1
|
Marok FZ, Wojtyniak JG, Selzer D, Dallmann R, Swen JJ, Guchelaar HJ, Schwab M, Lehr T. Personalized Chronomodulated 5-Fluorouracil Treatment: A Physiologically-Based Pharmacokinetic Precision Dosing Approach for Optimizing Cancer Therapy. Clin Pharmacol Ther 2024; 115:1282-1292. [PMID: 38264789 DOI: 10.1002/cpt.3181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 01/03/2024] [Indexed: 01/25/2024]
Abstract
The discovery of circadian clock genes greatly amplified the study of diurnal variations impacting cancer therapy, transforming it into a rapidly growing field of research. Especially, use of chronomodulated treatment with 5-fluorouracil (5-FU) has gained significance. Studies indicate high interindividual variability (IIV) in diurnal variations in dihydropyrimidine dehydrogenase (DPD) activity - a key enzyme for 5-FU metabolism. However, the influence of individual DPD chronotypes on chronomodulated therapy remains unclear and warrants further investigation. To optimize precision dosing of chronomodulated 5-FU, this study aims to: (i) build physiologically-based pharmacokinetic (PBPK) models for 5-FU, uracil, and their metabolites, (ii) assess the impact of diurnal variation on DPD activity, (iii) estimate individual DPD chronotypes, and (iv) personalize chronomodulated 5-FU infusion rates based on a patient's DPD chronotype. Whole-body PBPK models were developed with PK-Sim(R) and MoBi(R). Sinusoidal functions were used to incorporate variations in enzyme activity and chronomodulated infusion rates as well as to estimate individual DPD chronotypes from DPYD mRNA expression or DPD enzymatic activity. Four whole-body PBPK models for 5-FU, uracil, and their metabolites were established utilizing data from 41 5-FU and 10 publicly available uracil studies. IIV in DPD chronotypes was assessed and personalized chronomodulated administrations were developed to achieve (i) comparable 5-FU peak plasma concentrations, (ii) comparable 5-FU exposure, and (iii) constant 5-FU plasma levels via "noise cancellation" chronomodulated infusion. The developed PBPK models capture the extent of diurnal variations in DPD activity and can help investigate individualized chronomodulated 5-FU therapy through testing alternative personalized dosing strategies.
Collapse
Affiliation(s)
| | - Jan-Georg Wojtyniak
- Clinical Pharmacy, Saarland University, Saarbruecken, Germany
- Dr. Margarete Fischer-Bosch-Institut of Clinical Pharmacology, Stuttgart, Germany
| | - Dominik Selzer
- Clinical Pharmacy, Saarland University, Saarbruecken, Germany
| | - Robert Dallmann
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, UK
| | - Jesse J Swen
- Department of Clinical Pharmacy & Toxicology, Leiden University Medical Center, RC Leiden, The Netherlands
| | - Henk-Jan Guchelaar
- Department of Clinical Pharmacy & Toxicology, Leiden University Medical Center, RC Leiden, The Netherlands
| | - Matthias Schwab
- Dr. Margarete Fischer-Bosch-Institut of Clinical Pharmacology, Stuttgart, Germany
- Departments of Clinical Pharmacology, and of Biochemistry and Pharmacy, University Tuebingen, Tuebingen, Germany
- Cluster of excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies", University Tuebingen, Tuebingen, Germany
| | - Thorsten Lehr
- Clinical Pharmacy, Saarland University, Saarbruecken, Germany
| |
Collapse
|
2
|
Lingaratnam S, Shah M, Nicolazzo J, Michael M, Seymour JF, James P, Lazarakis S, Loi S, Kirkpatrick CMJ. A systematic review and meta-analysis of the impacts of germline pharmacogenomics on severe toxicity and symptom burden in adult patients with cancer. Clin Transl Sci 2024; 17:e13781. [PMID: 38700261 PMCID: PMC11067509 DOI: 10.1111/cts.13781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 02/12/2024] [Accepted: 03/14/2024] [Indexed: 05/05/2024] Open
Abstract
The clinical application of Pharmacogenomics (PGx) has improved patient safety. However, comprehensive PGx testing has not been widely adopted in clinical practice, and significant opportunities exist to further optimize PGx in cancer care. This systematic review and meta-analysis aim to evaluate the safety outcomes of reported PGx-guided strategies (Analysis 1) and identify well-studied emerging pharmacogenomic variants that predict severe toxicity and symptom burden (Analysis 2) in patients with cancer. We searched MEDLINE, EMBASE, CENTRAL, clinicaltrials.gov, and International Clinical Trials Registry Platform from inception to January 2023 for clinical trials or comparative studies evaluating PGx strategies or unconfirmed pharmacogenomic variants. The primary outcomes were severe adverse events (SAE; ≥ grade 3) or symptom burden with pain and vomiting as defined by trial protocols and assessed by trial investigators. We calculated pooled overall relative risk (RR) and 95% confidence interval (95%CI) using random effects models. PROSPERO, registration number CRD42023421277. Of 6811 records screened, six studies were included for Analysis 1, 55 studies for Analysis 2. Meta-analysis 1 (five trials, 1892 participants) showed a lower absolute incidence of SAEs with PGx-guided strategies compared to usual therapy, 16.1% versus 34.0% (RR = 0.72, 95%CI 0.57-0.91, p = 0.006, I2 = 34%). Meta-analyses 2 identified nine medicine(class)-variant pairs of interest across the TYMS, ABCB1, UGT1A1, HLA-DRB1, and OPRM1 genes. Application of PGx significantly reduced rates of SAEs in patients with cancer. Emergent medicine-variant pairs herald further research into the expansion and optimization of PGx to improve systemic anti-cancer and supportive care medicine safety and efficacy.
Collapse
Affiliation(s)
- Senthil Lingaratnam
- Pharmacy DepartmentPeter MacCallum Cancer CentreMelbourneVictoriaAustralia
- Sir Peter MacCallum Department of OncologyUniversity of MelbourneMelbourneVictoriaAustralia
- Monash Institute of Pharmaceutical Sciences, Monash UniversityMelbourneVictoriaAustralia
| | - Mahek Shah
- Faculty of Pharmacy and Pharmaceutical SciencesMonash UniversityMelbourneVictoriaAustralia
| | - Joseph Nicolazzo
- Monash Institute of Pharmaceutical Sciences, Monash UniversityMelbourneVictoriaAustralia
| | - Michael Michael
- Sir Peter MacCallum Department of OncologyUniversity of MelbourneMelbourneVictoriaAustralia
- Department of Medical OncologyPeter MacCallum Cancer CentreMelbourneVictoriaAustralia
| | - John F. Seymour
- Sir Peter MacCallum Department of OncologyUniversity of MelbourneMelbourneVictoriaAustralia
- Department of Clinical HaematologyPeter MacCallum Cancer Centre and Royal Melbourne HospitalMelbourneVictoriaAustralia
| | - Paul James
- Parkville Familial Cancer Centre, Peter MacCallum Cancer Centre and Royal Melbourne HospitalMelbourneVictoriaAustralia
| | - Smaro Lazarakis
- Health Sciences LibraryRoyal Melbourne HospitalMelbourneVictoriaAustralia
| | - Sherene Loi
- Sir Peter MacCallum Department of OncologyUniversity of MelbourneMelbourneVictoriaAustralia
- Division of Cancer ResearchPeter MacCallum Cancer CentreMelbourneVictoriaAustralia
| | - Carl M. J. Kirkpatrick
- Monash Institute of Pharmaceutical Sciences, Monash UniversityMelbourneVictoriaAustralia
| |
Collapse
|
3
|
Cheng F, Zhang R, Sun C, Ran Q, Zhang C, Shen C, Yao Z, Wang M, Song L, Peng C. Oxaliplatin-induced peripheral neurotoxicity in colorectal cancer patients: mechanisms, pharmacokinetics and strategies. Front Pharmacol 2023; 14:1231401. [PMID: 37593174 PMCID: PMC10427877 DOI: 10.3389/fphar.2023.1231401] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 07/18/2023] [Indexed: 08/19/2023] Open
Abstract
Oxaliplatin-based chemotherapy is a standard treatment approach for colorectal cancer (CRC). However, oxaliplatin-induced peripheral neurotoxicity (OIPN) is a severe dose-limiting clinical problem that might lead to treatment interruption. This neuropathy may be reversible after treatment discontinuation. Its complicated mechanisms are related to DNA damage, dysfunction of voltage-gated ion channels, neuroinflammation, transporters, oxidative stress, and mitochondrial dysfunction, etc. Several strategies have been proposed to diminish OIPN without compromising the efficacy of adjuvant therapy, namely, combination with chemoprotectants (such as glutathione, Ca/Mg, ibudilast, duloxetine, etc.), chronomodulated infusion, dose reduction, reintroduction of oxaliplatin and topical administration [hepatic arterial infusion chemotherapy (HAIC), pressurized intraperitoneal aerosol chemotherapy (PIPAC), and hyperthermic intraperitoneal chemotherapy (HIPEC)]. This article provides recent updates related to the potential mechanisms, therapeutic strategies in treatment of OIPN, and pharmacokinetics of several methods of oxaliplatin administration in clinical trials.
Collapse
Affiliation(s)
- Fang Cheng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ruoqi Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chen Sun
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qian Ran
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Cuihan Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Changhong Shen
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ziqing Yao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Miao Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lin Song
- Department of Pharmacy, Children’s Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
4
|
Nassar A, Abdelhamid A, Ramsay G, Bekheit M. Chronomodulated Administration of Chemotherapy in Advanced Colorectal Cancer: A Systematic Review and Meta-Analysis. Cureus 2023; 15:e36522. [PMID: 37090313 PMCID: PMC10120847 DOI: 10.7759/cureus.36522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/22/2023] [Indexed: 04/25/2023] Open
Abstract
In this systematic review, the efficacy and safety of chronomodulated chemotherapy, defined as the delivery of chemotherapy timed according to the human circadian rhythm, were assessed and compared to continuous infusion chemotherapy for patients with advanced colorectal cancer. Electronic English-language studies published until October 2020 were searched. Randomised controlled trials (RCTs) comparing chronomodulated chemotherapy with non-chronomodulated (conventional) chemotherapy for the management of advanced colorectal cancer were included. The main outcomes were the objective response rate (ORR) and system-specific and overall toxicity related to chemotherapy. Electronic databases including Ovid Medline, Ovid Embase, Cochrane Central Register of Controlled Trials and the Cochrane Database of Systematic Review were searched. In total, seven RCTs including 1,137 patients were analysed. Males represented 684 (60%) of the study population. The median age was 60.5 (range = 47.2-64) years. There was no significant difference between chronomodulated and conventional chemotherapy in ORR (risk ratio (RR) = 1.15; 95% confidence interval (CI) = 0.87-1.53). Similarly, there was no significant difference in gastrointestinal toxicity under the random effect model (RR = 1.02; 95% CI = 0.68-1.51). No significant difference was found regarding neurological and skin toxicities (RR = 0.64, 95% CI = 0.32-1.270 and RR = 2.11, 95% CI = 0.33-13.32, respectively). However, patients who received chronomodulated chemotherapy had less haematological toxicity (RR = 0.36, 95% CI = 0.27-0.48). In conclusion, there was no overall difference in ORR or haematologic toxicity between chronomodulated and non-chronomodulated chemotherapy used for patients with advanced colorectal cancer. Chronomodulated chemotherapy can be considered in patients at high risk of haematological toxicities.
Collapse
Affiliation(s)
- Ahmed Nassar
- The Health Services Research Unit, University of Aberdeen, Aberdeen, GBR
- Aberdeen Royal Infirmary, National Health Service (NHS) Grampian, Aberdeen, GBR
| | - Amir Abdelhamid
- The Health Services Research Unit, University of Aberdeen, Aberdeen, GBR
- Aberdeen Royal Infirmary, National Health Service (NHS) Grampian, Aberdeen, GBR
| | - George Ramsay
- The Health Services Research Unit, University of Aberdeen, Aberdeen, GBR
| | - Mohamed Bekheit
- The Health Services Research Unit, University of Aberdeen, Aberdeen, GBR
- Dr Gray's Hospital, National Health Service (NHS) Grampian, Aberdeen, GBR
- HPB Centre, Elite Integrated Centres of Excellence, Alexandria, EGY
| |
Collapse
|
5
|
Chronobiology and Nanotechnology for Personalized Cancer Therapy. Cancer Nanotechnol 2023. [DOI: 10.1007/978-3-031-17831-3_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
6
|
Zhou L, Zhang Z, Nice E, Huang C, Zhang W, Tang Y. Circadian rhythms and cancers: the intrinsic links and therapeutic potentials. J Hematol Oncol 2022; 15:21. [PMID: 35246220 PMCID: PMC8896306 DOI: 10.1186/s13045-022-01238-y] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 02/16/2022] [Indexed: 02/07/2023] Open
Abstract
The circadian rhythm is an evolutionarily conserved time-keeping system that comprises a wide variety of processes including sleep-wake cycles, eating-fasting cycles, and activity-rest cycles, coordinating the behavior and physiology of all organs for whole-body homeostasis. Acute disruption of circadian rhythm may lead to transient discomfort, whereas long-term irregular circadian rhythm will result in the dysfunction of the organism, therefore increasing the risks of numerous diseases especially cancers. Indeed, both epidemiological and experimental evidence has demonstrated the intrinsic link between dysregulated circadian rhythm and cancer. Accordingly, a rapidly increasing understanding of the molecular mechanisms of circadian rhythms is opening new options for cancer therapy, possibly by modulating the circadian clock. In this review, we first describe the general regulators of circadian rhythms and their functions on cancer. In addition, we provide insights into the mechanisms underlying how several types of disruption of the circadian rhythm (including sleep-wake, eating-fasting, and activity-rest) can drive cancer progression, which may expand our understanding of cancer development from the clock perspective. Moreover, we also summarize the potential applications of modulating circadian rhythms for cancer treatment, which may provide an optional therapeutic strategy for cancer patients.
Collapse
Affiliation(s)
- Li Zhou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Zhe Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Edouard Nice
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, 3800, Australia
| | - Canhua Huang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China.
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Wei Zhang
- Mental Health Center and Psychiatric Laboratory, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
- West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Yong Tang
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Acupuncture and Chronobiology Laboratory of Sichuan Province, Chengdu, 610075, China.
| |
Collapse
|
7
|
Trebucq LL, Cardama GA, Lorenzano Menna P, Golombek DA, Chiesa JJ, Marpegan L. Timing of Novel Drug 1A-116 to Circadian Rhythms Improves Therapeutic Effects against Glioblastoma. Pharmaceutics 2021; 13:1091. [PMID: 34371781 PMCID: PMC8309043 DOI: 10.3390/pharmaceutics13071091] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/10/2021] [Accepted: 07/13/2021] [Indexed: 11/28/2022] Open
Abstract
The Ras homologous family of small guanosine triphosphate-binding enzymes (GTPases) is critical for cell migration and proliferation. The novel drug 1A-116 blocks the interaction site of the Ras-related C3 botulinum toxin substrate 1 (RAC1) GTPase with some of its guanine exchange factors (GEFs), such as T-cell lymphoma invasion and metastasis 1 (TIAM1), inhibiting cell motility and proliferation. Knowledge of circadian regulation of targets can improve chemotherapy in glioblastoma. Thus, circadian regulation in the efficacy of 1A-116 was studied in LN229 human glioblastoma cells and tumor-bearing nude mice. METHODS Wild-type LN229 and BMAL1-deficient (i.e., lacking a functional circadian clock) LN229E1 cells were assessed for rhythms in TIAM1, BMAL1, and period circadian protein homolog 1 (PER1), as well as Tiam1, Bmal1, and Rac1 mRNA levels. The effects of 1A-116 on proliferation, apoptosis, and migration were then assessed upon applying the drug at different circadian times. Finally, 1A-116 was administered to tumor-bearing mice at two different circadian times. RESULTS In LN229 cells, circadian oscillations were found for BMAL1, PER1, and TIAM1 (mRNA and protein), and for the effects of 1A-116 on proliferation, apoptosis, and migration, which were abolished in LN229E1 cells. Increased survival time was observed in tumor-bearing mice when treated with 1A-116 at the end of the light period (zeitgeber time 12, ZT12) compared either to animals treated at the beginning (ZT3) or with vehicle. CONCLUSIONS These results unveil the circadian modulation in the efficacy of 1A-116, likely through RAC1 pathway rhythmicity, suggesting that a chronopharmacological approach is a feasible strategy to improve glioblastoma treatment.
Collapse
Affiliation(s)
- Laura Lucía Trebucq
- Laboratorio de Cronobiología, Universidad Nacional de Quilmes-CONICET, Bernal 1876, Buenos Aires, Argentina; (L.L.T.); (D.A.G.)
| | - Georgina Alexandra Cardama
- Laboratorio de Oncología Molecular, Universidad Nacional de Quilmes-CONICET, Bernal 1876, Buenos Aires, Argentina; (G.A.C.); (P.L.M.)
| | - Pablo Lorenzano Menna
- Laboratorio de Oncología Molecular, Universidad Nacional de Quilmes-CONICET, Bernal 1876, Buenos Aires, Argentina; (G.A.C.); (P.L.M.)
| | - Diego Andrés Golombek
- Laboratorio de Cronobiología, Universidad Nacional de Quilmes-CONICET, Bernal 1876, Buenos Aires, Argentina; (L.L.T.); (D.A.G.)
| | - Juan José Chiesa
- Laboratorio de Cronobiología, Universidad Nacional de Quilmes-CONICET, Bernal 1876, Buenos Aires, Argentina; (L.L.T.); (D.A.G.)
| | - Luciano Marpegan
- Departamento de Física Médica, Comisión Nacional de Energía Atómica, Bariloche 8400, Río Negro, Argentina
| |
Collapse
|
8
|
Exploring the link between chronobiology and drug delivery: effects on cancer therapy. J Mol Med (Berl) 2021; 99:1349-1371. [PMID: 34213595 DOI: 10.1007/s00109-021-02106-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 06/16/2021] [Accepted: 06/17/2021] [Indexed: 02/01/2023]
Abstract
Circadian clock is an impressive timing system responsible for the control of several metabolic, physiological and behavioural processes. Nowadays, the connection between the circadian clock and cancer occurrence and development is consensual. Therefore, the inclusion of circadian timing into cancer therapy may potentially offer a more effective and less toxic approach. This way, chronotherapy has been shown to improve cancer treatment efficacy. Despite this relevant finding, its clinical application is poorly exploited. The conception of novel anticancer drug delivery systems and the combination of chronobiology with nanotechnology may provide a powerful tool to optimize cancer therapy, instigating the incorporation of the circadian timing into clinical practice towards a more personalized drug delivery. This review focuses on the recent advances in the field of cancer chronobiology, on the link between cancer and the disruption of circadian rhythms and on the promising targeted drug nanodelivery approaches aiming the clinical application of cancer chronotherapy.
Collapse
|
9
|
Hesse J, Malhan D, Yalҫin M, Aboumanify O, Basti A, Relógio A. An Optimal Time for Treatment-Predicting Circadian Time by Machine Learning and Mathematical Modelling. Cancers (Basel) 2020; 12:cancers12113103. [PMID: 33114254 PMCID: PMC7690897 DOI: 10.3390/cancers12113103] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 10/15/2020] [Accepted: 10/20/2020] [Indexed: 02/07/2023] Open
Abstract
Tailoring medical interventions to a particular patient and pathology has been termed personalized medicine. The outcome of cancer treatments is improved when the intervention is timed in accordance with the patient's internal time. Yet, one challenge of personalized medicine is how to consider the biological time of the patient. Prerequisite for this so-called chronotherapy is an accurate characterization of the internal circadian time of the patient. As an alternative to time-consuming measurements in a sleep-laboratory, recent studies in chronobiology predict circadian time by applying machine learning approaches and mathematical modelling to easier accessible observables such as gene expression. Embedding these results into the mathematical dynamics between clock and cancer in mammals, we review the precision of predictions and the potential usage with respect to cancer treatment and discuss whether the patient's internal time and circadian observables, may provide an additional indication for individualized treatment timing. Besides the health improvement, timing treatment may imply financial advantages, by ameliorating side effects of treatments, thus reducing costs. Summarizing the advances of recent years, this review brings together the current clinical standard for measuring biological time, the general assessment of circadian rhythmicity, the usage of rhythmic variables to predict biological time and models of circadian rhythmicity.
Collapse
Affiliation(s)
- Janina Hesse
- Institute for Theoretical Biology (ITB), Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt—Universität zu Berlin and Berlin Institute of Health, 10117 Berlin, Germany; (J.H.); (D.M.); (M.Y.); (O.A.); (A.B.)
- Molecular Cancer Research Center (MKFZ), Medical Department of Hematology, Oncology and Tumor Immunology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin Humboldt—Universität zu Berlin and Berlin Institute of Health, 10117 Berlin, Germany
| | - Deeksha Malhan
- Institute for Theoretical Biology (ITB), Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt—Universität zu Berlin and Berlin Institute of Health, 10117 Berlin, Germany; (J.H.); (D.M.); (M.Y.); (O.A.); (A.B.)
- Molecular Cancer Research Center (MKFZ), Medical Department of Hematology, Oncology and Tumor Immunology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin Humboldt—Universität zu Berlin and Berlin Institute of Health, 10117 Berlin, Germany
| | - Müge Yalҫin
- Institute for Theoretical Biology (ITB), Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt—Universität zu Berlin and Berlin Institute of Health, 10117 Berlin, Germany; (J.H.); (D.M.); (M.Y.); (O.A.); (A.B.)
- Molecular Cancer Research Center (MKFZ), Medical Department of Hematology, Oncology and Tumor Immunology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin Humboldt—Universität zu Berlin and Berlin Institute of Health, 10117 Berlin, Germany
| | - Ouda Aboumanify
- Institute for Theoretical Biology (ITB), Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt—Universität zu Berlin and Berlin Institute of Health, 10117 Berlin, Germany; (J.H.); (D.M.); (M.Y.); (O.A.); (A.B.)
- Molecular Cancer Research Center (MKFZ), Medical Department of Hematology, Oncology and Tumor Immunology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin Humboldt—Universität zu Berlin and Berlin Institute of Health, 10117 Berlin, Germany
| | - Alireza Basti
- Institute for Theoretical Biology (ITB), Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt—Universität zu Berlin and Berlin Institute of Health, 10117 Berlin, Germany; (J.H.); (D.M.); (M.Y.); (O.A.); (A.B.)
- Molecular Cancer Research Center (MKFZ), Medical Department of Hematology, Oncology and Tumor Immunology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin Humboldt—Universität zu Berlin and Berlin Institute of Health, 10117 Berlin, Germany
| | - Angela Relógio
- Institute for Theoretical Biology (ITB), Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt—Universität zu Berlin and Berlin Institute of Health, 10117 Berlin, Germany; (J.H.); (D.M.); (M.Y.); (O.A.); (A.B.)
- Molecular Cancer Research Center (MKFZ), Medical Department of Hematology, Oncology and Tumor Immunology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin Humboldt—Universität zu Berlin and Berlin Institute of Health, 10117 Berlin, Germany
- Department of Human Medicine, Institute for Systems Medicine and Bioinformatics, MSH Medical School Hamburg—University of Applied Sciences and Medical University, 20457 Hamburg, Germany
- Correspondence: or
| |
Collapse
|
10
|
Kalanxhi E, Meltzer S, Ree AH. Immune-Modulating Effects of Conventional Therapies in Colorectal Cancer. Cancers (Basel) 2020; 12:E2193. [PMID: 32781554 PMCID: PMC7464272 DOI: 10.3390/cancers12082193] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/03/2020] [Accepted: 08/05/2020] [Indexed: 12/22/2022] Open
Abstract
Biological heterogeneity and low inherent immunogenicity are two features that greatly impact therapeutic management and outcome in colorectal cancer. Despite high local control rates, systemic tumor dissemination remains the main cause of treatment failure and stresses the need for new developments in combined-modality approaches. While the role of adaptive immune responses in a small subgroup of colorectal tumors with inherent immunogenicity is indisputable, the challenge remains in identifying the optimal synergy between conventional treatment modalities and immune therapy for the majority of the less immunogenic cases. In this context, cytotoxic agents such as radiation and certain chemotherapeutics can be utilized to enhance the immunogenicity of an otherwise immunologically silent disease and enable responsiveness to immune therapy. In this review, we explore the immunological characteristics of colorectal cancer, the effects that standard-of-care treatments have on the immune system, and the opportunities arising from combining immune checkpoint-blocking therapy with immune-modulating conventional treatments.
Collapse
Affiliation(s)
- Erta Kalanxhi
- Department of Oncology, Akershus University Hospital, 1478 Lørenskog, Norway; (E.K.); (S.M.)
| | - Sebastian Meltzer
- Department of Oncology, Akershus University Hospital, 1478 Lørenskog, Norway; (E.K.); (S.M.)
| | - Anne Hansen Ree
- Department of Oncology, Akershus University Hospital, 1478 Lørenskog, Norway; (E.K.); (S.M.)
- Institute of Clinical Medicine, University of Oslo, 0318 Oslo, Norway
| |
Collapse
|
11
|
Ghasemi Toudeshkchouei M, Zahedi P, Shavandi A. Microfluidic-Assisted Preparation of 5-Fluorouracil-Loaded PLGA Nanoparticles as a Potential System for Colorectal Cancer Therapy. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E1483. [PMID: 32218241 PMCID: PMC7177286 DOI: 10.3390/ma13071483] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 03/16/2020] [Accepted: 03/23/2020] [Indexed: 12/12/2022]
Abstract
This work aims at fabricating 5-fluorouracil (5-FU)-loaded poly (lactic-co-glycolic) acid nanoparticles (PLGA NPs) using a microfluidic (MF) technique, with potential for use in colorectal cancer therapy. In order to achieve 5-FU-loaded NPs with an average diameter of approximately 119 nm, the parameters of MF process with fork-shaped patterns were adjusted as follows: the ratio of polymer to drug solutions flow rates was equal to 10 and the solution concentrations of PLGA as carrier, 5-FU as anti-cancer drug and poly (vinyl alcohol) (PVA) as surfactant were 0.2 (% w/v), 0.01 (% w/v) and 0.15 (% w/v), respectively. In this way, a drug encapsulation efficiency of approximately 95% into the PLGA NPs was obtained, due to the formation of a hydrodynamic flow focusing phenomenon through the MF chip. A performance evaluation of the NP samples in terms of the drug release, cytotoxicity and cell death was carried out. Finally, by analyzing the results after induction of cell death and 4', 6-diamidino-2-phenylin-dole (DAPI) staining, MF-fabricated NPs containing 5-FU [0.2 (% w/v) of PLGA] revealed the dead cell amounts of 10 and 1.5-fold higher than the control sample for Caco2 and SW-480, respectively.
Collapse
Affiliation(s)
- Mahtab Ghasemi Toudeshkchouei
- Department of Polymer, School of Chemical Engineering, College of Engineering, University of Tehran, P.O. Box 11155-4563, Tehran 1417613131, Iran;
| | - Payam Zahedi
- Department of Polymer, School of Chemical Engineering, College of Engineering, University of Tehran, P.O. Box 11155-4563, Tehran 1417613131, Iran;
| | - Amin Shavandi
- BioMatter Unit-Biomass Transformation Lab (BTL), École Interfacultaire de Bioingénieurs (EIB), École Polytechnique de Bruxelles, Université Libre de Bruxelles, Avenue F.D. Roosevelt, 50-CP 165/61, 1050 Brussels, Belgium
| |
Collapse
|
12
|
Hill RJW, Innominato PF, Lévi F, Ballesta A. Optimizing circadian drug infusion schedules towards personalized cancer chronotherapy. PLoS Comput Biol 2020; 16:e1007218. [PMID: 31986133 PMCID: PMC7004559 DOI: 10.1371/journal.pcbi.1007218] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 02/06/2020] [Accepted: 11/21/2019] [Indexed: 11/18/2022] Open
Abstract
Precision medicine requires accurate technologies for drug administration and proper systems pharmacology approaches for patient data analysis. Here, plasma pharmacokinetics (PK) data of the OPTILIV trial in which cancer patients received oxaliplatin, 5-fluorouracil and irinotecan via chronomodulated schedules delivered by an infusion pump into the hepatic artery were mathematically investigated. A pump-to-patient model was designed in order to accurately represent the drug solution dynamics from the pump to the patient blood. It was connected to semi-mechanistic PK models to analyse inter-patient variability in PK parameters. Large time delays of up to 1h41 between the actual pump start and the time of drug detection in patient blood was predicted by the model and confirmed by PK data. Sudden delivery spike in the patient artery due to glucose rinse after drug administration accounted for up to 10.7% of the total drug dose. New model-guided delivery profiles were designed to precisely lead to the drug exposure intended by clinicians. Next, the complete mathematical framework achieved a very good fit to individual time-concentration PK profiles and concluded that inter-subject differences in PK parameters was the lowest for irinotecan, intermediate for oxaliplatin and the largest for 5-fluorouracil. Clustering patients according to their PK parameter values revealed patient subgroups for each drug in which inter-patient variability was largely decreased compared to that in the total population. This study provides a complete mathematical framework to optimize drug infusion pumps and inform on inter-patient PK variability, a step towards precise and personalized cancer chronotherapy. Accuracy and safety of infusion pumps remain a critical issue in the clinics and the development of accurate mathematical models to optimize drug administration though such devices has a key part to play in the advancement of precision medicine. Here, PK data from cancer patient receiving irinotecan, oxaliplatin and 5-fluorouracil into the hepatic artery via an infusion pump was mathematically investigated. A pump-to-patient model was designed and revealed significant inconsistencies between intended drug profiles and actual plasma concentrations. This mathematical model was then used to suggest improved profiles in order to minimise error and optimise delivery. Physiologically-based PK models of the three drugs were then linked to the pump-to-patient model. The whole framework achieved a very good fit to data and allowed quantifying inter-patient variability in PK parameters and linking them to potential clinical biomarkers via patient clustering. The developed methodology improves our understanding of patient-specific drug pharmacokinetics towards personalized drug administration.
Collapse
Affiliation(s)
- Roger J W Hill
- EPSRC & MRC Centre for Doctoral Training in Mathematics for Real-World Systems, University of Warwick, Coventry, UK
| | - Pasquale F Innominato
- North Wales Cancer Centre, Ysbyty Gwynedd, Betsi Cadwaladr University Health Board, Bangor, UK.,Cancer Chronotherapy Team, Cancer Research Centre, Division of Biomedical Sciences, Warwick Medical School, Coventry, UK
| | - Francis Lévi
- Cancer Chronotherapy Team, Cancer Research Centre, Division of Biomedical Sciences, Warwick Medical School, Coventry, UK.,INSERM and Paris Sud university, UMRS 935, Team "Cancer Chronotherapy and Postoperative Liver Functions", Campus CNRS, Villejuif, F-94807, France. & Honorary position, University of Warwick, UK
| | - Annabelle Ballesta
- INSERM and Paris Sud university, UMRS 935, Team "Cancer Chronotherapy and Postoperative Liver Functions", Campus CNRS, Villejuif, F-94807, France. & Honorary position, University of Warwick, UK
| |
Collapse
|
13
|
de Man FM, Goey AKL, van Schaik RHN, Mathijssen RHJ, Bins S. Individualization of Irinotecan Treatment: A Review of Pharmacokinetics, Pharmacodynamics, and Pharmacogenetics. Clin Pharmacokinet 2019. [PMID: 29520731 PMCID: PMC6132501 DOI: 10.1007/s40262-018-0644-7] [Citation(s) in RCA: 245] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Since its clinical introduction in 1998, the topoisomerase I inhibitor irinotecan has been widely used in the treatment of solid tumors, including colorectal, pancreatic, and lung cancer. Irinotecan therapy is characterized by several dose-limiting toxicities and large interindividual pharmacokinetic variability. Irinotecan has a highly complex metabolism, including hydrolyzation by carboxylesterases to its active metabolite SN-38, which is 100- to 1000-fold more active compared with irinotecan itself. Several phase I and II enzymes, including cytochrome P450 (CYP) 3A4 and uridine diphosphate glucuronosyltransferase (UGT) 1A, are involved in the formation of inactive metabolites, making its metabolism prone to environmental and genetic influences. Genetic variants in the DNA of these enzymes and transporters could predict a part of the drug-related toxicity and efficacy of treatment, which has been shown in retrospective and prospective trials and meta-analyses. Patient characteristics, lifestyle and comedication also influence irinotecan pharmacokinetics. Other factors, including dietary restriction, are currently being studied. Meanwhile, a more tailored approach to prevent excessive toxicity and optimize efficacy is warranted. This review provides an updated overview on today’s literature on irinotecan pharmacokinetics, pharmacodynamics, and pharmacogenetics.
Collapse
Affiliation(s)
- Femke M de Man
- Department of Medical Oncology, Erasmus MC Cancer Institute, 's-Gravendijkwal 230, 3015, Rotterdam, The Netherlands
| | - Andrew K L Goey
- Department of Hospital Pharmacy, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Ron H N van Schaik
- Department of Clinical Chemistry, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Ron H J Mathijssen
- Department of Medical Oncology, Erasmus MC Cancer Institute, 's-Gravendijkwal 230, 3015, Rotterdam, The Netherlands
| | - Sander Bins
- Department of Medical Oncology, Erasmus MC Cancer Institute, 's-Gravendijkwal 230, 3015, Rotterdam, The Netherlands.
| |
Collapse
|
14
|
Zhu L, Zheng N, Li X, Zhang X. Hepatic Artery and Peripheral Vein Pharmacokinetics of Raltitrexed in Swine After the Administration of a Hepatic Arterial Infusion. Curr Drug Metab 2019; 20:601-608. [PMID: 31237202 DOI: 10.2174/1389200220666190618100847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 05/15/2019] [Accepted: 05/31/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND Hepatic Arterial Infusion (HAI) with raltitrexed has become an effective treatment for hepatocellular cancer and colorectal cancer liver metastases. However, traditional Body Surface Area (BSA)-based dosing is unsafe or ineffective, and a more accurate model-based approach is required. METHODS In this study, domestic swine were given 1 mg or 4 mg raltitrexed administered by an HAI with infusion times of 30, 60 and 120 min. Hepatic Artery (HA) and Peripheral Vein (PV) samples were collected, and a twocompartment model with an elimination pathway was established to describe the in vivo behavior of raltitrexed. RESULTS The clearance was 0.27 L/min, and the volumes of distribution were 0.35 and 6.65 L for the HA and PV compartments, respectively. The goodness-of-fit plots and visual predictive checks suggested that the proposed pharmacokinetic model agreed well with the observations. CONCLUSION The pharmacokinetic model could be helpful in quantitatively describing the detailed processes of raltitrexed activity administered by HAI and determining an appropriate dosing regimen for preclinical and clinical studies.
Collapse
Affiliation(s)
- Linzhong Zhu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Interventional Therapy, Peking University Cancer Hospital and Institute, Beijing 100142, China
| | - Nan Zheng
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), National Drug Clinical Trial Center, Peking University Cancer Hospital and Institute, Beijing 100142, China
| | - Xingang Li
- Department of Pharmacy, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Xiaofeng Zhang
- Department of Radiology, Beijing Obstetrics and Gynecology Hospital, Beijing 100006, China
| |
Collapse
|
15
|
Ozturk N, Ozturk D, Kavakli IH, Okyar A. Molecular Aspects of Circadian Pharmacology and Relevance for Cancer Chronotherapy. Int J Mol Sci 2017; 18:E2168. [PMID: 29039812 PMCID: PMC5666849 DOI: 10.3390/ijms18102168] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 10/13/2017] [Accepted: 10/14/2017] [Indexed: 02/01/2023] Open
Abstract
The circadian timing system (CTS) controls various biological functions in mammals including xenobiotic metabolism and detoxification, immune functions, cell cycle events, apoptosis and angiogenesis. Although the importance of the CTS is well known in the pharmacology of drugs, it is less appreciated at the clinical level. Genome-wide studies highlighted that the majority of drug target genes are controlled by CTS. This suggests that chronotherapeutic approaches should be taken for many drugs to enhance their effectiveness. Currently chronotherapeutic approaches are successfully applied in the treatment of different types of cancers. The chronotherapy approach has improved the tolerability and antitumor efficacy of anticancer drugs both in experimental animals and in cancer patients. Thus, chronobiological studies have been of importance in determining the most appropriate time of administration of anticancer agents to minimize their side effects or toxicity and enhance treatment efficacy, so as to optimize the therapeutic ratio. This review focuses on the underlying mechanisms of the circadian pharmacology i.e., chronopharmacokinetics and chronopharmacodynamics of anticancer agents with the molecular aspects, and provides an overview of chronotherapy in cancer and some of the recent advances in the development of chronopharmaceutics.
Collapse
Affiliation(s)
- Narin Ozturk
- Department of Pharmacology, Faculty of Pharmacy, Istanbul University, TR-34116 Beyazit-Istanbul, Turkey.
| | - Dilek Ozturk
- Department of Pharmacology, Faculty of Pharmacy, Istanbul University, TR-34116 Beyazit-Istanbul, Turkey.
- Department of Pharmacology, Faculty of Pharmacy, Bezmialem Vakif University, TR-34093 Fatih-Istanbul, Turkey.
| | - Ibrahim Halil Kavakli
- Departments of Molecular Biology and Genetics and Chemical and Biological Engineering, Koc University, TR-34450 Sariyer-Istanbul, Turkey.
| | - Alper Okyar
- Department of Pharmacology, Faculty of Pharmacy, Istanbul University, TR-34116 Beyazit-Istanbul, Turkey.
| |
Collapse
|
16
|
Lévi F, Karaboué A, Saffroy R, Desterke C, Boige V, Smith D, Hebbar M, Innominato P, Taieb J, Carvalho C, Guimbaud R, Focan C, Bouchahda M, Adam R, Ducreux M, Milano G, Lemoine A. Pharmacogenetic determinants of outcomes on triplet hepatic artery infusion and intravenous cetuximab for liver metastases from colorectal cancer (European trial OPTILIV, NCT00852228). Br J Cancer 2017; 117:965-973. [PMID: 28817838 PMCID: PMC5625679 DOI: 10.1038/bjc.2017.278] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 07/18/2017] [Accepted: 07/24/2017] [Indexed: 01/29/2023] Open
Abstract
Background: The hepatic artery infusion (HAI) of irinotecan, oxaliplatin and 5-fluorouracil with intravenous cetuximab achieved outstanding efficacy in previously treated patients with initially unresectable liver metastases from colorectal cancer. This planned study aimed at the identification of pharmacogenetic predictors of outcomes. Methods: Circulating mononuclear cells were analysed for 207 single-nucleotide polymorphisms (SNPs) from 34 pharmacology genes. Single-nucleotide polymorphisms passing stringent Hardy–Weinberg equilibrium test were tested for their association with outcomes in 52 patients (male/female, 36/16; WHO PS, 0–1). Results: VKORC1 SNPs (rs9923231 and rs9934438) were associated with early and objective responses, and survival. For rs9923231, T/T achieved more early responses than C/T (50% vs 5%, P=0.029) and greatest 4-year survival (46% vs 0%, P=0.006). N-acetyltransferase-2 (rs1041983 and rs1801280) were associated with up to seven-fold more macroscopically complete hepatectomies. Progression-free survival was largest in ABCB1 rs1045642 T/T (P=0.026) and rs2032582 T/T (P=0.035). Associations were found between toxicities and gene variants (P<0.05), including neutropenia with ABCB1 (rs1045642) and SLC0B3 (rs4149117 and rs7311358); and diarrhoea with CYP2C9 (rs1057910), CYP2C19 (rs3758581), UGT1A6 (rs4124874) and SLC22A1 (rs72552763). Conclusion: VKORC1, NAT2 and ABCB1 variants predicted for HAI efficacy. Pharmacogenetics could guide the personalisation of liver-targeted medico-surgical therapies.
Collapse
Affiliation(s)
- Francis Lévi
- INSERM, UMRS 935 Team 'Cancer Chronotherapy and Postoperative Liver Function', Campus CNRS, 7 rue Guy Môquet, and UMRS 1193 'Physiopathology and treatment of Liver diseases', Paul Brousse Hospital, 14 avenue Paul-Vaillant-Couturier, 94800 Villejuif, France.,Université Paris Sud, UFR médecine, Institut André Lwoff, Paul Brousse Hospital, 14 avenue Paul-Vaillant-Couturier, 94800 Villejuif, France.,Assistance Publique-Hopitaux de Paris, Paul Brousse Hospital, Departments of Medical Oncology, Biochemistry and Oncogenetics, and Hepatobiliary Center, 14 avenue Paul-Vaillant-Couturier, 94800 Villejuif, France.,Cancer Chronotherapy Unit, Warwick Medical School, Warwick University, Gibbet Hill Road, Coventry CV4 7AL, UK
| | - Abdoulaye Karaboué
- INSERM, UMRS 935 Team 'Cancer Chronotherapy and Postoperative Liver Function', Campus CNRS, 7 rue Guy Môquet, and UMRS 1193 'Physiopathology and treatment of Liver diseases', Paul Brousse Hospital, 14 avenue Paul-Vaillant-Couturier, 94800 Villejuif, France.,AK-SCIENCE, Research and Therapeutic Innovation, 34 Boulevard de Stalingrad, 94400 Vitry-Sur-Seine, France
| | - Raphaël Saffroy
- INSERM, UMRS 935 Team 'Cancer Chronotherapy and Postoperative Liver Function', Campus CNRS, 7 rue Guy Môquet, and UMRS 1193 'Physiopathology and treatment of Liver diseases', Paul Brousse Hospital, 14 avenue Paul-Vaillant-Couturier, 94800 Villejuif, France.,Université Paris Sud, UFR médecine, Institut André Lwoff, Paul Brousse Hospital, 14 avenue Paul-Vaillant-Couturier, 94800 Villejuif, France.,Assistance Publique-Hopitaux de Paris, Paul Brousse Hospital, Departments of Medical Oncology, Biochemistry and Oncogenetics, and Hepatobiliary Center, 14 avenue Paul-Vaillant-Couturier, 94800 Villejuif, France
| | - Christophe Desterke
- INSERM, UMRS 935 Team 'Cancer Chronotherapy and Postoperative Liver Function', Campus CNRS, 7 rue Guy Môquet, and UMRS 1193 'Physiopathology and treatment of Liver diseases', Paul Brousse Hospital, 14 avenue Paul-Vaillant-Couturier, 94800 Villejuif, France.,Université Paris Sud, UFR médecine, Institut André Lwoff, Paul Brousse Hospital, 14 avenue Paul-Vaillant-Couturier, 94800 Villejuif, France
| | - Valerie Boige
- Gustave-Roussy Institute, 114 Rue Edouard Vaillant, 94400 Villejuif, France
| | - Denis Smith
- Saint André Hospital, 1 Rue Jean Burguet, 33000 Bordeaux, France
| | - Mohamed Hebbar
- Medical Oncology Unit, Huriez Hospital, 1 rue Polonovski, 59037 Lille, France
| | - Pasquale Innominato
- INSERM, UMRS 935 Team 'Cancer Chronotherapy and Postoperative Liver Function', Campus CNRS, 7 rue Guy Môquet, and UMRS 1193 'Physiopathology and treatment of Liver diseases', Paul Brousse Hospital, 14 avenue Paul-Vaillant-Couturier, 94800 Villejuif, France.,Cancer Chronotherapy Unit, Warwick Medical School, Warwick University, Gibbet Hill Road, Coventry CV4 7AL, UK
| | - Julien Taieb
- Georges Pompidou European Hospital, 20 Rue Leblanc, 75015 Paris, France
| | - Carlos Carvalho
- Champalimaud Clinical Centre, Medical Oncology Department, Avenida Brasília, 1400-038 Lisbon, Portugal
| | - Rosine Guimbaud
- Digestive Medical Oncology Unit, Toulouse University Hospital, 170 avenue de Casselardit, 31059 Toulouse, France
| | - Christian Focan
- CHC Saint Joseph Clinics, rue de Hesbaye 75, 4000 Liège, Belgium
| | - Mohamed Bouchahda
- INSERM, UMRS 935 Team 'Cancer Chronotherapy and Postoperative Liver Function', Campus CNRS, 7 rue Guy Môquet, and UMRS 1193 'Physiopathology and treatment of Liver diseases', Paul Brousse Hospital, 14 avenue Paul-Vaillant-Couturier, 94800 Villejuif, France.,Assistance Publique-Hopitaux de Paris, Paul Brousse Hospital, Departments of Medical Oncology, Biochemistry and Oncogenetics, and Hepatobiliary Center, 14 avenue Paul-Vaillant-Couturier, 94800 Villejuif, France.,Ramsay GDS Mousseau Clinics, 2 Avenue de Mousseau, 91035 Evry, France
| | - René Adam
- INSERM, UMRS 935 Team 'Cancer Chronotherapy and Postoperative Liver Function', Campus CNRS, 7 rue Guy Môquet, and UMRS 1193 'Physiopathology and treatment of Liver diseases', Paul Brousse Hospital, 14 avenue Paul-Vaillant-Couturier, 94800 Villejuif, France.,Université Paris Sud, UFR médecine, Institut André Lwoff, Paul Brousse Hospital, 14 avenue Paul-Vaillant-Couturier, 94800 Villejuif, France.,Assistance Publique-Hopitaux de Paris, Paul Brousse Hospital, Departments of Medical Oncology, Biochemistry and Oncogenetics, and Hepatobiliary Center, 14 avenue Paul-Vaillant-Couturier, 94800 Villejuif, France
| | - Michel Ducreux
- Gustave-Roussy Institute, 114 Rue Edouard Vaillant, 94400 Villejuif, France
| | - Gérard Milano
- Oncopharmacology Laboratory, EA 3836, Antoine Lacassagne Center, 33, Avenue de Valombrose, 06189 Nice, France
| | - Antoinette Lemoine
- INSERM, UMRS 935 Team 'Cancer Chronotherapy and Postoperative Liver Function', Campus CNRS, 7 rue Guy Môquet, and UMRS 1193 'Physiopathology and treatment of Liver diseases', Paul Brousse Hospital, 14 avenue Paul-Vaillant-Couturier, 94800 Villejuif, France.,Université Paris Sud, UFR médecine, Institut André Lwoff, Paul Brousse Hospital, 14 avenue Paul-Vaillant-Couturier, 94800 Villejuif, France.,Assistance Publique-Hopitaux de Paris, Paul Brousse Hospital, Departments of Medical Oncology, Biochemistry and Oncogenetics, and Hepatobiliary Center, 14 avenue Paul-Vaillant-Couturier, 94800 Villejuif, France
| |
Collapse
|
17
|
Abstract
Chronotherapeutics aim at treating illnesses according to the endogenous biologic rhythms, which moderate xenobiotic metabolism and cellular drug response. The molecular clocks present in individual cells involve approximately fifteen clock genes interconnected in regulatory feedback loops. They are coordinated by the suprachiasmatic nuclei, a hypothalamic pacemaker, which also adjusts the circadian rhythms to environmental cycles. As a result, many mechanisms of diseases and drug effects are controlled by the circadian timing system. Thus, the tolerability of nearly 500 medications varies by up to fivefold according to circadian scheduling, both in experimental models and/or patients. Moreover, treatment itself disrupted, maintained, or improved the circadian timing system as a function of drug timing. Improved patient outcomes on circadian-based treatments (chronotherapy) have been demonstrated in randomized clinical trials, especially for cancer and inflammatory diseases. However, recent technological advances have highlighted large interpatient differences in circadian functions resulting in significant variability in chronotherapy response. Such findings advocate for the advancement of personalized chronotherapeutics through interdisciplinary systems approaches. Thus, the combination of mathematical, statistical, technological, experimental, and clinical expertise is now shaping the development of dedicated devices and diagnostic and delivery algorithms enabling treatment individualization. In particular, multiscale systems chronopharmacology approaches currently combine mathematical modeling based on cellular and whole-body physiology to preclinical and clinical investigations toward the design of patient-tailored chronotherapies. We review recent systems research works aiming to the individualization of disease treatment, with emphasis on both cancer management and circadian timing system–resetting strategies for improving chronic disease control and patient outcomes.
Collapse
Affiliation(s)
- Annabelle Ballesta
- Warwick Medical School (A.B., P.F.I., R.D., F.A.L.) and Warwick Mathematics Institute (A.B., D.A.R.), University of Warwick, Coventry, United Kingdom; Warwick Systems Biology and Infectious Disease Epidemiological Research Centre, Senate House, Coventry, United Kingdom (A.B., P.F.I., R.D., D.A.R., F.A.L.); INSERM-Warwick European Associated Laboratory "Personalising Cancer Chronotherapy through Systems Medicine" (C2SysMed), Unité mixte de Recherche Scientifique 935, Centre National de Recherche Scientifique Campus, Villejuif, France (A.B., P.F.I., R.D., D.A.R., F.A.L.); and Queen Elisabeth Hospital Birmingham, University Hospitals Birmingham National Health Service Foundation Trust, Cancer Unit, Edgbaston Birmingham, United Kingdom (P.F.I., F.A.L.)
| | - Pasquale F Innominato
- Warwick Medical School (A.B., P.F.I., R.D., F.A.L.) and Warwick Mathematics Institute (A.B., D.A.R.), University of Warwick, Coventry, United Kingdom; Warwick Systems Biology and Infectious Disease Epidemiological Research Centre, Senate House, Coventry, United Kingdom (A.B., P.F.I., R.D., D.A.R., F.A.L.); INSERM-Warwick European Associated Laboratory "Personalising Cancer Chronotherapy through Systems Medicine" (C2SysMed), Unité mixte de Recherche Scientifique 935, Centre National de Recherche Scientifique Campus, Villejuif, France (A.B., P.F.I., R.D., D.A.R., F.A.L.); and Queen Elisabeth Hospital Birmingham, University Hospitals Birmingham National Health Service Foundation Trust, Cancer Unit, Edgbaston Birmingham, United Kingdom (P.F.I., F.A.L.)
| | - Robert Dallmann
- Warwick Medical School (A.B., P.F.I., R.D., F.A.L.) and Warwick Mathematics Institute (A.B., D.A.R.), University of Warwick, Coventry, United Kingdom; Warwick Systems Biology and Infectious Disease Epidemiological Research Centre, Senate House, Coventry, United Kingdom (A.B., P.F.I., R.D., D.A.R., F.A.L.); INSERM-Warwick European Associated Laboratory "Personalising Cancer Chronotherapy through Systems Medicine" (C2SysMed), Unité mixte de Recherche Scientifique 935, Centre National de Recherche Scientifique Campus, Villejuif, France (A.B., P.F.I., R.D., D.A.R., F.A.L.); and Queen Elisabeth Hospital Birmingham, University Hospitals Birmingham National Health Service Foundation Trust, Cancer Unit, Edgbaston Birmingham, United Kingdom (P.F.I., F.A.L.)
| | - David A Rand
- Warwick Medical School (A.B., P.F.I., R.D., F.A.L.) and Warwick Mathematics Institute (A.B., D.A.R.), University of Warwick, Coventry, United Kingdom; Warwick Systems Biology and Infectious Disease Epidemiological Research Centre, Senate House, Coventry, United Kingdom (A.B., P.F.I., R.D., D.A.R., F.A.L.); INSERM-Warwick European Associated Laboratory "Personalising Cancer Chronotherapy through Systems Medicine" (C2SysMed), Unité mixte de Recherche Scientifique 935, Centre National de Recherche Scientifique Campus, Villejuif, France (A.B., P.F.I., R.D., D.A.R., F.A.L.); and Queen Elisabeth Hospital Birmingham, University Hospitals Birmingham National Health Service Foundation Trust, Cancer Unit, Edgbaston Birmingham, United Kingdom (P.F.I., F.A.L.)
| | - Francis A Lévi
- Warwick Medical School (A.B., P.F.I., R.D., F.A.L.) and Warwick Mathematics Institute (A.B., D.A.R.), University of Warwick, Coventry, United Kingdom; Warwick Systems Biology and Infectious Disease Epidemiological Research Centre, Senate House, Coventry, United Kingdom (A.B., P.F.I., R.D., D.A.R., F.A.L.); INSERM-Warwick European Associated Laboratory "Personalising Cancer Chronotherapy through Systems Medicine" (C2SysMed), Unité mixte de Recherche Scientifique 935, Centre National de Recherche Scientifique Campus, Villejuif, France (A.B., P.F.I., R.D., D.A.R., F.A.L.); and Queen Elisabeth Hospital Birmingham, University Hospitals Birmingham National Health Service Foundation Trust, Cancer Unit, Edgbaston Birmingham, United Kingdom (P.F.I., F.A.L.)
| |
Collapse
|