1
|
OAT3 Participates in Drug-Drug Interaction between Bentysrepinine and Entecavir through Interactions with M8-A Metabolite of Bentysrepinine-In Rats and Humans In Vitro. Molecules 2023; 28:molecules28041995. [PMID: 36838982 PMCID: PMC9967645 DOI: 10.3390/molecules28041995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 01/13/2023] [Accepted: 01/25/2023] [Indexed: 02/23/2023] Open
Abstract
Bentysrepinine (Y101) is a novel phenylalanine dipeptide for the treatment of hepatitis B virus. Renal excretion played an important role in the elimination of Y101 and its metabolites, M8 and M9, in healthy Chinese subjects, although the molecular mechanisms of renal excretion and potential drug-drug interactions (DDIs) remain unclear. The present study aimed to determine the organic anion transporters (OATs) involved in the renal disposition of Y101 and to predict the potential DDI between Y101 and entecavir, the first-line agent against HBV and a substrate of OAT1/3. Pharmacokinetic studies and uptake assays using rat kidney slices, as well as hOAT1/3-HEK293 cells, were performed to evaluate potential DDI. The co-administration of probenecid (an inhibitor of OATs) significantly increased the plasma concentrations and area under the plasma concentration-time curves of M8 and M9 but not Y101, while reduced renal clearance and the cumulative urinary excretion of M8 were observed in rats. The time course of Y101 and M8 uptake via rat kidney slices was temperature-dependent. Moreover, the uptake of M8 was inhibited significantly by probenecid and benzylpenicillin, but not by p-aminohippurate or tetraethyl ammonium. M8 was found to be a substrate of hOAT3, but Y101 is not a substrate of either hOAT1 or hOAT3. Additionally, the entecavir inhibited the uptake of M8 in the hOAT3-transfected cells and rat kidney slices in vitro. Interestingly, no significant changes were observed in the pharmacokinetic parameters of Y101, M8 or entecavir, regardless of intravenous or oral co-administration of Y101 and entecavir in rats. In conclusion, M8 is a substrate of OAT3 in rats and humans. Furthermore, M8 also mediates the DDI between Y101 and entecavir in vitro, mediated by OAT3. We speculate that it would be safe to use Y101 with entecavir in clinical practice. Our results provide useful information with which to predict the DDIs between Y101 and other drugs that act as substrates of OAT3.
Collapse
|
2
|
Li L, Yang M, Yu J, Cheng S, Ahmad M, Wu C, Wan X, Xu B, Ben-David Y, Luo H. A Novel L-Phenylalanine Dipeptide Inhibits the Growth and Metastasis of Prostate Cancer Cells via Targeting DUSP1 and TNFSF9. Int J Mol Sci 2022; 23:ijms231810916. [PMID: 36142828 PMCID: PMC9504056 DOI: 10.3390/ijms231810916] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/12/2022] [Accepted: 09/14/2022] [Indexed: 11/16/2022] Open
Abstract
Prostate cancer (PCa) is a common malignant cancer of the urinary system. Drug therapy, chemotherapy, and radical prostatectomy are the primary treatment methods, but drug resistance and postoperative recurrence often occur. Therefore, seeking novel anti-tumor compounds with high efficiency and low toxicity from natural products can produce a new tumor treatment method. Matijin-Su [N-(N-benzoyl-L-phenylalanyl)-O-acetyl-L-phenylalanol, MTS] is a phenylalanine dipeptide monomer compound that is isolated from the Chinese ethnic medicine Matijin (Dichondra repens Forst.). Its derivatives exhibit various pharmacological activities, especially anti-tumor. Among them, the novel MTS derivative HXL131 has a significant inhibitory effect against prostate tumor growth and metastasis. This study is designed to investigate the effects of HXL131 on the growth and metastasis of human PCa cell lines PC3 and its molecular mechanism through in vitro experiments combined with proteomics, molecular docking, and gene silencing. The in vitro results showed that HXL131 concentration dependently inhibited PC3 cell proliferation, induced apoptosis, arrested cell cycle at the G2/M phase, and inhibited cell migration capacity. A proteomic analysis and a Western blot showed that HXL131 up-regulated the expression of proliferation, apoptosis, cell cycle, and migration-related proteins CYR61, TIMP1, SOD2, IL6, SERPINE2, DUSP1, TNFSF9, OSMR, TNFRSF10D, and TNFRSF12A. Molecular docking, a cellular thermal shift assay (CETSA), and gene silencing showed that HXL131 had a strong binding affinity with DUSP1 and TNFSF9, which are important target genes for inhibiting the growth and metastasis of PC3 cells. This study demonstrates that HXL131 exhibited excellent anti-prostate cancer activity and inhibited the growth and metastasis of prostate cancer cells by regulating the expression of DUSP1 and TNFSF9.
Collapse
Affiliation(s)
- Lanlan Li
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province, Chinese Academy of Sciences, Guiyang 550014, China
- School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, China
| | - Mingfei Yang
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China
| | - Jia Yu
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province, Chinese Academy of Sciences, Guiyang 550014, China
| | - Sha Cheng
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province, Chinese Academy of Sciences, Guiyang 550014, China
| | - Mashaal Ahmad
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China
| | - Caihong Wu
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China
- School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, China
| | - Xinwei Wan
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China
| | - Bixue Xu
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province, Chinese Academy of Sciences, Guiyang 550014, China
| | - Yaacov Ben-David
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province, Chinese Academy of Sciences, Guiyang 550014, China
- Correspondence: (Y.B.-D.); (H.L.); Tel.: +86-0851-8387-6210 (H.L.)
| | - Heng Luo
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province, Chinese Academy of Sciences, Guiyang 550014, China
- Correspondence: (Y.B.-D.); (H.L.); Tel.: +86-0851-8387-6210 (H.L.)
| |
Collapse
|
3
|
Wu X, Zhang F, Yu M, Wang H. Review of the Chinese Landscape in Phase I Clinical Trials for Noncancer Innovative Drugs Over 2015 to 2020. Clin Pharmacol Drug Dev 2022; 11:903-909. [PMID: 35711154 DOI: 10.1002/cpdd.1131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 05/30/2022] [Indexed: 11/05/2022]
Abstract
In recent years, the research and development (R&D) of innovative drugs in China has been dramatically accelerated. And the early clinical study is crucial for drug R&D. However, little is known involving the change of phase I trials for noncancer drugs. We retrieved the data of phase I clinical trials for noncancer innovative drugs on the Registration and Information Disclosure Platform for Drug Clinical Studies on the Center for Drug Evaluation. The number of clinical trials proliferating in recent years and the average annual growth rates of chemical and biological drugs were 55.5% and 42.1%, respectively. Most trials were distributed in Beijing, Shanghai, and other developed coastal cities. Moreover, the clinical trials of innovative drugs in China were focused on the digestive and endocrine systems, whereas the pediatric and orphan drugs were scarce. Based on the data assessment, this work provided comprehensive analysis and suggestions about Chinese drug R&D. Significant advancement has been made in mainland China with the implementation of available policies and the emergence of advanced technologies. Though shortcomings, including uneven geographic distribution and lack of pediatric and orphan drugs, still exist, we believe progress will continue to be made in mainland China.
Collapse
Affiliation(s)
- Xiaofei Wu
- Clinical Pharmacology Research Center, State Key Laboratory of Complex Severe and Rare Diseases, NMPA Key Laboratory for Clinical Research and Evaluation of Drug, Beijing Key Laboratory of Clinical PK & PD Investigation for Innovative Drugs, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, No.1 Shuaifuyuan, Beijing, 100730, China
| | - Fan Zhang
- Clinical Pharmacology Research Center, State Key Laboratory of Complex Severe and Rare Diseases, NMPA Key Laboratory for Clinical Research and Evaluation of Drug, Beijing Key Laboratory of Clinical PK & PD Investigation for Innovative Drugs, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, No.1 Shuaifuyuan, Beijing, 100730, China
| | - Mengyang Yu
- Clinical Pharmacology Research Center, State Key Laboratory of Complex Severe and Rare Diseases, NMPA Key Laboratory for Clinical Research and Evaluation of Drug, Beijing Key Laboratory of Clinical PK & PD Investigation for Innovative Drugs, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, No.1 Shuaifuyuan, Beijing, 100730, China
| | - Hongyun Wang
- Clinical Pharmacology Research Center, State Key Laboratory of Complex Severe and Rare Diseases, NMPA Key Laboratory for Clinical Research and Evaluation of Drug, Beijing Key Laboratory of Clinical PK & PD Investigation for Innovative Drugs, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, No.1 Shuaifuyuan, Beijing, 100730, China
| |
Collapse
|
4
|
Yao Q, Wang Y, Dong Z, Lai C, Chang B, Gong Q, Ren S, Sun D, Lu J, Gao Y. Dichondra repens J.R.Forst. and G.Forst.: A Review of Its Traditional Uses, Chemistry, Pharmacology, Toxicology and Applications. Front Pharmacol 2021; 11:608199. [PMID: 33643039 PMCID: PMC7908059 DOI: 10.3389/fphar.2020.608199] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Accepted: 12/21/2020] [Indexed: 12/03/2022] Open
Abstract
Ethnopharmacology relevance:Dichondra repens J.R.Forst. and G.Forst (DRF; Convolvulaceae, called Matijin in Chinese), has been traditionally used to treat jaundice, bacillary dysentery, urinary tract infection, edema, contusions, and strains and sprains based on traditional Chinese medicine (TCM) concepts. Aim of study: This paper intends to provide a comprehensive and critical analysis of research on DRF focusing on a relationship between traditional uses and pharmacological effects, evaluating the therapeutic potential of this plant. Methods: Relevant data on DRF were retrieved from available databases. Results: The heat-clearing and detoxifying, and removing the phlegm and turbid urine effects of DRF are linked to its anti-hepatitis B virus (HBV), anti-inflammatory, and hepatoprotective activities. Especially, the hepatoprotective effects of DRF are mainly based on anti-HBV activities of phenylalanine dipeptides Matijin-Su (MTS) and its derivatives derived from this plant. Further, a phase I anti-HBV clinical trial of a candidate compound named bentysrepinine (Y101, Chinese name Tifentai) has been completed. Also, anti-tumor, analgesic, and antibacterial properties have been reported in the extracts and compounds from DRF. Although pharmacy, pharmacodynamics, toxicology, and pharmacokinetics of bentysrepinine have been systemically reported, no studies have reported chemistry, safety, pharmacology of other compounds or extracts systemically. Conclusion: Phenylalanine dipeptide compounds are main components and MTS is a characteristic substance of DRF. The main pharmacological effect of DRF is anti-HBV activity, which is coherent with the traditional use of this plant in China. Except bentysrepinine, few studies have been conducted on toxicities of the extracts or compounds from DRF. Thus, it is still necessary to evaluate safety, chemistry, pharmacology of the extracts or compounds from DRF regarding the link between traditional uses and modern applications before the future clinical trials. Bacterial sepsis, cholecystitis and tumors may be prior therapeutic targets of this plant in the future.
Collapse
Affiliation(s)
- Qi Yao
- The First Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Ying Wang
- The First Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Zhiyu Dong
- Department of Gynaecology and Obstetrics, Taizhou Traditional Chinese Medicine Hospital, Taizhou, China
| | - Chencen Lai
- The First Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Botao Chang
- Department of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Qiuju Gong
- The First Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Shuaijun Ren
- The First Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Dongxue Sun
- The First Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Jie Lu
- Department of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Ying Gao
- The First Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| |
Collapse
|