1
|
Chastain DB, White BP, Tu PJ, Chan S, Jackson BT, Kubbs KA, Bandali A, McDougal S, Henao-Martínez AF, Cluck DB. Candidemia in Adult Patients in the ICU: A Reappraisal of Susceptibility Testing and Antifungal Therapy. Ann Pharmacother 2024; 58:305-321. [PMID: 37272474 DOI: 10.1177/10600280231175201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023] Open
Abstract
OBJECTIVE To provide updates on the epidemiology and recommendations for management of candidemia in patients with critical illness. DATA SOURCES A literature search using the PubMed database (inception to March 2023) was conducted using the search terms "invasive candidiasis," "candidemia," "critically ill," "azoles," "echinocandin," "antifungal agents," "rapid diagnostics," "antifungal susceptibility testing," "therapeutic drug monitoring," "antifungal dosing," "persistent candidemia," and "Candida biofilm." STUDY SELECTION/DATA EXTRACTION Clinical data were limited to those published in the English language. Ongoing trials were identified through ClinicalTrials.gov. DATA SYNTHESIS A total of 109 articles were reviewed including 25 pharmacokinetic/pharmacodynamic studies and 30 studies including patient data, 13 of which were randomized controlled clinical trials. The remaining 54 articles included fungal surveillance data, in vitro studies, review articles, and survey data. The current 2016 Infectious Diseases Society of America (IDSA) Clinical Practice Guideline for the Management of Candidiasis provides recommendations for selecting empiric and definitive antifungal therapies for candidemia, but data are limited regarding optimized dosing strategies in critically ill patients with dynamic pharmacokinetic changes or persistent candidemia complicated. RELEVANCE TO PATIENT CARE AND CLINICAL PRACTICE Outcomes due to candidemia remain poor despite improved diagnostic platforms, antifungal susceptibility testing, and antifungal therapy selection for candidemia in critically ill patients. Earlier detection and identification of the species causing candidemia combined with recognition of patient-specific factors leading to dosing discrepancies are crucial to improving outcomes in critically ill patients with candidemia. CONCLUSIONS Treatment of candidemia in critically ill patients must account for the incidence of non-albicans Candida species and trends in antifungal resistance as well as overcome the complex pathophysiologic changes to avoid suboptimal antifungal exposure.
Collapse
Affiliation(s)
- Daniel B Chastain
- Department of Clinical & Administrative Pharmacy, University of Georgia College of Pharmacy, Albany, GA, USA
| | - Bryan P White
- University of Oklahoma Health Medical Center, Oklahoma City, OK, USA
| | - Patrick J Tu
- Charlie Norwood VA Medical Center, Augusta, GA, USA
| | - Sophea Chan
- Department of Clinical & Administrative Pharmacy, University of Georgia College of Pharmacy, Albany, GA, USA
- Department of Pharmacy, Phoebe Putney Memorial Hospital, Albany, GA, USA
| | | | - Kara A Kubbs
- University of Oklahoma Health Medical Center, Oklahoma City, OK, USA
| | - Aiman Bandali
- Overlook Medical Center, Atlantic Health System, Summit, NJ, USA
| | | | - Andrés F Henao-Martínez
- Division of Infectious Diseases, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - David B Cluck
- Department of Pharmacy Practice, Bill Gatton College of Pharmacy, East Tennessee State University, Johnson City, TN, USA
| |
Collapse
|
2
|
Baud FJ, Jullien V, Desnos-Ollivier M, Lamhaut L, Lortholary O. Caspofungin sequestration in a polyacrylonitrile-derived filter: Increasing the dose does not mitigate sequestration. Int J Antimicrob Agents 2023; 62:107007. [PMID: 37839719 DOI: 10.1016/j.ijantimicag.2023.107007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 09/10/2023] [Accepted: 09/29/2023] [Indexed: 10/17/2023]
Abstract
OBJECTIVES Critically ill patients frequently require continuous renal replacement therapy. Echinocandins are recommended as first-line treatment of candidemia. Preliminary results suggested echinocandin sequestration in a polyacrylonitrile filter. The present study aimed to determine whether increasing the dose might balance sequestration. METHODS An STX filter (Baxter-Gambro) was used. A liquid chromatography-mass spectrometry method was used for dosage of caspofungin. In vitro drug disposition was evaluated by NeckEpur (Neckepur, Versailles, France) technology using a crystalloid medium instead of diluted/reconstituted blood, focusing on the disposition of the unbound fraction of drugs. Two concentrations were assessed. RESULTS At the low dose, the mean measured initial concentration in the central compartment (CC) was 5.1 ± 0.6 mg/L. One hundred percent of the initial amount was eliminated from the CC within the 6-h session. The mean total clearance from the CC was 9.6 ± 2.5 L/h. The mean percentages of elimination resulting from sequestration and diafiltration were 96.0 ± 5.0 and 4.0 ± 5.2%, respectively. At high dose, the mean measured initial concentration in the CC was 13.1 mg/L. One hundred percent of the initial amount was eliminated from the CC within the 6-h session. The mean total clearance from the CC was 9.5 L/h. The mean percentages of elimination resulting from sequestration and filtration were 88.5% and 11.5%, respectively. CONCLUSION Increasing the dose does not mitigate caspofungin sequestration in the STX filter. The results raise caution about the simultaneous use of caspofungin and polyacrylonitrile-derived filters. Intermittent modes of renal replacement therapy might be considered. For sensitive species, fluconazole might be an alternative.
Collapse
Affiliation(s)
- Frédéric J Baud
- Département d'Anesthésie-Réanimation Adulte-SAMU de Paris, Hôpital Necker; Assistance Publique-Hôpitaux de Paris, University Paris Cité, Paris, France.
| | - Vincent Jullien
- Université Sorbonne Paris Nord, IAME, INSERM, Paris, France; UF de Pharmacologie, Hôpital Jean Verdier, APHP, Bondy, France
| | | | - Lionel Lamhaut
- Département d'Anesthésie-Réanimation Adulte-SAMU de Paris, Hôpital Necker; Assistance Publique-Hôpitaux de Paris, University Paris Cité, Paris, France
| | - Olivier Lortholary
- Necker Pasteur Centre for Infectious Diseases and Tropical Medicine, IHU Imagine, Necker Enfants Malades, University Hospital, Paris, France; Institut Pasteur, Université Paris Cité, Paris, France
| |
Collapse
|
3
|
Roberts JA, Sime F, Lipman J, Hernández-Mitre MP, Baptista JP, Brüggemann RJ, Darvall J, De Waele JJ, Dimopoulos G, Lefrant JY, Mat Nor MB, Rello J, Seoane L, Slavin MA, Valkonen M, Venditti M, Wong WT, Zeitlinger M, Roger C. A protocol for an international, multicentre pharmacokinetic study for Screening Antifungal Exposure in Intensive Care Units: The SAFE-ICU study. CRIT CARE RESUSC 2023; 25:1-5. [PMID: 37876989 PMCID: PMC10581271 DOI: 10.1016/j.ccrj.2023.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2023]
Abstract
Objective To describe whether contemporary dosing of antifungal drugs achieves therapeutic exposures in critically ill patients that are associated with optimal outcomes. Adequate antifungal therapy is a key determinant of survival of critically ill patients with fungal infections. Critical illness can alter an antifungal agents' pharmacokinetics, increasing the risk of inappropriate antifungal exposure that may lead to treatment failure and/or toxicity. Design setting and participants This international, multicentre, observational pharmacokinetic study will comprise adult critically ill patients prescribed antifungal agents including fluconazole, voriconazole, posaconazole, isavuconazole, caspofungin, micafungin, anidulafungin, and amphotericin B for the treatment or prophylaxis of invasive fungal disease. A minimum of 12 patients are targeted for enrolment for each antifungal agent, across 12 countries and 30 intensive care units to perform descriptive pharmacokinetics. Pharmacokinetic sampling will occur during two dosing intervals (occasions): firstly, between days 1 and 3, and secondly, between days 4 and 7 of the antifungal course, collecting three samples per occasion. Patients' demographic and clinical data will be collected. Main outcome measures The primary endpoint of the study is attainment of pharmacokinetic/pharmacodynamic target exposures that are associated with optimal efficacy. Thirty-day mortality will also be measured. Results and conclusions This study will describe whether contemporary antifungal drug dosing achieves drug exposures associated with optimal outcomes. Data will also be used for the development of antifungal dosing algorithms for critically ill patients. Optimised drug dosing should be considered a priority for improving clinical outcomes for critically ill patients with fungal infections.
Collapse
Affiliation(s)
- Jason A. Roberts
- University of Queensland Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
- Departments of Intensive Care Medicine and Pharmacy, Royal Brisbane & Women's Hospital, Brisbane, QLD, Australia
- Division of Anaesthesiology Critical Care Emergency and Pain Medicine, Nîmes University Hospital, University of Montpellier, Nîmes, France
| | - Fekade Sime
- University of Queensland Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Jeffrey Lipman
- University of Queensland Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
- Division of Anaesthesiology Critical Care Emergency and Pain Medicine, Nîmes University Hospital, University of Montpellier, Nîmes, France
- Jamieson Trauma Institute, Royal Brisbane & Women's Hospital, Brisbane, QLD, Australia
| | - Maria Patricia Hernández-Mitre
- University of Queensland Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - João Pedro Baptista
- Department of Intensive Care, Centro Hospitalar e Universitário de Coimbra (CHUC), Coimbra, Portugal
| | - Roger J. Brüggemann
- Department of Pharmacy and Radboudumc Institute of Health Sciences, And Radboudumc/CWZ Center of Expertise in Mycology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Jai Darvall
- Department of Critical Care, The University of Melbourne, Melbourne, VIC, Australia
- Department of Intensive Care, Royal Melbourne Hospital, Melbourne, VIC, Australia
| | - Jan J. De Waele
- Department of Intensive Care Medicine, Ghent University Hospital, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - George Dimopoulos
- 3rd Department of Critical Care, EVGENIDIO Hospital, Medical School, National and Kapodistrian University of Athens, Greece
| | - Jean-Yves Lefrant
- Division of Anaesthesiology Critical Care Emergency and Pain Medicine, Nîmes University Hospital, University of Montpellier, Nîmes, France
- UR-UM103 IMAGINE, Univ Montpellier, Division of Anesthesia Critical Care, Pain and Emergency Medicine, Nîmes University Hospital, Montpellier, France
| | - Mohd Basri Mat Nor
- Kulliyyah of Medicine, International Islamic University Malaysia, Kuantan Campus, Malaysia
| | - Jordi Rello
- Division of Anaesthesiology Critical Care Emergency and Pain Medicine, Nîmes University Hospital, University of Montpellier, Nîmes, France
- Clinical Research in Pneumonia & Sepsis, Vall D'Hebron Institute of Research, Barcelona, Spain
| | - Leonardo Seoane
- Faculty of Medicine, The University of Queensland, New Orleans, LA, USA
- Intensive Care Unit, Ochsner Health System, New Orleans, LA, USA
| | - Monica A. Slavin
- National Centre for Infections in Cancer and Department of Infectious Diseases, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia
- Victorian Infectious Diseases Service, Royal Melbourne Hospital, Melbourne, Victoria, Australia
| | - Miia Valkonen
- Intensive Care Medicine, Department of Perioperative, Intensive Care and Pain Medicine, University of Helsinki and Helsinki University Hospital, Finland
| | - Mario Venditti
- Department of Public Health and Infectious Diseases, University “Sapienza” of Rome, Rome, Italy
| | - Wai Tat Wong
- Department of Anaesthesia and Intensive Care, The Chinese University of Hong Kong, Hong Kong, SAR, China
| | - Markus Zeitlinger
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Claire Roger
- Division of Anaesthesiology Critical Care Emergency and Pain Medicine, Nîmes University Hospital, University of Montpellier, Nîmes, France
- UR-UM103 IMAGINE, Univ Montpellier, Division of Anesthesia Critical Care, Pain and Emergency Medicine, Nîmes University Hospital, Montpellier, France
| |
Collapse
|
4
|
Yang Q, Zhang T, Zhang Y, Sun D, Zheng X, Du Q, Wang X, Cheng X, Xing J, Dong Y. The recommended dosage regimen for caspofungin in patients with higher body weight or hypoalbuminaemia will result in low exposure: Five years of data based on a population pharmacokinetic model and Monte-Carlo simulations. Front Pharmacol 2022; 13:993330. [PMID: 36408257 PMCID: PMC9669616 DOI: 10.3389/fphar.2022.993330] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 10/14/2022] [Indexed: 01/04/2024] Open
Abstract
Background: To develop a population pharmacokinetic (PPK) model for caspofungin, identify parameters influencing caspofungin pharmacokinetics, and assess the required probability of target attainment (PTA) and cumulative fraction of response (CFR) for various dosing regimens of caspofungin in all patients and intensive care unit (ICU)-subgroup patients. Method: The general PPK model was developed based on data sets from all patients (299 patients). A ICU-subgroup PPK model based on data sets from 136 patients was then analyzed. The effects of demographics, clinical data, laboratory data, and concomitant medications were tested. Monte-Carlo simulations (MCS) were used to evaluate the effectiveness of different caspofungin dosage regimens. Results: One-compartment model best described the data of all patients and ICU patients. Clearances (CL) were 0.32 L/h and 0.40 L/h and volumes of distribution (V) were 13.31 L and 10.20 L for the general and ICU-subgroup PPK models, respectively. In the general model, CL and V were significantly associated with albumin (ALB) concentration and body weight (WT). In the ICU-subgroup model, CL was associated with WT. The simulated exposure in ICU patients was lower than that in all patients (p < 0.05). MCS indicated that higher caspofungin maintenance doses of 70-150 mg may achieve target CFR of >90% for patients with higher WT (>70 kg) or with C. albicans or C. parapsilosis infections, and especially for ICU patients with hypoalbuminaemia. Conclusion: The PPK model and MCS presented in the study demonstrated that the recommended dosage regimen for caspofungin in patients with higher body weight or hypoalbuminaemia will result in low exposure.
Collapse
Affiliation(s)
- Qianting Yang
- Department of Pharmacy, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Tao Zhang
- Department of Pharmacy, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Ying Zhang
- Department of Pharmacy, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Dan Sun
- Department of Pharmacy, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- Department of Pharmacy, Xi’an Hospital of Traditional Chinese Medicine, Xi’an, China
| | - Xiaowei Zheng
- Department of Pharmacy, Xi’an Hospital of Traditional Chinese Medicine, Xi’an, China
- Department of Pharmacy, Xi’an No.1 Hospital, Xi’an, China
| | - Qian Du
- Department of Pharmacy, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Xue Wang
- Department of Pharmacy, Xi’an No.1 Hospital, Xi’an, China
- Department of Intensive Care Unit, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Xiaoliang Cheng
- Department of Pharmacy, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Jianfeng Xing
- Department of Intensive Care Unit, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- School of Pharmacy, Xi’an Jiaotong University, Xi’an, China
| | - Yalin Dong
- Department of Pharmacy, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| |
Collapse
|
5
|
Population Pharmacokinetic Meta-Analysis and Dosing Recommendation for Meropenem in Critically Ill Patients Receiving Continuous Renal Replacement Therapy. Antimicrob Agents Chemother 2022; 66:e0082222. [PMID: 36005753 PMCID: PMC9487629 DOI: 10.1128/aac.00822-22] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The optimal dosing regimen for meropenem in critically ill patients undergoing continuous renal replacement therapy (CRRT) remains undefined due to small studied sample sizes and uninformative pharmacokinetic (PK)/pharmacodynamic (PD) analyses in reported studies. The present study aimed to perform a population PK/PD meta-analysis of meropenem using available literature data to suggest the optimal treatment regimen. A total of 501 meropenem concentration measurements from 78 adult CRRT patients pooled from nine published studies were used to develop the population PK model for meropenem. PK/PD target (40% and 100% of the time with the unbound drug plasma concentration above the MIC) marker-based efficacy and risk of toxicity (trough concentrations of >45 mg/L) for short-term (30 min), prolonged (3 h), and continuous (24 h) infusion dosing strategies for meropenem were investigated. The impact of CRRT dose and identified covariates on the PD probability of target attainment (PTA) and predicted toxicity was also examined. Meropenem concentration data were adequately described by a two-compartment model with linear elimination. Trauma was identified as a pronounced modifier for endogenous clearance of meropenem. Simulations demonstrated that adequate PK/PD targets and low risk of toxicity could be achieved in non-trauma CRRT patients receiving meropenem regimens of 1 g every 6 h infused over 30 min, 1 g every 8 h infused over 3 h, and 2 to 4 g every 24 h infused over 24 h. The impact of CRRT dose (25 to 50 mL/kg/h) on PTA was clinically irrelevant, and continuous infusion of 3 to 4 g every 24 h was suitable for trauma CRRT patients (MICs of ≤0.5 mg/L). A population PK model was developed for meropenem in CRRT patients, and different dosing regimens were proposed for non-trauma and trauma CRRT patients.
Collapse
|
6
|
Jauregizar N, Quindós G, Gil-Alonso S, Suárez E, Sevillano E, Eraso E. Postantifungal Effect of Antifungal Drugs against Candida: What Do We Know and How Can We Apply This Knowledge in the Clinical Setting? J Fungi (Basel) 2022; 8:jof8070727. [PMID: 35887482 PMCID: PMC9317160 DOI: 10.3390/jof8070727] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/29/2022] [Accepted: 07/06/2022] [Indexed: 02/07/2023] Open
Abstract
The study of the pharmacological properties of an antifungal agent integrates the drug pharmacokinetics, the fungal growth inhibition, the fungicidal effect and the postantifungal activity, laying the basis to guide optimal dosing regimen selection. The current manuscript reviews concepts regarding the postantifungal effect (PAFE) of the main classes of drugs used to treat Candida infections or candidiasis. The existence of PAFE and its magnitude are highly dependent on both the fungal species and the class of the antifungal agent. Therefore, the aim of this article was to compile the information described in the literature concerning the PAFE of polyenes, azoles and echinocandins against the Candida species of medical interest. In addition, the mechanisms involved in these phenomena, methods of study, and finally, the clinical applicability of these studies relating to the design of dosing regimens were reviewed and discussed. Additionally, different factors that could determine the variability in the PAFE were described. Most PAFE studies were conducted in vitro, and a scarcity of PAFE studies in animal models was observed. It can be stated that the echinocandins cause the most prolonged PAFE, followed by polyenes and azoles. In the case of the triazoles, it is worth noting the inconsistency found between in vitro and in vivo studies.
Collapse
Affiliation(s)
- Nerea Jauregizar
- Department of Pharmacology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), 48940 Bilbao, Spain;
- Correspondence:
| | - Guillermo Quindós
- Department of Immunology, Microbiology and Parasitology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), 48940 Bilbao, Spain; (G.Q.); (S.G.-A.); (E.S.); (E.E.)
| | - Sandra Gil-Alonso
- Department of Immunology, Microbiology and Parasitology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), 48940 Bilbao, Spain; (G.Q.); (S.G.-A.); (E.S.); (E.E.)
| | - Elena Suárez
- Department of Pharmacology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), 48940 Bilbao, Spain;
| | - Elena Sevillano
- Department of Immunology, Microbiology and Parasitology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), 48940 Bilbao, Spain; (G.Q.); (S.G.-A.); (E.S.); (E.E.)
| | - Elena Eraso
- Department of Immunology, Microbiology and Parasitology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), 48940 Bilbao, Spain; (G.Q.); (S.G.-A.); (E.S.); (E.E.)
| |
Collapse
|
7
|
Population Pharmacokinetics of Caspofungin and Dose Simulations in Heart Transplant Recipients. Antimicrob Agents Chemother 2022; 66:e0224921. [PMID: 35389237 PMCID: PMC9116478 DOI: 10.1128/aac.02249-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The effect of heart transplantation (HTx) on the pharmacokinetics (PK) of caspofungin is not well-characterized. The aim of this study was to investigate the population PK of caspofungin in HTx and non-HTx patients and to identify covariates that may affect the PK of caspofungin. Seven successive blood samples were collected before administration and at 1, 2, 6, 10, 16, and 24 h after the administration of caspofungin for at least 3 days. This study recruited 27 HTx recipients and 31 non-HTx patients with 414 plasma concentrations in total. A nonlinear mixed-effects model was used to describe the population PK of caspofungin. The PK of caspofungin was best described by a two-compartment model. The clearance (CL) and volume of the central compartment (Vc) of caspofungin were 0.385 liter/h and 4.27 liters, respectively. The intercompartmental clearance (Q) and the volume of the peripheral compartment (Vp) were 2.85 liters/h and 6.01 liters, respectively. In the final model, we found that albumin (ALB) affected the CL of caspofungin with an adjustment factor of -1.01, and no other covariates were identified. In this study, HTx was not found to affect the PK of caspofungin. Based on the simulations, the dose of caspofungin should be proportionately increased in patients with decreased ALB levels.
Collapse
|
8
|
Wenzler E, Butler D, Tan X, Katsube T, Wajima T. Pharmacokinetics, Pharmacodynamics, and Dose Optimization of Cefiderocol during Continuous Renal Replacement Therapy. Clin Pharmacokinet 2022; 61:539-552. [PMID: 34792787 PMCID: PMC9167810 DOI: 10.1007/s40262-021-01086-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/31/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND The need for continuous renal replacement therapy (CRRT) in critically ill patients with serious infections is associated with clinical failure, emergence of resistance, and excess mortality. These poor outcomes are attributable in large part to subtherapeutic antimicrobial exposure and failure to achieve target pharmacokinetic/pharmacodynamic (PK/PD) thresholds during CRRT. Cefiderocol is a novel siderophore cephalosporin with broad in vitro activity against resistant pathogens and is often used to treat critically ill patients, including those receiving CRRT, despite the lack of data to guide dosing in this population. OBJECTIVE The aim of this study was to evaluate the PK and PD of cefiderocol during in vitro and in vivo CRRT and provide optimal dosing recommendations. METHODS The PK and dialytic clearance of cefiderocol was evaluated via an established in vitro CRRT model across various modes, filter types, and effluent flow rates. These data were combined with in vivo PK data from nine patients receiving cefiderocol while receiving CRRT from phase III clinical trials. Optimal dosing regimens and their respective probability of target attainment (PTA) were assessed via an established population PK model with Bayesian estimation and 1000-subject Monte Carlo simulations at each effluent flow rate. RESULTS The overall mean sieving/saturation coefficient during in vitro CRRT was 0.90 across all modes, filter types, effluent flow rates, and points of replacement fluid dilution tested. Adsorption was negligible at 10.9%. Three-way analysis of variance (ANOVA) and multiple linear regression analyses demonstrated that effluent flow rate is the primary driver of clearance during CRRT and can be used to calculate optimal cefiderocol doses required to match the systemic exposure observed in patients with normal renal function. Bayesian estimation of these effluent flow rate-based optimal doses in nine patients receiving CRRT from the phase III clinical trials of cefiderocol revealed comparable mean (± standard deviation) area under the concentration-time curve values as patients with normal renal function (1709 ± 539 mg·h/L vs. 1494 ± 58.4 mg·h/L; p = 0.26). Monte Carlo simulations confirmed these doses achieved >90% PTA against minimum inhibitory concentrations ≤4 mg/L at effluent flow rates from 0.5 to 5 L/h. CONCLUSION The optimal dosing regimens developed from this work have been incorporated into the prescribing information for cefiderocol, making it the first and only antimicrobial with labeled dosing for CRRT. Future clinical studies are warranted to confirm the efficacy and safety of these regimens.
Collapse
Affiliation(s)
- Eric Wenzler
- Department of Pharmacy Practice, College of Pharmacy, University of Illinois at Chicago, 833 South Wood Street, Room 164 (M/C 886), Chicago, IL, 60612, USA.
| | - David Butler
- Department of Pharmacy Practice, College of Pharmacy, University of Illinois at Chicago, 833 South Wood Street, Room 164 (M/C 886), Chicago, IL, 60612, USA
| | - Xing Tan
- Department of Pharmacy Practice, College of Pharmacy, University of Illinois at Chicago, 833 South Wood Street, Room 164 (M/C 886), Chicago, IL, 60612, USA
| | - Takayuki Katsube
- Clinical Pharmacology and Pharmacokinetics, Shionogi & Co., Ltd., Osaka, Japan
| | - Toshihiro Wajima
- Clinical Pharmacology and Pharmacokinetics, Shionogi & Co., Ltd., Osaka, Japan
- Clinical Pharmacology, IDEC Inc., Nishi-Shinjuku 6-5-1, Shinjuku-ku, Tokyo, 163-1341, Japan
| |
Collapse
|
9
|
Kim HY, Baldelli S, Märtson AG, Stocker S, Alffenaar JW, Cattaneo D, Marriott DJE. Therapeutic Drug Monitoring of the Echinocandin Antifungal Agents: Is There a Role in Clinical Practice? A Position Statement of the Anti-Infective Drugs Committee of the International Association of Therapeutic Drug Monitoring and Clinical Toxicology. Ther Drug Monit 2022; 44:198-214. [PMID: 34654030 DOI: 10.1097/ftd.0000000000000931] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 09/01/2021] [Indexed: 11/25/2022]
Abstract
PURPOSE Reduced exposure to echinocandins has been reported in specific patient populations, such as critically ill patients; however, fixed dosing strategies are still used. The present review examines the accumulated evidence supporting echinocandin therapeutic drug monitoring (TDM) and summarizes available assays and sampling strategies. METHODS A literature search was conducted using PubMed in December 2020, with search terms such as echinocandins, anidulafungin, caspofungin, micafungin, or rezafungin with pharmacology, pharmacokinetics (PKs), pharmacodynamics (PDs), drug-drug interactions, TDM, resistance, drug susceptibility testing, toxicity, adverse drug reactions, bioanalysis, chromatography, and mass spectrometry. Data on PD/PD (PK/PD) outcome markers, drug resistance, PK variability, drug-drug interactions, assays, and TDM sampling strategies were summarized. RESULTS Echinocandins demonstrate drug exposure-efficacy relationships, and maximum concentration/minimal inhibitory concentration ratio (Cmax/MIC) and area under the concentration-time curve/MIC ratio (AUC/MIC) are proposed PK/PD markers for clinical response. The relationship between drug exposure and toxicity remains poorly clarified. TDM could be valuable in patients at risk of low drug exposure, such as those with critical illness and/or obesity. TDM of echinocandins may also be useful in patients with moderate liver impairment, drug-drug interactions, hypoalbuminemia, and those undergoing extracorporeal membrane oxygenation, as these conditions are associated with altered exposure to caspofungin and/or micafungin. Assays are available to measure anidulafungin, micafungin, and caspofungin concentrations. A limited-sampling strategy for anidulafungin has been reported. CONCLUSIONS Echinocandin TDM should be considered in patients at known risk of suboptimal drug exposure. However, for implementing TDM, clinical validation of PK/PD targets is needed.
Collapse
Affiliation(s)
- Hannah Yejin Kim
- Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia
- Westmead Hospital, Westmead, NSW, Australia
- Marie Bashir Institute for Infectious Diseases and Biosecurity, The University of Sydney, Camperdown, NSW, Australia
| | - Sara Baldelli
- Unit of Clinical Pharmacology, Fatebenefratelli Sacco University Hospital, Milan, Italy
| | - Anne-Grete Märtson
- Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Sophie Stocker
- Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia
- St Vincent's Clinical School, University of New South Wales, Kensington, NSW Australia; and
| | - Jan-Willem Alffenaar
- Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia
- Westmead Hospital, Westmead, NSW, Australia
- Marie Bashir Institute for Infectious Diseases and Biosecurity, The University of Sydney, Camperdown, NSW, Australia
| | - Dario Cattaneo
- Unit of Clinical Pharmacology, Fatebenefratelli Sacco University Hospital, Milan, Italy
- Gestione Ambulatoriale Politerapie (GAP) Outpatient Clinic, ASST Fatebenefratelli Sacco University Hospital, Milan, Italy
| | - Deborah J E Marriott
- St Vincent's Clinical School, University of New South Wales, Kensington, NSW Australia; and
- Department of Microbiology and Infectious Diseases, St. Vincent's Hospital, Darlinghurst, NSW, Australia
| |
Collapse
|
10
|
Caspofungin Population Pharmacokinetic Analysis in Plasma and Peritoneal Fluid in Septic Patients with Intra-Abdominal Infections: A Prospective Cohort Study. Clin Pharmacokinet 2021; 61:673-686. [PMID: 34931282 DOI: 10.1007/s40262-021-01062-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/27/2021] [Indexed: 10/19/2022]
Abstract
OBJECTIVES The aim of this study was to report the pharmacokinetics (PK) of caspofungin in plasma and peritoneal fluid and to identify optimal dosing strategies in septic patients with intra-abdominal infections. METHODS Eleven patients with secondary peritonitis with septic shock received the standard dosing regimen of caspofungin. Total caspofungin plasma and peritoneal concentrations were subject to a population PK analysis using Pmetrics®. Monte Carlo simulations were performed considering the ratio of 24-h total drug exposure above the minimum inhibitory concentration (AUC24/MIC) in plasma and comparing simulated concentrations versus MIC in peritoneal fluid. RESULTS Fat-free mass (FFM) was retained in the final model of caspofungin, reporting a total clearance (standard deviation) of 0.78 (0.17) L/h and a central volume of distribution of 9.36 (2.61) L. The peritoneal fluid/plasma ratio of caspofungin was 33% on the first day of therapy (AUC24 73.92 (21.93) and 26.03 (9.88) mg*h/L for plasma and peritoneal data, respectively). Dosing simulations supported the use of standard dosing regimens for patients with an FFM < 50 kg for the most susceptible candida species (C. albicans and C. glabrata). For higher FFM, a loading dose of 70 or 100 mg, with a maintenance dose of 70 mg, reached AUC24/MIC ratios for these species. CONCLUSIONS There is moderate penetration of caspofungin into the peritoneal cavity (33%). For empirical treatment, a dose escalation of 100 mg loading dose on the first day is suggested for higher FFM to ensure adequate concentrations into the abdominal cavity for the most susceptible candida species.
Collapse
|
11
|
Garbez N, Mbatchi LC, Maseda E, Luque S, Grau S, Wallis SC, Muller L, Lipman J, Roberts JA, Lefrant JY, Roger C. A Loading Micafungin Dose in Critically Ill Patients Undergoing Continuous Venovenous Hemofiltration or Continuous Venovenous Hemodiafiltration: A Population Pharmacokinetic Analysis. Ther Drug Monit 2021; 43:747-755. [PMID: 33560097 DOI: 10.1097/ftd.0000000000000874] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 01/18/2021] [Indexed: 11/27/2022]
Abstract
BACKGROUND In this study, the authors aimed to compare the pharmacokinetics (PK) of micafungin in critically ill patients receiving continuous venovenous hemofiltration (CVVH, 30 mL·kg-1·h-1) with those of patients receiving equidoses of hemodiafiltration (CVVHDF, 15 mL·kg-1·h-1 + 15 mL·kg-1·h-1) and determine the optimal dosing regimen using the developed model. METHODS Patients with septic shock undergoing continuous renal replacement therapy and receiving a conventional dose of 100 mg micafungin once daily were eligible for inclusion. Total micafungin plasma concentrations from 8 CVVH sessions and 8 CVVHDF sessions were subjected to a population PK analysis using Pmetrics. Validation of the model performance was reinforced by external validation. Monte Carlo simulations were performed considering the total ratio of free drug area under the curve (AUC) over 24 hours to the minimum inhibitory concentration (MIC) (AUC0-24/MIC) in plasma. RESULTS The median total body weight (min-max) was 94.8 (66-138) kg. Micafungin concentrations were best described by a 2-compartmental PK model. No covariates, including continuous renal replacement therapy modality (CVVH or CVVHDF), were retained in the final model. The mean parameter estimates (SD) were 0.96 (0.32) L/h for clearance and 14.8 (5.3) L for the central compartment volume. External validation confirmed the performance of the developed PK model. Dosing simulations did not support the use of standard 100 mg daily dosing, except for Candida albicans on the second day of therapy. A loading dose of 150 mg followed by 100 mg daily reached the probability of target attainment for all C. albicans and C. glabrata, but not for C. krusei and C. parapsilosis. CONCLUSIONS No difference was observed in micafungin PK between equidoses of CVVH and CVVHDF. A loading dose of 150 mg is required to achieve the PK/PD target for less susceptible Candida species from the first day of therapy.
Collapse
Affiliation(s)
- Nicolas Garbez
- Service des Réanimations, Pôle Anesthésie Réanimation Douleur Urgence, Centre Hospitalier Universitaire (CHU) Nîmes, Nîmes
- Laboratoire de Pharmacocinétique, Faculté de Pharmacie, Univ Montpellier
- Equipe d'accueil 2992 Caractéristiques Féminines des Interfaces Vasculaires (IMAGINE), Faculté de médecine, Univ Montpellier, Montpellier
| | - Litaty C Mbatchi
- Laboratoire de Pharmacocinétique, Faculté de Pharmacie, Univ Montpellier
- Laboratoire de Biochimie, CHU Nîmes, Hôpital Carémeau, Nîmes, France
| | - Emilio Maseda
- Department of Anesthesia and Surgical Intensive Care, Hospital Universitario La Paz,
- Departamento de Cirugía, Universidad Autónoma de Madrid, Madrid
| | - Sonia Luque
- Pharmacy Department, Hospital del Mar, Parc de Salut Mar, Barcelona, Spain
- Pharmacy Department, Hospital del Mar, Infectious Pathology and Antimicrobial Research Group (IPAR), Institut Hospital del Mar d Investigacions Médiques (IMIM), Universitat Autónoma de Barcelona (UAB), CEXS-Universitat Pompeu Fabra, Barcelona, Spain
| | - Santiago Grau
- Pharmacy Department, Hospital del Mar, Parc de Salut Mar, Barcelona, Spain
- Pharmacy Department, Hospital del Mar, Infectious Pathology and Antimicrobial Research Group (IPAR), Institut Hospital del Mar d Investigacions Médiques (IMIM), Universitat Autónoma de Barcelona (UAB), CEXS-Universitat Pompeu Fabra, Barcelona, Spain
| | - Steven C Wallis
- UQ Centre for Clinical Research, the University of Queensland
| | - Laurent Muller
- Service des Réanimations, Pôle Anesthésie Réanimation Douleur Urgence, Centre Hospitalier Universitaire (CHU) Nîmes, Nîmes
- Equipe d'accueil 2992 Caractéristiques Féminines des Interfaces Vasculaires (IMAGINE), Faculté de médecine, Univ Montpellier, Montpellier
| | - Jeffrey Lipman
- Equipe d'accueil 2992 Caractéristiques Féminines des Interfaces Vasculaires (IMAGINE), Faculté de médecine, Univ Montpellier, Montpellier
- UQ Centre for Clinical Research, the University of Queensland
- Department of Intensive Care Medicine, Royal Brisbane and Women's Hospital
| | - Jason A Roberts
- Equipe d'accueil 2992 Caractéristiques Féminines des Interfaces Vasculaires (IMAGINE), Faculté de médecine, Univ Montpellier, Montpellier
- UQ Centre for Clinical Research, the University of Queensland
- Department of Intensive Care Medicine, Royal Brisbane and Women's Hospital
- Centre for Translational Anti-infective Pharmacodynamics, School of Pharmacy, the University of Queensland ; and
- Pharmacy Department, Royal Brisbane and Women's Hospital, Brisbane, Australia
| | - Jean-Yves Lefrant
- Service des Réanimations, Pôle Anesthésie Réanimation Douleur Urgence, Centre Hospitalier Universitaire (CHU) Nîmes, Nîmes
- Equipe d'accueil 2992 Caractéristiques Féminines des Interfaces Vasculaires (IMAGINE), Faculté de médecine, Univ Montpellier, Montpellier
| | - Claire Roger
- Service des Réanimations, Pôle Anesthésie Réanimation Douleur Urgence, Centre Hospitalier Universitaire (CHU) Nîmes, Nîmes
- Equipe d'accueil 2992 Caractéristiques Féminines des Interfaces Vasculaires (IMAGINE), Faculté de médecine, Univ Montpellier, Montpellier
- Pharmacy Department, Hospital del Mar, Infectious Pathology and Antimicrobial Research Group (IPAR), Institut Hospital del Mar d Investigacions Médiques (IMIM), Universitat Autónoma de Barcelona (UAB), CEXS-Universitat Pompeu Fabra, Barcelona, Spain
| |
Collapse
|
12
|
Andrews L, Benken S, Tan X, Wenzler E. Pharmacokinetics and dialytic clearance of apixaban during in vitro continuous renal replacement therapy. BMC Nephrol 2021; 22:45. [PMID: 33516188 PMCID: PMC7847018 DOI: 10.1186/s12882-021-02248-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 01/19/2021] [Indexed: 12/26/2022] Open
Abstract
Background To evaluate the transmembrane clearance (CLTM) of apixaban during modeled in vitro continuous renal replacement therapy (CRRT), assess protein binding and circuit adsorption, and provide initial dosing recommendations. Methods Apixaban was added to the CRRT circuit and serial pre-filter bovine blood samples were collected along with post-filter blood and effluent samples. All experiments were performed in duplicate using continuous veno-venous hemofiltration (CVVH) and hemodialysis (CVVHD) modes, with varying filter types, flow rates, and point of CVVH replacement fluid dilution. Concentrations of apixaban and urea were quantified via liquid chromatography-tandem mass spectrometry. Plasma pharmacokinetic parameters for apixaban were estimated via noncompartmental analysis. CLTM was calculated via the estimated area under the curve (AUC) and by the product of the sieving/saturation coefficient (SC/SA) and flow rate. Two and three-way analysis of variance (ANOVA) models were built to assess the effects of mode, filter type, flow rate, and point of dilution on CLTM by each method. Optimal doses were suggested by matching the AUC observed in vitro to the systemic exposure demonstrated in Phase 2/3 studies of apixaban. Linear regression was utilized to provide dosing estimations for flow rates from 0.5–5 L/h. Results Mean adsorption to the HF1400 and M150 filters differed significantly at 38 and 13%, respectively, while mean (± standard deviation, SD) percent protein binding was 70.81 ± 0.01%. Effect of CVVH point of dilution did not differ across filter types, although CLTM was consistently significantly higher during CRRT with the HF1400 filter compared to the M150. The three-way ANOVA demonstrated improved fit when CLTM values calculated by AUC were used (adjusted R2 0.87 vs. 0.52), and therefore, these values were used to generate optimal dosing recommendations. Linear regression revealed significant effects of filter type and flow rate on CLTM by AUC, suggesting doses of 2.5–7.5 mg twice daily (BID) may be needed for flow rates ranging from 0.5–5 L/h, respectively. Conclusion For CRRT flow rates most commonly employed in clinical practice, the standard labeled 5 mg BID dose of apixaban is predicted to achieve target systemic exposure thresholds. The safety and efficacy of these proposed dosing regimens warrants further investigation in clinical studies. Supplementary Information The online version contains supplementary material available at 10.1186/s12882-021-02248-7.
Collapse
Affiliation(s)
- Lauren Andrews
- College of Pharmacy, University of Illinois at Chicago, 833 South Wood Street, Room 164 (M/C 886),, Chicago, IL, 60612, USA
| | - Scott Benken
- College of Pharmacy, University of Illinois at Chicago, 833 South Wood Street, Room 164 (M/C 886),, Chicago, IL, 60612, USA
| | - Xing Tan
- College of Pharmacy, University of Illinois at Chicago, 833 South Wood Street, Room 164 (M/C 886),, Chicago, IL, 60612, USA
| | - Eric Wenzler
- College of Pharmacy, University of Illinois at Chicago, 833 South Wood Street, Room 164 (M/C 886),, Chicago, IL, 60612, USA.
| |
Collapse
|
13
|
Baud FJ, Jullien V, Abarou T, Pilmis B, Raphalen JH, Houzé P, Carli P, Lamhaut L. Elimination of fluconazole during continuous renal replacement therapy. An in vitro assessment. Int J Artif Organs 2020; 44:453-464. [DOI: 10.1177/0391398820976144] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Introduction: Continuous renal replacement therapy (CRRT) efficiently eliminates fluconazole. However, the routes of elimination were not clarified. Adsorption of fluconazole by filters is a pending question. We studied the elimination of fluconazole in a model mimicking a session of CRRT in humans using the NeckEpur® model. Two filters were studied. Methods: The AV1000®-polysulfone filter with the Multifiltrate Pro. Fresenius and the ST150®-polyacrylonitrile filter with the Prismaflex. Baxter-Gambro were studied. Continuous filtration used a flowrate of 2.5 L/h in post-dilution only. Session were made in duplicate. Routes of elimination were assessed using the NeckEpur® model. Results: The mean measured initial fluconazole concentration (mean ± SD) for the four sessions in the central compartment (CC) was 14.9 ± 0.2 mg/L. The amount eliminated from the CC at the end of 6 h-session at a 2.5 L/h filtration flowrate for the AV1000®-polysulfone and the ST150®-polyacrylonitrile filters were 90%–93% and 96%–94%, respectively; the clearances from the central compartment (CC) were 2.5–2.6 and 2.4–2.3 L/h, respectively. The means of the instantaneous sieving coefficient were 0.94%–0.91% and 0.99%–0.91%, respectively. The percentages of the amount eliminated from the CC by filtration/adsorption were 100/0%–95/5% and 100/0%–100/0%, respectively. Conclusion: Neither the ST150®-polyacrylonitrile nor the AV1000®-polysulfone filters result in any significant adsorption of fluconazole.
Collapse
Affiliation(s)
- Frédéric J Baud
- Department of Anesthesiology and Intensive Care Medicine, Adult Intensive Care Unit, Necker Hospital, Paris, France
- EA7323 Evaluation of Therapeutics and Pharmacology in Perinatality and Pediatrics, Hôpitaux Universitaires Cochin—Broca—Hôtel Dieu, Site Tarnier, Université Paris Descartes, Paris, France
- University Paris Diderot, Paris, France
| | - Vincent Jullien
- Assistance Publique—Hôpitaux de Paris, Groupe Hospitalier Paris Seine-Saint-Denis, Bobigny, France
- Molecular Mycology Unit-CNRS UMR 2000, Pasteur Institute, Paris, France
| | - Tarik Abarou
- Laboratoire de Chimie Analytique, Faculté de Pharmacie, Université Paris Descartes, Paris, France
| | - Benoît Pilmis
- Equipe Mobile de Microbiologie Clinique, Groupe Hospitalier Paris Saint-Joseph, Paris, France
- Service de Maladies Infectieuses et Tropicales, Hôpital Necker-Enfants Malades, Paris, France
- Institut Micalis, UMR 1319, Université Paris-Saclay, INRAe, AgroParisTech, Chatenay-Malabry, France
| | - Jean-Herlé Raphalen
- Department of Anesthesiology and Intensive Care Medicine, SAMU de Paris, Adult Intensive Care Unit, Necker Hospital, Paris, France
| | - Pascal Houzé
- Laboratoire de Biochimie, Hôpital Universitaire Necker-Enfants Malades, Assistance Publique—Hôpitaux de Paris, Paris, France
- Unité de Technologies Chimiques et Biologiques Pour la Santé, CNRS UMR8258 – U1022, Faculté de Pharmacie Paris Descartes, Paris, France
- Université Paris Descartes, Paris, France
| | - Pierre Carli
- Department of Anesthesiology and Intensive Care Medicine, SAMU de Paris, Adult Intensive Care Unit, Necker Hospital, Paris, France
- Université Paris Descartes, Paris, France
| | - Lionel Lamhaut
- Department of Anesthesiology and Intensive Care Medicine, SAMU de Paris, Adult Intensive Care Unit, Necker Hospital, Paris, France
- Université Paris Descartes, Paris, France
| |
Collapse
|
14
|
Impact of Loading Dose of Caspofungin in Pharmacokinetic-Pharmacodynamic Target Attainment for Severe Candidiasis Infections in Patients in Intensive Care Units: the CASPOLOAD Study. Antimicrob Agents Chemother 2020; 64:AAC.01545-20. [PMID: 32958709 DOI: 10.1128/aac.01545-20] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 09/13/2020] [Indexed: 12/14/2022] Open
Abstract
This study evaluated the impact of a high loading dose of caspofungin (CAS) on the pharmacokinetics of CAS and the pharmacokinetic-pharmacodynamic (PK-PD) target attainment in patients in intensive care units (ICU). ICU patients requiring CAS treatment were prospectively included to receive a 140-mg loading dose of CAS. Plasma CAS concentrations (0, 2, 3, 5, 7, and 24 h postinfusion) were determined to develop a two-compartmental population PK model. A Monte Carlo simulation was performed and the probabilities of target attainment (PTAs) were computed using previously published MICs. PK-PD targets were ratios of area under the concentration-time curve from 0 to 24 h (AUC0-24h) divided by the MIC (AUC0-24h/MIC) of 250, 450, and 865 and maximal concentration (C max) divided by the MIC (C max/MIC) of 5, 10, 15, and 20. Among 13 included patients, CAS clearance was 0.98 ± 0.13 liters/h and distribution volumes were V1 = 9.0 ± 1.2 liters and V2 = 11.9 ± 2.9 liters. Observed and simulated CAS AUC0-24h were 79.1 (IQR 55.2; 108.4) and 81.3 (IQR 63.8; 102.3) mg · h/liter during the first 24 h of therapy, which is comparable to values usually observed in ICU patients at day 3 or later. PTAs were >90% for MICs of 0.19 and 0.5 mg/liter, considering AUC/MIC = 250 and C max/MIC = 10 as PK-PD targets, respectively. Thus, a high loading dose of CAS (140 mg) increased CAS exposure in the first 24 h of therapy, allowing early achievement of PK-PD targets for most Candida strains. Such a strategy seems to improve treatment efficacy, though further studies are needed to assess the impact on clinical outcomes. (This study has been registered at ClinicalTrials.gov under identifier NCT02413892.).
Collapse
|
15
|
Population Pharmacokinetics of Caspofungin among Extracorporeal Membrane Oxygenation Patients during the Postoperative Period of Lung Transplantation. Antimicrob Agents Chemother 2020; 64:AAC.00687-20. [PMID: 32816724 PMCID: PMC7577146 DOI: 10.1128/aac.00687-20] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 07/11/2020] [Indexed: 12/18/2022] Open
Abstract
Little is known about the influence of extracorporeal membrane oxygenation (ECMO) on the pharmacokinetics (PK) of caspofungin. The aim of this study was to describe population PK of caspofungin in patients with and without ECMO during the postoperative period of lung transplantation (LTx) and to investigate covariates influencing caspofungin PK. We compared ECMO patients with non-ECMO patients, and patients before and after ECMO weaning as self-controls, to analyzed changes in caspofungin PK. Eight serial blood samples were collected from each patient for PK analysis. The population PK of caspofungin was described using nonlinear mixed-effects modeling. Twelve ECMO and 7 non-ECMO lung transplant recipients were enrolled in this study. None of the patients received renal replacement therapy during any part of the study period. The PK of caspofungin was best described by a two-compartment model. There were no significant differences in the PK parameters and concentrations of caspofungin among the ECMO, non-ECMO, and self-control group. In the final covariate model, we found that there was a significant association between the male gender and increased distribution volume, that a higher sequential organ failure assessment score was related to an increase in intercompartmental clearance, and that a longer operative time was related to an increase in clearance and the volume of distribution. ECMO did not have a significant impact on the PK of caspofungin in patients after LTx. Some factors were identified as statistically significant covariates related to the PK of caspofungin; however, their impact on clinical practice of caspofungin needs to be investigated further in more studies. (This study has been registered at ClinicalTrials.gov under identifier NCT03766282.).
Collapse
|
16
|
Borsuk-De Moor A, Sysiak-Sławecka J, Rypulak E, Borys M, Piwowarczyk P, Raszewski G, Onichimowski D, Czuczwar M, Wiczling P. Nonstationary Pharmacokinetics of Caspofungin in ICU Patients. Antimicrob Agents Chemother 2020; 64:e00345-20. [PMID: 32601169 PMCID: PMC7449161 DOI: 10.1128/aac.00345-20] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 06/19/2020] [Indexed: 12/21/2022] Open
Abstract
Standard dosing of caspofungin in critically ill patients has been reported to result in lower drug exposure, which can lead to subtherapeutic 24-h area under the curve to MIC (AUC0-24/MIC) ratios. The aim of the study was to investigate the population pharmacokinetics of caspofungin in a cohort of 30 intensive care unit patients with a suspected invasive fungal infection, with a large proportion of patients requiring extracorporeal therapies, including extracorporeal membrane oxygenation (ECMO) and continuous renal replacement therapy (CRRT). Caspofungin was administered as empirical 70 mg antifungal therapy administered intravenously (i.v.) on the first day and at 50 mg i.v. on the consecutive days once daily, and the concentrations were measured after three subsequent doses. Population pharmacokinetic data were analyzed by nonlinear mixed-effects modeling. The pharmacokinetics of caspofungin was described by two-compartment model. A particular drift of the individual clearance (CL) and the volume of distribution of the central compartment (V1) with time was discovered and described by including three separate typical values of CL and V1 in the final model. The typical CL values at days 1, 2, and 3 were 0.563 liters/h (6.7% relative standard error [6.7%RSE]), 0.737 liters/h (6.1%RSE), and 1.01 liters/h (9.1%RSE), respectively. The change in parameters with time was not explained by any of the recorded covariates. Increasing clearance with subsequent doses was associated with a clinically relevant decrease in caspofungin exposure (>20%). The use of ECMO, CRRT, albumin concentration, and other covariates did not significantly affect caspofungin pharmacokinetics. Additional pharmacokinetic studies are urgently required to assess the possible lack of acquiring steady-state and suboptimal concentrations of the drug in critically ill patients. (This study has been registered at ClinicalTrials.gov under identifier NCT03399032.).
Collapse
Affiliation(s)
- Agnieszka Borsuk-De Moor
- Department of Biopharmaceutics and Pharmacodynamics, Medical University of Gdańsk, Gdańsk, Poland
| | - Justyna Sysiak-Sławecka
- 2nd Department of Anaesthesiology and Intensive Therapy, Medical University of Lublin, Lublin, Poland
| | - Elżbieta Rypulak
- 2nd Department of Anaesthesiology and Intensive Therapy, Medical University of Lublin, Lublin, Poland
| | - Michał Borys
- 2nd Department of Anaesthesiology and Intensive Therapy, Medical University of Lublin, Lublin, Poland
| | - Paweł Piwowarczyk
- 2nd Department of Anaesthesiology and Intensive Therapy, Medical University of Lublin, Lublin, Poland
| | - Grzegorz Raszewski
- Department of Physiopathology, Institute of Rural Health, Lublin, Poland
| | - Dariusz Onichimowski
- Department of Anaesthesiology and Intensive Therapy, Faculty of Medicine, University of Warmia and Mazury, Olsztyn, Poland
| | - Mirosław Czuczwar
- 2nd Department of Anaesthesiology and Intensive Therapy, Medical University of Lublin, Lublin, Poland
| | - Paweł Wiczling
- Department of Biopharmaceutics and Pharmacodynamics, Medical University of Gdańsk, Gdańsk, Poland
| |
Collapse
|
17
|
Li L, Li X, Xia Y, Chu Y, Zhong H, Li J, Liang P, Bu Y, Zhao R, Liao Y, Yang P, Lu X, Jiang S. Recommendation of Antimicrobial Dosing Optimization During Continuous Renal Replacement Therapy. Front Pharmacol 2020; 11:786. [PMID: 32547394 PMCID: PMC7273837 DOI: 10.3389/fphar.2020.00786] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 05/12/2020] [Indexed: 12/13/2022] Open
Abstract
Continuous Renal Replacement Therapy (CRRT) is more and more widely used in patients for various indications recent years. It is still intricate for clinicians to decide a suitable empiric antimicrobial dosing for patients receiving CRRT. Inappropriate doses of antimicrobial agents may lead to treatment failure or drug resistance of pathogens. CRRT factors, patient individual conditions and drug pharmacokinetics/pharmacodynamics are the main elements effecting the antimicrobial dosing adjustment. With the development of CRRT techniques, some antimicrobial dosing recommendations in earlier studies were no longer appropriate for clinical use now. Here, we reviewed the literatures involving in new progresses of antimicrobial dosages, and complied the updated empirical dosing strategies based on CRRT modalities and effluent flow rates. The following antimicrobial agents were included for review: flucloxacillin, piperacillin/tazobactam, ceftriaxone, ceftazidime/avibactam, cefepime, ceftolozane/tazobactam, sulbactam, meropenem, imipenem, panipenem, biapenem, ertapenem, doripenem, amikacin, ciprofloxacin, levofloxacin, moxifloxacin, clindamycin, azithromycin, tigecycline, polymyxin B, colistin, vancomycin, teicoplanin, linezolid, daptomycin, sulfamethoxazole/trimethoprim, fluconazole, voriconazole, posaconzole, caspofungin, micafungin, amphotericin B, acyclovir, ganciclovir, oseltamivir, and peramivir.
Collapse
Affiliation(s)
- Lu Li
- Department of Pharmacy, College of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Xin Li
- Department of Pharmacy, Second Hospital of Jilin University, Changchun, China
| | - Yanzhe Xia
- Department of Pharmacy, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yanqi Chu
- Department of Pharmacy, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Haili Zhong
- Department of Pharmacy, First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jia Li
- Department of Pharmacy, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Pei Liang
- Department of Pharmacy, Nanjing Drum Tower Hospital, Nanjing, China
| | - Yishan Bu
- Department of Pharmacy, Tianjin First Central Hospital, Tianjin, China
| | - Rui Zhao
- School of Medicine, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China
| | - Yun Liao
- Department of Pharmacy, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ping Yang
- Department of Pharmacy, College of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Xiaoyang Lu
- Department of Pharmacy, College of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Saiping Jiang
- Department of Pharmacy, College of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| |
Collapse
|
18
|
Abstract
Neonates and immunosuppressed/immunocompromised pediatric patients are at high risk of invasive fungal diseases. Appropriate antifungal selection and optimized dosing are imperative to the successful prevention and treatment of these life-threatening infections. Conventional amphotericin B was the mainstay of antifungal therapy for many decades, but dose-limiting nephrotoxicity and infusion-related adverse events impeded its use. Despite the development of several new antifungal classes and agents in the past 20 years, and their now routine use in at-risk pediatric populations, data to guide the optimal dosing of antifungals in children are limited. This paper reviews the spectra of activity for approved antifungal agents and summarizes the current literature specific to pediatric patients regarding pharmacokinetic/pharmacodynamic data, dosing, and therapeutic drug monitoring.
Collapse
Affiliation(s)
- Kevin J Downes
- Division of Infectious Diseases, Children's Hospital of Philadelphia, 2716 South Street, Suite 10360, Philadelphia, PA, 19146, USA.
- Center for Pediatric Clinical Effectiveness, Children's Hospital of Philadelphia, Philadelphia, PA, USA.
- Center for Clinical Pharmacology, Children's Hospital of Philadelphia, Philadelphia, PA, USA.
- Department of Pediatrics, Perelman School of Medicine of the University of Pennsylvania, Philadelphia, PA, USA.
| | - Brian T Fisher
- Division of Infectious Diseases, Children's Hospital of Philadelphia, 2716 South Street, Suite 10360, Philadelphia, PA, 19146, USA
- Center for Pediatric Clinical Effectiveness, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pediatrics, Perelman School of Medicine of the University of Pennsylvania, Philadelphia, PA, USA
| | - Nicole R Zane
- Center for Clinical Pharmacology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| |
Collapse
|
19
|
Niu CH, Xu H, Gao LL, Nie YM, Xing LP, Yu LP, Wu SL, Wang Y. Population Pharmacokinetics of Caspofungin and Dosing Optimization in Children With Allogeneic Hematopoietic Stem Cell Transplantation. Front Pharmacol 2020; 11:184. [PMID: 32194415 PMCID: PMC7061854 DOI: 10.3389/fphar.2020.00184] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 02/10/2020] [Indexed: 01/12/2023] Open
Abstract
Caspofungin is the first echinocandin antifungal agent that licented for pediatric use in invasive candidiasis and aspergillosis. In this study, we evaluated the population pharmacokinetics of caspofungin and investigate appropriate dosing optimization against Candida spp. in children with allogeneic hematopoietic stem cell transplantation (allo-HSCT) in order to improve therapeutic efficacy. All participants received a recommended caspofungin 70 mg/m2 loading dose followed by 50 mg/m2 maintenance dose. A one-compartment model with first-order elimination was best fitted the data from 48 pediatric patients. Body surface area and aspartate aminotransferase had significant influence on caspofungin clearance from covariate analysis. Our results reviewed that dose adjustment is not necessary in patients with mild liver dysfunction. Monte Carlo simulations were performed using pharmacokinetic data from our study to evaluate the probability of target attainment (PTA) of caspofungin regimen in terms of AUC24/MIC targets against Candida spp. The results of simulations predicted that a caspofungin 70 mg/m2 at first dose, 50 mg/m2 of daily dose may have a high probability of successful outcome against C. albicans and C. glabrata whilst 60 mg/m2 maintenance dose was required for fungistatic target against C. parapsilosis but may be not sufficient to achieve optimal fungicidal activity. Caspofungin standard regimen had high probability of successful outcome against C. albicans (MIC ⩽ 0.25 mg/L) and C. glabrata (MIC ⩽ 0.5 mg/L) but insufficient for C. parapsilosis with MIC > 0.25 mg/L. That may provide an evidence based support to caspofungin individualized administration and decrease the risk of therapeutic failure in allo-HSCT pediatric patients.
Collapse
Affiliation(s)
- Chang-He Niu
- Department of Clinical Pharmacy, Wuhan Children's Hospital, Wuhan Maternal and Child Healthcare Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Hua Xu
- Department of Clinical Pharmacy, Wuhan Children's Hospital, Wuhan Maternal and Child Healthcare Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Liu-Liu Gao
- Department of Clinical Pharmacy, Wuhan Children's Hospital, Wuhan Maternal and Child Healthcare Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Ying-Ming Nie
- Department of Cell Therapy and Transplantation Medicine, Wuhan Children' Hospital, Wuhan, China
| | - Li-Peng Xing
- Department of Clinical Pharmacy, Wuhan Children's Hospital, Wuhan Maternal and Child Healthcare Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Li-Peng Yu
- Department of Clinical Pharmacy, Wuhan Children's Hospital, Wuhan Maternal and Child Healthcare Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - San-Lan Wu
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science & Technology (HUST), Wuhan, China
| | - Yang Wang
- Department of Clinical Pharmacy, Wuhan Children's Hospital, Wuhan Maternal and Child Healthcare Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| |
Collapse
|
20
|
Pharmacokinetics and Dialytic Clearance of Isavuconazole During In Vitro and In Vivo Continuous Renal Replacement Therapy. Antimicrob Agents Chemother 2019:AAC.01085-19. [PMID: 31527035 DOI: 10.1128/aac.01085-19] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The pharmacokinetics (PK) and dialytic clearance of isavuconazole in vitro and in 7 solid organ transplant patients undergoing continuous renal replacement therapy (CRRT) were evaluated. In vivo, mean (± SD) plasma PK parameters of isavuconazole were: C max 4.00±1.45 mg/L, C min 1.76±0.76 mg/L, t ½ 48.36±29.78 h, Vss 288.78±182.11 L, CLss 4.85±3.79 L/h, and AUC 54.01±20.98 mg ⋅ h/L. Transmembrane clearance represented just 0.7% of the total isavuconazole clearance. These data suggest that isavuconazole is not readily removed by CRRT and no dose adjustments are necessary.
Collapse
|
21
|
Antimicrobial Disposition During Pediatric Continuous Renal Replacement Therapy Using an Ex Vivo Model. Crit Care Med 2019; 47:e767-e773. [DOI: 10.1097/ccm.0000000000003895] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
22
|
Roger C, Roberts JA, Muller L. Clinical Pharmacokinetics and Pharmacodynamics of Oxazolidinones. Clin Pharmacokinet 2019; 57:559-575. [PMID: 29063519 DOI: 10.1007/s40262-017-0601-x] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Oxazolidinones are a class of synthetic antimicrobial agents with potent activity against a wide range of multidrug-resistant Gram-positive pathogens including methicillin-resistant Staphylococcus aureus and vancomycin-resistant enterococci. Oxazolidinones exhibit their antibacterial effects by inhibiting protein synthesis acting on the ribosomal 50S subunit of the bacteria and thus preventing formation of a functional 70S initiation complex. Currently, two oxazolidinones have been approved by the US Food and Drug Administration: linezolid and more recently tedizolid. Other oxazolidinones are currently under investigation in clinical trials. These antimicrobial agents exhibit a favourable pharmacokinetic profile with an excellent bioavailability and a good tissue and organ penetration. In-vitro susceptibility studies have shown that oxazolidinones are bacteriostatic against enterococci and staphylococci, and bactericidal for the majority of strains of streptococci. In the context of emergence of resistance to glycopeptides, oxazolidinones have become an effective alternative to vancomycin treatment frequently associated with nephrotoxicity. However, oxazolidinones, and linezolid in particular, are associated with significant adverse events, myelosuppression representing the main unfavourable side effect. More recently, tedizolid has been shown to effectively treat acute bacterial skin and skin structure infections. This newer oxazolidinone offers the advantages of once-daily dosing and a better safety profile in healthy volunteer studies (fewer gastrointestinal and haematological side effects). The potential use of tedizolid for other infections that could require longer therapy warrants further studies for positioning this new oxazolidinone in the available antimicrobial armamentarium. Moreover, other oxazolidinones are currently under active investigation.
Collapse
Affiliation(s)
- Claire Roger
- Department of Anesthesiology, Intensive Care, Pain and Emergency Medicine, Nîmes University Hospital, Place du Professeur Robert Debré, 30 029, Nîmes cedex 9, France.
- EA 2992, Faculty of Medicine, Montpellier-Nimes University, Nîmes, France.
- Burns Trauma and Critical Care Research Centre, The University of Queensland, Brisbane, QLD, Australia.
| | - Jason A Roberts
- Burns Trauma and Critical Care Research Centre, The University of Queensland, Brisbane, QLD, Australia
- School of Pharmacy, The University of Queensland, Brisbane, QLD, Australia
- Department of Intensive Care Medicine, Royal Brisbane and Womens' Hospital, Brisbane, QLD, Australia
| | - Laurent Muller
- Department of Anesthesiology, Intensive Care, Pain and Emergency Medicine, Nîmes University Hospital, Place du Professeur Robert Debré, 30 029, Nîmes cedex 9, France
- EA 2992, Faculty of Medicine, Montpellier-Nimes University, Nîmes, France
| |
Collapse
|
23
|
A Guide to Understanding Antimicrobial Drug Dosing in Critically Ill Patients on Renal Replacement Therapy. Antimicrob Agents Chemother 2019; 63:AAC.00583-19. [PMID: 31109983 DOI: 10.1128/aac.00583-19] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
A careful management of antimicrobials is essential in the critically ill with acute kidney injury, especially if renal replacement therapy is required. Acute kidney injury may lead per se to clinically significant modifications of drugs' pharmacokinetic parameters, and the need for renal replacement therapy represents a further variable that should be considered to avoid inappropriate antimicrobial therapy. The most important pharmacokinetic parameters, useful to determine the significance of extracorporeal removal of a given drug, are molecular weight, protein binding, and distribution volume. In many cases, the extracorporeal removal of antimicrobials can be relevant, with a consistent risk of underdosing-related treatment failure and/or potential onset of bacterial resistance. It should also be taken into account that renal replacement therapies are often not standardized in critically ill patients, and their impact on plasma drug concentrations may substantially vary in relation to membrane characteristics, treatment modality, and delivered dialysis dose. Thus, in this clinical scenario, the knowledge of the pharmacokinetic and pharmacodynamic properties of different antimicrobial classes is crucial to tailor maintenance dose and/or time interval according to clinical needs. Finally, especially for antimicrobials known for a tight therapeutic range, therapeutic drug monitoring is strongly suggested to guide dosing adjustment in complex clinical settings, such as septic patients with acute kidney injury undergoing renal replacement therapy.
Collapse
|
24
|
Honore PM, De Bels D, Attou R, Redant S, Gallerani A, Kashani K. Adsorption and caspofungin dosing during continuous renal replacement therapy. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2019; 23:240. [PMID: 31266525 PMCID: PMC6607527 DOI: 10.1186/s13054-019-2526-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Accepted: 06/24/2019] [Indexed: 01/15/2023]
Affiliation(s)
- Patrick M Honore
- ICU Department, Centre Hospitalier Universitaire Brugmann-Brugmann University Hospital, Place Van Gehuchtenplein,4, 1020, Brussels, Belgium.
| | - David De Bels
- ICU Department, Centre Hospitalier Universitaire Brugmann-Brugmann University Hospital, Place Van Gehuchtenplein,4, 1020, Brussels, Belgium
| | - Rachid Attou
- ICU Department, Centre Hospitalier Universitaire Brugmann-Brugmann University Hospital, Place Van Gehuchtenplein,4, 1020, Brussels, Belgium
| | - Sebastien Redant
- ICU Department, Centre Hospitalier Universitaire Brugmann-Brugmann University Hospital, Place Van Gehuchtenplein,4, 1020, Brussels, Belgium
| | - Andrea Gallerani
- ICU Department, Centre Hospitalier Universitaire Brugmann-Brugmann University Hospital, Place Van Gehuchtenplein,4, 1020, Brussels, Belgium
| | - Kianoush Kashani
- Division of Nephrology and Hypertension, Division of Pulmonary and Critical Care Medicine, Mayo Clinic, Rochester, USA
| |
Collapse
|
25
|
Jang SM, Hough G, Mueller BA. Ex vivo Rezafungin Adsorption and Clearance During Continuous Renal Replacement Therapy. Blood Purif 2018; 46:214-219. [PMID: 30048960 DOI: 10.1159/000489212] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 04/12/2018] [Indexed: 12/14/2022]
Abstract
BACKGROUND/AIMS To determine adsorption and transmembrane clearances (CLTM) of rezafungin, a novel long-acting echinocandin, in continuous venovenous hemofiltration (CVVH). METHODS A validated ex vivo bovine blood CVVH model using polysulfone and AN69 hemodiafilters was used to evaluate urea and rezafungin CLTM at 3 different ultrafiltrate flow rates. Rezafungin adsorption to the CRRT apparatus was determined for each hemodiafilter. RESULTS The sieving coefficient (SC) from CVVH with 3 different ultrafiltrate flow rates was 0 for both HF1400 and Multiflow-150 hemodiafilters, while urea SC was approximately 1 at all flow rates. Hemodiafilter type and ultrafiltrate flow rate did not influence CLTM. Rezafungin adsorption to the CVVH apparatus was not observed for either hemodiafilter. CONCLUSION Rezafungin is not removed by CVVH by membrane adsorption or via CLTM. Ultrafiltrate flow rates and hemodiafilter types are unlikely to influence rezafungin CLTM. No dosage adjustment of rezafungin is likely required for critically ill patients receiving CVVH.
Collapse
Affiliation(s)
- Soo Min Jang
- Department of Pharmacy Practice, Loma Linda University School of Pharmacy, Loma Linda, California, USA
| | | | - Bruce A Mueller
- Department of Clinical Pharmacy, University of Michigan College of Pharmacy, Ann Arbor, Michigan, USA
| |
Collapse
|
26
|
Yeoh SF, Lee TJ, Chew KL, Lin S, Yeo D, Setia S. Echinocandins for management of invasive candidiasis in patients with liver disease and liver transplantation. Infect Drug Resist 2018; 11:805-819. [PMID: 29881298 PMCID: PMC5985852 DOI: 10.2147/idr.s165676] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Candida species remains one of the most important causes of opportunistic infections worldwide. Invasive candidiasis (IC) is associated with considerable morbidity and mortality in liver disease (LD) patients if not treated promptly. Echinocandins are often recommended as a first-line empirical treatment for managing IC and can especially play a critical role in managing IC in LD patients. However, advanced LD patients are often immunocompromised and critically ill. Hence altered pharmacokinetics, drug interactions as well as tolerance issues of antifungal treatments are a concern in these patients. This comprehensive review examines the epidemiology, risk factors and diagnosis of IC in patients with LD and evaluates differences between three available echinocandins for treating this group of patients.
Collapse
Affiliation(s)
- Siang Fei Yeoh
- Department of Pharmacy, National University Health System, Singapore, Singapore
| | - Tae Jin Lee
- Department of Pharmacy, National University of Singapore, Singapore, Singapore
| | - Ka Lip Chew
- Department of Laboratory Medicine, National University Hospital, Singapore, Singapore
| | - Stephen Lin
- Global Medical Affairs, Asia-Pacific region, Pfizer, Hong Kong, People’s Republic of China
| | - Dennis Yeo
- Medical Affairs, Pfizer Pte. Ltd., Singapore, Singapore
| | - Sajita Setia
- Medical Affairs, Pfizer Pte. Ltd., Singapore, Singapore
| |
Collapse
|
27
|
Roger C, Sasso M, Lefrant JY, Muller L. Antifungal Dosing Considerations in Patients Undergoing Continuous Renal Replacement Therapy. CURRENT FUNGAL INFECTION REPORTS 2018. [DOI: 10.1007/s12281-018-0305-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
28
|
Bellmann R, Smuszkiewicz P. Pharmacokinetics of antifungal drugs: practical implications for optimized treatment of patients. Infection 2017; 45:737-779. [PMID: 28702763 PMCID: PMC5696449 DOI: 10.1007/s15010-017-1042-z] [Citation(s) in RCA: 209] [Impact Index Per Article: 29.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 06/25/2017] [Indexed: 02/08/2023]
Abstract
Introduction Because of the high mortality of invasive fungal infections (IFIs), appropriate exposure to antifungals appears to be crucial for therapeutic efficacy and safety. Materials and methods This review summarises published pharmacokinetic data on systemically administered antifungals focusing on co-morbidities, target-site penetration, and combination antifungal therapy. Conclusions and discussion Amphotericin B is eliminated unchanged via urine and faeces. Flucytosine and fluconazole display low protein binding and are eliminated by the kidney. Itraconazole, voriconazole, posaconazole and isavuconazole are metabolised in the liver. Azoles are substrates and inhibitors of cytochrome P450 (CYP) isoenzymes and are therefore involved in numerous drug–drug interactions. Anidulafungin is spontaneously degraded in the plasma. Caspofungin and micafungin undergo enzymatic metabolism in the liver, which is independent of CYP. Although several drug–drug interactions occur during caspofungin and micafungin treatment, echinocandins display a lower potential for drug–drug interactions. Flucytosine and azoles penetrate into most of relevant tissues. Amphotericin B accumulates in the liver and in the spleen. Its concentrations in lung and kidney are intermediate and relatively low myocardium and brain. Tissue distribution of echinocandins is similar to that of amphotericin. Combination antifungal therapy is established for cryptococcosis but controversial in other IFIs such as invasive aspergillosis and mucormycosis.
Collapse
Affiliation(s)
- Romuald Bellmann
- Clinical Pharmacokinetics Unit, Division of Intensive Care and Emergency Medicine, Department of Internal Medicine I, Medical University of Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria.
| | - Piotr Smuszkiewicz
- Department of Anesthesiology, Intensive Therapy and Pain Treatment, University Hospital, Poznań, Poland
| |
Collapse
|