-containing prescriptions.
Collapse
Affiliation(s)
- Liang Ni
- Clinical Pharmacokinetics Laboratory, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, China;
| | - Zhihai Cao
- Department of Clinical Pharmacology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China; (Z.C.); (W.Z.); (W.H.); (Q.Z.)
- School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Jiakang Jiang
- Department of Pharmacy and Biomedical Engineering, Clinical College of Anhui Medical University, Hefei 230031, China;
| | - Wei Zhang
- Department of Clinical Pharmacology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China; (Z.C.); (W.Z.); (W.H.); (Q.Z.)
| | - Wei Hu
- Department of Clinical Pharmacology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China; (Z.C.); (W.Z.); (W.H.); (Q.Z.)
| | - Qian Zhang
- Department of Clinical Pharmacology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China; (Z.C.); (W.Z.); (W.H.); (Q.Z.)
| | - Chaozhuang Shen
- Department of Clinical Pharmacy and Pharmacy Administration, West China School of Pharmacy, Sichuan University, Chengdu 610041, China;
| | - Xijing Chen
- Clinical Pharmacokinetics Laboratory, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, China;
| | - Liang Zheng
- Department of Clinical Pharmacology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China; (Z.C.); (W.Z.); (W.H.); (Q.Z.)
| |
Collapse
|
2
|
Gerrity D, Crank K, Oh EC, Quinones O, Trenholm RA, Vanderford BJ. Wastewater surveillance of high risk substances in Southern Nevada: Sucralose normalization to translate data for potential public health action. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168369. [PMID: 37951274 DOI: 10.1016/j.scitotenv.2023.168369] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/01/2023] [Accepted: 11/04/2023] [Indexed: 11/13/2023]
Abstract
The COVID-19 pandemic highlighted the value of wastewater surveillance in providing unbiased assessments of incidence/prevalence for infectious disease targets, ultimately leading to the development of local, state, and national programs across the United States. To address the growing epidemic of drug abuse, there have been calls to extend these programs to high risk substances (HRS) and metabolites, while leveraging the experience gained during the pandemic and from ongoing efforts in other countries. This study further advances the science of wastewater surveillance for HRS by (1) highlighting analytical and sewer transport considerations, (2) proposing sucralose normalization to adjust for varying human urine/fecal load and confounded population estimates (e.g., high tourism areas), and (3) characterizing temporal and geographic trends in HRS use. This one-year study across eight sewersheds in Southern Nevada (208 total samples) monitored concentrations of 17 pharmaceuticals and personal care products (PPCPs) and 22 HRS and metabolites, including natural, semi-synthetic, and synthetic opioids. The data indicated a ∼200 % increase in heroin and methamphetamine use since 2010, a stark increase in fentanyl consumption beginning in October 2022, and statistically significant differences in HRS consumption patterns between sewersheds and on certain dates. Notably, the latter outcome highlights the potential for wastewater surveillance data to be strategically translated into public health action to reduce and/or more rapidly respond to overdoses.
Collapse
Affiliation(s)
- Daniel Gerrity
- Applied Research and Development Center, Southern Nevada Water Authority, P.O. Box 99954, Las Vegas, NV 89193, United States.
| | - Katherine Crank
- Applied Research and Development Center, Southern Nevada Water Authority, P.O. Box 99954, Las Vegas, NV 89193, United States
| | - Edwin C Oh
- Laboratory of Neurogenetics and Precision Medicine, Nevada Institute of Personalized Medicine, Department of Internal Medicine, UNLV School of Medicine, University of Nevada, Las Vegas, Las Vegas, NV 89154, United States
| | - Oscar Quinones
- Applied Research and Development Center, Southern Nevada Water Authority, P.O. Box 99954, Las Vegas, NV 89193, United States
| | - Rebecca A Trenholm
- Applied Research and Development Center, Southern Nevada Water Authority, P.O. Box 99954, Las Vegas, NV 89193, United States
| | - Brett J Vanderford
- Applied Research and Development Center, Southern Nevada Water Authority, P.O. Box 99954, Las Vegas, NV 89193, United States
| |
Collapse
|
3
|
Soal V, Tiongko JL, Sedky K. Duloxetine and Hepatic Injury: A Case Presentation. Psychiatr Ann 2023. [DOI: 10.3928/00485713-20230105-02] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
4
|
Omidian H, Babanejad N, Omidi Y. Opioid epidemic and the urge to discover new treatment options. Drug Discov Today 2022; 27:2406-2410. [DOI: 10.1016/j.drudis.2022.05.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/16/2022] [Accepted: 05/25/2022] [Indexed: 11/29/2022]
|
5
|
Lin SY. Thermoresponsive gating membranes embedded with liquid crystal(s) for pulsatile transdermal drug delivery: An overview and perspectives. J Control Release 2019; 319:450-474. [PMID: 31901369 DOI: 10.1016/j.jconrel.2019.12.046] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 12/27/2019] [Accepted: 12/28/2019] [Indexed: 01/08/2023]
Abstract
Due to the circadian rhythm regulation of almost every biological process in the human body, physiological and biochemical conditions vary considerably over the course of a 24-h period. Thus, optimal drug delivery and therapy should be effectively controlled to achieve the desired therapeutic plasma concentrations and therapeutic drug responses at the required time according to chronopharmacological concepts, rather than continuous maintenance of constant drug concentrations for an extended time period. For many drugs, it is not always necessary to constantly deliver a drug into the human body under disease conditions due to rhythmic variations. Pulsatile drug delivery systems (PDDSs) have been receiving more attention in pharmaceutical development by providing a predetermined lag period, followed by a fast or rate-controlled drug release after application. PDDSs are characterized by a programmed drug release, which may release a drug at repeatable pulses to match the biological and clinical needs of a given disease therapy. This review article focuses on thermoresponsive gating membranes embedded with liquid crystals (LCs) for transdermal drug delivery using PDDS technology. In addition, the principal rationale and the advanced approaches for the use of PDDSs, the marketed products of chronotherapeutic DDSs with pulsatile function designed by various PDDS technologies, pulsatile drug delivery designed with thermoresponsive polymers, challenges and opportunities of transdermal drug delivery, and novel approaches of LC systems for drug delivery are reviewed and discussed. A brief overview of all academic research articles concerning single LC- or binary LC-embedded thermoresponsive membranes with a switchable on-off permeation function through topical application by an external temperature control, which may modulate the dosing interval and administration time according to the therapeutic needs of the human body, is also compiled and presented. In the near future, since thermal-based approaches have become a well-accepted method to enhance transdermal delivery of different water-soluble drugs and macromolecules, a combination of the thermal-assisted approach with thermoresponsive LCs membranes will have the potential to improve PDDS applications but still poses a great challenge.
Collapse
Affiliation(s)
- Shan-Yang Lin
- Laboratory of Pharmaceutics and Biopharmaceutics, Department of Biotechnology and Pharmaceutical Technology, Yuanpei University of Medical Technology, No.306, Yuanpei Street, Hsin Chu 30015, Taiwan.
| |
Collapse
|
6
|
Listos J, Łupina M, Talarek S, Mazur A, Orzelska-Górka J, Kotlińska J. The Mechanisms Involved in Morphine Addiction: An Overview. Int J Mol Sci 2019; 20:ijms20174302. [PMID: 31484312 PMCID: PMC6747116 DOI: 10.3390/ijms20174302] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 08/23/2019] [Accepted: 08/29/2019] [Indexed: 12/22/2022] Open
Abstract
Opioid use disorder is classified as a chronic recurrent disease of the central nervous system (CNS) which leads to personality disorders, co-morbidities and premature death. It develops as a result of long-term administration of various abused substances, along with morphine. The pharmacological action of morphine is associated with its stimulation of opioid receptors. Opioid receptors are a group of G protein-coupled receptors and activation of these receptors by ligands induces significant molecular changes inside the cell, such as an inhibition of adenylate cyclase activity, activation of potassium channels and reductions of calcium conductance. Recent data indicate that other signalling pathways also may be involved in morphine activity. Among these are phospholipase C, mitogen-activated kinases (MAP kinases) or β-arrestin. The present review focuses on major mechanisms which currently are considered as essential in morphine activity and dependence and may be important for further studies.
Collapse
Affiliation(s)
- Joanna Listos
- Department of Pharmacology and Pharmacodynamics, Medical University of Lublin, Chodzki 4a St., 20-093 Lublin, Poland.
| | - Małgorzata Łupina
- Department of Pharmacology and Pharmacodynamics, Medical University of Lublin, Chodzki 4a St., 20-093 Lublin, Poland.
| | - Sylwia Talarek
- Department of Pharmacology and Pharmacodynamics, Medical University of Lublin, Chodzki 4a St., 20-093 Lublin, Poland.
| | - Antonina Mazur
- Department of Pharmacology and Pharmacodynamics, Medical University of Lublin, Chodzki 4a St., 20-093 Lublin, Poland.
| | - Jolanta Orzelska-Górka
- Department of Pharmacology and Pharmacodynamics, Medical University of Lublin, Chodzki 4a St., 20-093 Lublin, Poland.
| | - Jolanta Kotlińska
- Department of Pharmacology and Pharmacodynamics, Medical University of Lublin, Chodzki 4a St., 20-093 Lublin, Poland.
| |
Collapse
|
7
|
Cardia L, Calapai G, Quattrone D, Mondello C, Arcoraci V, Calapai F, Mannucci C, Mondello E. Preclinical and Clinical Pharmacology of Hydrocodone for Chronic Pain: A Mini Review. Front Pharmacol 2018; 9:1122. [PMID: 30327606 PMCID: PMC6174210 DOI: 10.3389/fphar.2018.01122] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 09/13/2018] [Indexed: 02/05/2023] Open
Abstract
Hydrocodone is one of the most prescribed oral analgesic drugs and it is one of the most abused drugs in general population. It is a mu-opioid agonist predominantly metabolized to the O-demethylated product hydromorphone and to the N-demethylated product norhydrocodone. The purpose of the study is to summarize the preclinical and clinical characteristics of hydrocodone. Pharmacokinetic aspect (terminal half-life, maximum serum concentration, and time to maximum serum concentration) of hydrocodone and the influence of metabolic genetic polymorphism in analgesic response to hydrocodone are also illustrated and commented. Literature on experimental preclinical pharmacology investigating analgesic activity in laboratory animals is furtherly discussed. Moreover, the authors discuss and comment on the updated data regarding safety profile and effectiveness of hydrocodone in the treatment of chronic pain. A bibliographic research was carried out (from February 01, 2018 to August 28, 2018) independently by two researchers (blinded to the authors and initially on results) in the major scientific databases and research engines of peer-reviewed literature on life sciences and biomedical topics, starting from January 1990 to August 2018. Analysis of results of clinical studies suggests that abuse-deterrent extended-release (ER) hydrocodone formulations can be effective and they are well tolerated in the treatment of chronic low back pain. Weaker is the evidence of the analgesic effectiveness of ER hydrocodone on other chronic pain syndromes and non-cancer non-neuropathic chronic pain. In these conditions, hydrocodone showed to have positive effects in non-controlled open studies and needs to be further studied to assess the real strength of results.
Collapse
Affiliation(s)
- Luigi Cardia
- Anesthesia, Intensive Care and Pain Therapy, Azienda Ospedaliera Universitaria Policlinico "G. Martino" - Messina, Messina, Italy
| | - Gioacchino Calapai
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Azienda Ospedaliera Universitaria Policlinico "G. Martino" - Messina, Messina, Italy
| | - Domenico Quattrone
- Pain Therapy Unit, Grande Ospedale Metropolitano Bianchi Melacrino Morelli-Reggio Calabria, Reggio Calabria, Italy
| | - Cristina Mondello
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Azienda Ospedaliera Universitaria Policlinico "G. Martino" - Messina, Messina, Italy
| | - Vincenzo Arcoraci
- Department of Clinical and Experimental Medicine, Azienda Ospedaliera Universitaria Policlinico "G. Martino" - Messina, Messina, Italy
| | - Fabrizio Calapai
- Pharma.Ca Research Facility (Centro Studi Pharma.Ca), Messina, Italy
| | - Carmen Mannucci
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Azienda Ospedaliera Universitaria Policlinico "G. Martino" - Messina, Messina, Italy
| | - Epifanio Mondello
- Anesthesia, Intensive Care and Pain Therapy, Azienda Ospedaliera Universitaria Policlinico "G. Martino" - Messina, Messina, Italy
| |
Collapse
|
8
|
A Summary of Newer and Safer Opioid Formulations. CURRENT ANESTHESIOLOGY REPORTS 2018. [DOI: 10.1007/s40140-018-0290-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
9
|
Boyce H, Smith D, Byrn S, Saluja B, Qu W, Gurvich VJ, Hoag SW. In Vitro Assessment of Nasal Insufflation of Comminuted Drug Products Designed as Abuse Deterrent Using the Vertical Diffusion Cell. AAPS PharmSciTech 2018; 19:1744-1757. [PMID: 29582347 DOI: 10.1208/s12249-017-0947-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 12/26/2017] [Indexed: 11/30/2022] Open
Abstract
In vitro evaluation of abuse deterrent formulations (ADFs) is a challenge since real abuse situations are variable and ADF technology is evolving. Specifically, an assessment of an ADF to deter nasal insufflation would be valuable. In this study, a vertical diffusion cell (VDC) was used to evaluate polyethylene oxide (PEO)-based tablets manipulated by three different forces. The commercially available products Oxycontin®, an ADF, Opana®, and metoprolol tartrate tablet formulations made in our laboratory were studied. Particle size distribution and percent recovery of manipulated tablets were measured. Grinding produced the lowest recovery and the smallest particle size distribution. Drug release was examined using a VDC by placing the dry comminuted particles on an enclosed wetted cellulose membrane. Dispensing dry particles on a VDC is atypical but includes some key features associated with an abuse situation where once the particles are snorted, the moisture in the nasal mucosa activates hydration and swelling of the polymers in the formulation, retarding drug release. Drug release from OxyContin®, Opana®, and metoprolol tablets were analyzed for the cutting, grinding, and milling modes of abuse. The analysis showed that in most cases, the mode of abuse produced different particle sizes with different release rates. Statistically different release rates were observed for metoprolol tablets made with different molecular weight PEO and with different porosities. These results indicate that within detection limits, the VDC can be used to quantitate release differences due to various modes of abuse used in this study.
Collapse
|
10
|
Affiliation(s)
- Kammy KS Poon
- Department of Anaesthesiology, Queen Elizabeth Hospital, Hong Kong, Hong Kong
| | - Steven HS Wong
- Department of Anaesthesiology, Queen Elizabeth Hospital, Hong Kong, Hong Kong
| |
Collapse
|