1
|
Eales B, Helal NA, Vattelana O, Kronfol MM, Fletcher EP, Wang YM, Burckart GJ, Vaidyanathan J, Seo SK, Nounou MI. Population Pharmacokinetics (PopPK) Support for Pediatric Dosing of Biological Products. J Clin Pharmacol 2024; 64:1594-1605. [PMID: 39149895 DOI: 10.1002/jcph.6116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 07/25/2024] [Indexed: 08/17/2024]
Abstract
This study assesses the use of population pharmacokinetics (PopPK) in supporting pediatric dosing of novel biological drug products. The labeling for biologic drug products approved by the US Food and Drug Administration (FDA) from 2002 until 2021 was reviewed to identify those with a pediatric indication. For the drugs with a pediatric indication, the dosing regimen(s) based on age groups, dosing strategy, the use of PopPK to support the dose, and the types of pediatric clinical trials were reviewed. Data were collected from FDA's review documents and product labels on the Drugs@FDA website, and as needed, more clinical trial details were collected from PubMed and clinicaltrials.gov. The role of PopPK analyses in dosing was captured when mentioned in the label or review as playing a role in selecting the approved pediatric dose and/or in verifying the adequacy of the studied dose to support labeling. Between 2002 and 2021, FDA approved 169 biological products, and 78 of 169 (46%) products have an approved indication for which the label contains dosing recommendations for pediatric use. For the 78 products approved in pediatrics, there was a total of 180 clinical trials that included pediatric patients. Phase 3 pediatric trials commonly supported pediatric approval and dosing for the reviewed products (64%, 50/78 products; 56.1%, 101/180 trials). PopPK analyses were reported to play a critical role in dose selection, prediction, and verification for 40 of the 78 products (51%), including informing pediatric dosing in the absence of pediatric data (e.g., drugs approved under animal rule), comparing exposures to the exposure range observed in adults, and informing alternative dosing strategies in certain age or body weight groups. PopPK analyses have been applied in a variety of ways to inform pediatric dosing and support extrapolation from adult data or other pediatric age groups for biologics. Understanding and learning from these past cases on the use of pharmacometrics tools to support pediatric dosing of biological products can inform future pediatric development programs.
Collapse
Affiliation(s)
- Brianna Eales
- Department of Pharmacology and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX, USA
| | - Nada A Helal
- Irma Lerma Rangel School of Pharmacy, Texas A&M Health Science Center, Texas A&M University, College Station, TX, USA
| | - Olivia Vattelana
- The University of Georgia College of Pharmacy , University of Georgia, Athens, GA, USA
| | - Mohamad M Kronfol
- Office of Clinical Pharmacology (OCP), OTS | CDER | FDA, White Oak Campus, Silver Spring, MD, USA
| | - Elimika Pfuma Fletcher
- Office of Clinical Pharmacology (OCP), OTS | CDER | FDA, White Oak Campus, Silver Spring, MD, USA
| | - Yow-Ming Wang
- Office of Clinical Pharmacology (OCP), OTS | CDER | FDA, White Oak Campus, Silver Spring, MD, USA
| | - Gilbert J Burckart
- Office of Clinical Pharmacology (OCP), OTS | CDER | FDA, White Oak Campus, Silver Spring, MD, USA
| | | | - Shirley K Seo
- Office of Clinical Pharmacology (OCP), OTS | CDER | FDA, White Oak Campus, Silver Spring, MD, USA
| | - Mohamed Ismail Nounou
- Office of Clinical Pharmacology (OCP), OTS | CDER | FDA, White Oak Campus, Silver Spring, MD, USA
| |
Collapse
|
2
|
Proctor JR, Wong H. Time-dependent clearance can confound exposure-response analysis of therapeutic antibodies: A comprehensive review of the current literature. Clin Transl Sci 2024; 17:e13676. [PMID: 37905360 PMCID: PMC10766027 DOI: 10.1111/cts.13676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/15/2023] [Accepted: 10/23/2023] [Indexed: 11/02/2023] Open
Abstract
Exposure-response (ER) analysis is used to optimize dose and dose regimens during clinical development. Characterization of relationships between drug exposure and efficacy or safety outcomes can be utilized to make dose adjustments that improve patient response. Therapeutic antibodies typically show predictable pharmacokinetics (PK) but can exhibit clearance that decreases over time due to treatment. Moreover, time-dependent changes in clearance are frequently associated with drug response, with larger decreases in clearance and increased exposure seen in patients who respond to treatment. This often confounds traditional ER analysis, as drug response influences exposure rather than the reverse. In this review, we survey published population PK analyses for reported time-dependent drug clearance effects across 158 therapeutic antibodies approved or in regulatory review. We describe the mechanisms by which time-dependent clearance can arise, and evaluate trends in frequency, magnitude, and time scale of changes in clearance with respect to indication, mechanistic interpretation of time-dependence, and PK modeling techniques employed. We discuss the modeling and simulation strategies commonly used to characterize time-dependent clearance, and examples where time-dependent clearance has impeded ER analysis. A case study using population model simulation was explored to interrogate the impact of time-dependent clearance on ER analysis and how it can lead to spurious conclusions. Overall, time-dependent clearance arises frequently among therapeutic antibodies and has spurred erroneous conclusions in ER analysis. Appropriate PK modeling techniques aid in identifying and characterizing temporal shifts in exposure that may impede accurate ER assessment and successful dose optimization.
Collapse
Affiliation(s)
- Jeffrey R. Proctor
- Faculty of Pharmaceutical SciencesThe University of British ColumbiaVancouverBritish ColumbiaCanada
| | - Harvey Wong
- Faculty of Pharmaceutical SciencesThe University of British ColumbiaVancouverBritish ColumbiaCanada
| |
Collapse
|
3
|
Liao KH, Williams JH, Palani S, Yin D, Meng X. Joint Disposition Properties and Comprehensive Pharmacokinetic Characterization of Antibody–Drug Conjugates. AAPS J 2022; 24:73. [DOI: 10.1208/s12248-022-00717-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 05/03/2022] [Indexed: 11/30/2022] Open
Abstract
AbstractAntibody–drug conjugates (ADCs) comprise 3 distinct parts: a specific antibody carrier (mAb), a linker, and a cytotoxic payload. Typical pharmacokinetic (PK) characterization of ADCs remains fragmented using separate noncompartmental analyses (NCA) of individual analytes, offering little insight into the dynamic relationships among the ADC components, and the safety and efficacy implications. As a result, it is exceedingly difficult to compare ADCs in terms of favorable PK characteristics. Therefore, there is a need for characterizing ADCs using the joint disposition properties critical for understanding the fate of an ADC complex and clinical implications. In this communication, we describe 3 joint disposition metrics (JDMs) for integrated NCA of ADCs based on a combination of common analytes of ADC, payload, conjugated payload, and total mAb. These JDMs were derived, each in a simple form of a ratio between appropriate PK parameters of two analytes, from the presumed drug delivery scheme behind typical ADC designs, in terms of (1) linker stability, (2) therapeutic exposure ratio, and (3) effective drug-to-antibody ratio in vivo. The validity of the JDM-based PK characterization was examined against model-based analyses via their applications to 3 clinical candidates: PF-06650808, PF-06647020, and PF-06664178. For instance, the linker stability estimates for PF-06650808, PF-06647020, and PF-06664178 were 0.31, 0.14, and 0.096, respectively, from the JDM-based analyses vs. 0.23, 0.11, and 0.086 by the model-based approach. Additionally, the JDMs were estimated for a number of FDA-approved or otherwise well-documented ADCs, showing their utilities in comparing ADCs in terms of favorable PK characteristics.
Graphical Abstract
Collapse
|
4
|
Pouzin C, Tod M, Chadjaa M, Fagniez N, Nguyen L. Covariate analysis of tusamitamab ravtansine, a DM4 anti‐CEACAM5 antibody‐drug conjugate, based on first‐in‐human study. CPT Pharmacometrics Syst Pharmacol 2022; 11:384-394. [PMID: 35191618 PMCID: PMC8923727 DOI: 10.1002/psp4.12769] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 01/12/2022] [Accepted: 01/24/2022] [Indexed: 11/17/2022] Open
Abstract
Tusamitamab ravtansine is an anti‐CEACAM5 antibody‐drug conjugate indicated in patients with solid tumors. Based on a previous developed semimechanistic model describing simultaneously pharmacokinetic (PK) of SAR408701, two of its active metabolites: DM4 and methyl‐DM4 and naked antibody, with integration of drug‐to‐antibody data, the main objective of the present analysis was to evaluate covariate’s impact in patients from phase I/II study (n = 254). Demographic and pathophysiologic baseline covariates were explored to explain interindividual variability on each entity PK parameter. Model parameters were estimated with good precision. Five covariates were included in the final PK model: body surface area (BSA), tumor burden, albumin, circulating target, and gender. Comparison of BSA‐adjusted dosing and flat dosing supported the current BSA‐based dosing regimen, to limit under and over exposure in patients with extreme BSA. Overall, this model characterized accurately the PKs of all entities and highlighted sources of PK variability. By integrating mechanistic considerations, this model aimed to improve understanding of the SAR408701 complex disposition while supporting key steps of clinical development.
Collapse
Affiliation(s)
- Clemence Pouzin
- Pharmacokinetics Dynamics and Metabolism Department Sanofi R&D Paris France
- PKPD Modelling Unit Oncology Department EMR3738 University of Claude Bernard Lyon 1 Lyon France
| | - Michel Tod
- PKPD Modelling Unit Oncology Department EMR3738 University of Claude Bernard Lyon 1 Lyon France
| | | | - Nathalie Fagniez
- Pharmacokinetics Dynamics and Metabolism Department Sanofi R&D Paris France
| | - Laurent Nguyen
- Pharmacokinetics Dynamics and Metabolism Department Sanofi R&D Paris France
| |
Collapse
|
5
|
Pouzin C, Gibiansky L, Fagniez N, Chadjaa M, Tod M, Nguyen L. Integrated multiple analytes and semi-mechanistic population pharmacokinetic model of tusamitamab ravtansine, a DM4 anti-CEACAM5 antibody-drug conjugate. J Pharmacokinet Pharmacodyn 2022; 49:381-394. [PMID: 35166967 PMCID: PMC9098589 DOI: 10.1007/s10928-021-09799-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 12/20/2021] [Indexed: 01/01/2023]
Abstract
Tusamitamab ravtansine (SAR408701) is an antibody-drug conjugate (ADC), combining a humanized monoclonal antibody (IgG1) targeting carcinoembryonic antigen-related cell adhesion molecule 5 (CEACAM5) and a potent cytotoxic maytansinoid derivative, DM4, inhibiting microtubule assembly. SAR408701 is currently in clinical development for the treatment of advanced solid tumors expressing CEACAM5. It is administered intravenously as a conjugated antibody with an average Drug Antibody Ratio (DAR) of 3.8. During SAR408701 clinical development, four entities were measured in plasma: conjugated antibody (SAR408701), naked antibody (NAB), DM4 and its methylated metabolite (MeDM4), both being active. Average DAR and proportions of individual DAR species were also assessed in a subset of patients. An integrated and semi-mechanistic population pharmacokinetic model describing the time-course of all entities in plasma and DAR measurements has been developed. All DAR moieties were assumed to share the same drug disposition parameters, excepted for clearance which differed for DAR0 (i.e. NAB entity). The conversion of higher DAR to lower DAR resulted in a DAR-dependent ADC deconjugation and was represented as an irreversible first-order process. Each conjugated antibody was assumed to contribute to DM4 formation. All data were fitted simultaneously and the model developed was successful in describing the pharmacokinetic profile of each entity. Such a structural model could be translated to other ADCs and gives insight of mechanistic processes governing ADC disposition. This framework will further be expanded to evaluate covariates impact on SAR408701 pharmacokinetics and its derivatives, and thus can help identifying sources of pharmacokinetic variability and potential efficacy and safety pharmacokinetic drivers.
Collapse
Affiliation(s)
- Clemence Pouzin
- Sanofi R&D, Pharmacokinetics Dynamics and Metabolism Department, 1 Avenue Pierre Brossolette, Chilly-Mazarin, 91380, Paris, France.
- Oncology department EMR3738, PKPD modelling unit, University of Claude Bernard Lyon 1, Lyon, France.
| | | | - Nathalie Fagniez
- Sanofi R&D, Pharmacokinetics Dynamics and Metabolism Department, 1 Avenue Pierre Brossolette, Chilly-Mazarin, 91380, Paris, France
| | | | - Michel Tod
- Oncology department EMR3738, PKPD modelling unit, University of Claude Bernard Lyon 1, Lyon, France
| | - Laurent Nguyen
- Sanofi R&D, Pharmacokinetics Dynamics and Metabolism Department, 1 Avenue Pierre Brossolette, Chilly-Mazarin, 91380, Paris, France
| |
Collapse
|
6
|
Ceci C, Lacal PM, Graziani G. Antibody-drug conjugates: Resurgent anticancer agents with multi-targeted therapeutic potential. Pharmacol Ther 2022; 236:108106. [PMID: 34990642 DOI: 10.1016/j.pharmthera.2021.108106] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 12/23/2021] [Accepted: 12/29/2021] [Indexed: 12/18/2022]
Abstract
Antibody-drug conjugates (ADCs) constitute a relatively new group of anticancer agents, whose first appearance took place about two decades ago, but a renewed interest occurred in recent years, following the success of anti-cancer immunotherapy with monoclonal antibodies. Indeed, an ADC combines the selectivity of a monoclonal antibody with the cell killing properties of a chemotherapeutic agent (payload), joined together through an appropriate linker. The antibody moiety targets a specific cell surface antigen expressed by tumor cells and/or cells of the tumor microenvironment and acts as a carrier that delivers the cytotoxic payload within the tumor mass. Despite advantages in terms of selectivity and potency, the development of ADCs is not devoid of challenges, due to: i) low tumor selectivity when the target antigens are not exclusively expressed by cancer cells; ii) premature release of the cytotoxic drug into the bloodstream as a consequence of linker instability; iii) development of tumor resistance mechanisms to the payload. All these factors may result in lack of efficacy and/or in no safety improvement compared to unconjugated cytotoxic agents. Nevertheless, the development of antibodies engineered to remain inert until activated in the tumor (e.g., antibodies activated proteolytically after internalization or by the acidic conditions of the tumor microenvironment) together with the discovery of innovative targets and cytotoxic or immunomodulatory payloads, have allowed the design of next-generation ADCs that are expected to possess improved therapeutic properties. This review provides an overview of approved ADCs, with related advantages and limitations, and of novel targets exploited by ADCs that are presently under clinical investigation.
Collapse
Affiliation(s)
- Claudia Ceci
- Department of Systems Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| | | | - Grazia Graziani
- Department of Systems Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; IDI-IRCCS, Via Monti di Creta 104, 00167 Rome, Italy.
| |
Collapse
|
7
|
Clinical Pharmacology of Antibody-Drug Conjugates. Antibodies (Basel) 2021; 10:antib10020020. [PMID: 34063812 PMCID: PMC8161445 DOI: 10.3390/antib10020020] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 05/10/2021] [Accepted: 05/14/2021] [Indexed: 12/30/2022] Open
Abstract
Antibody-drug conjugates (ADCs) are biopharmaceutical products where a monoclonal antibody is linked to a biologically active drug (a small molecule) forming a conjugate. Since the approval of first ADC (Gemtuzumab ozogamicin (trade name: Mylotarg)) for the treatment of CD33-positive acute myelogenous leukemia, several ADCs have been developed for the treatment of cancer. The goal of an ADC as a cancer agent is to release the cytotoxic drug to kill the tumor cells without harming the normal or healthy cells. With time, it is being realized that ADCS can also be used to manage or cure other diseases such as inflammatory diseases, atherosclerosis, and bacteremia and some research in this direction is ongoing. The focus of this review is on the clinical pharmacology aspects of ADC development. From the selection of an appropriate antibody to the finished product, the entire process of the development of an ADC is a difficult and challenging task. Clinical pharmacology is one of the most important tools of drug development since this tool helps in finding the optimum dose of a product, thus preserving the safety and efficacy of the product in a patient population. Unlike other small or large molecules where only one moiety and/or metabolite(s) is generally measured for the pharmacokinetic profiling, there are several moieties that need to be measured for characterizing the PK profiles of an ADC. Therefore, knowledge and understanding of clinical pharmacology of ADCs is vital for the selection of a safe and efficacious dose in a patient population.
Collapse
|
8
|
Clinical pharmacology strategies in supporting drug development and approval of antibody-drug conjugates in oncology. Cancer Chemother Pharmacol 2021; 87:743-765. [PMID: 33792763 PMCID: PMC8110483 DOI: 10.1007/s00280-021-04250-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 02/18/2021] [Indexed: 11/12/2022]
Abstract
Antibody–drug conjugates (ADCs) are important molecular entities in the treatment of cancer. These conjugates combine the target specificity of monoclonal antibodies with the potent anti-cancer activity of small-molecule therapeutics. The complex structure of ADCs poses unique challenges to characterize the drug’s pharmacokinetics (PKs) and pharmacodynamics (PDs) since it requires a quantitative understanding of the PK and PD properties of multiple different molecular species (e.g., ADC conjugate, total antibody and unconjugated cytotoxic drug). As a result, clinical pharmacology strategy of an ADC is rather unique and dependent on the linker/cytotoxic drug technology, heterogeneity of the ADC, PK and safety/efficacy profile of the specific ADC in clinical development. In this review, we summarize the clinical pharmacology strategies in supporting development and approval of ADCs using the approved ADCs as specific examples to illustrate the customized approach to clinical pharmacology assessments in their clinical development.
Collapse
|
9
|
Jabbour E, Paul S, Kantarjian H. The clinical development of antibody-drug conjugates - lessons from leukaemia. Nat Rev Clin Oncol 2021; 18:418-433. [PMID: 33758376 DOI: 10.1038/s41571-021-00484-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/08/2021] [Indexed: 02/06/2023]
Abstract
Advances in our understanding of cancer biology have enabled drug development to progress towards better targeted therapies that are both more effective and safer owing to their lack of off-target toxicities. In this regard, antibody-drug conjugates (ADCs), which have the potential to combine the selectivity of therapeutic antibodies with the cytotoxicity of highly toxic small molecules, are a rapidly developing drug class. The complex and unique structure of an ADC, composed of a monoclonal antibody conjugated to a potent cytotoxic payload via a chemical linker, is designed to selectively target a specific tumour antigen. The success of an ADC is highly dependent on the specific properties of its components, all of which have implications for the stability, cytotoxicity, pharmacokinetics and antitumour activity of the ADC. The development of therapeutic ADCs, including gemtuzumab ozogamicin and inotuzumab ozogamicin, provided great knowledge of the refinements needed for the optimization of such agents. In this Review, we describe the key components of ADC structure and function and focus on the clinical development and subsequent utilization of two leukaemia-directed ADCs - gemtuzumab ozogamicin and inotuzumab ozogamicin - as well as on the mechanisms of resistance and predictors of response to these two agents.
Collapse
Affiliation(s)
- Elias Jabbour
- Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Shilpa Paul
- Department of Clinical Pharmacy, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Hagop Kantarjian
- Department of Clinical Pharmacy, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
10
|
Zuo P. Capturing the Magic Bullet: Pharmacokinetic Principles and Modeling of Antibody-Drug Conjugates. AAPS JOURNAL 2020; 22:105. [PMID: 32767003 DOI: 10.1208/s12248-020-00475-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 06/23/2020] [Indexed: 12/21/2022]
Abstract
Over the past two decades, antibody-drug conjugates (ADCs) have emerged as a promising class of drugs for cancer therapy and have expanded to nononcology fields such as inflammatory diseases, atherosclerosis, and bacteremia. Eight ADCs are currently approved by FDA for clinical applications, with more novel ADCs under clinical development. Compared with traditional chemotherapy, ADCs combine the target specificity of antibodies with chemotherapeutic capabilities of cytotoxic drugs. The benefits include reduced systemic toxicity and enhanced therapeutic index for patients. However, the heterogeneous structures of ADCs and their dynamic changes following administration create challenges in their development. The understanding of ADC pharmacokinetics (PK) is crucial for the optimization of clinical dosing regimens when translating from animal to human. In addition, it contributes to the optimization of dose selection and clinical monitoring with regard to safety and efficacy. This manuscript reviews the PK characteristics of ADCs and summarizes the diverse approaches for PK modeling that can be used to evaluate an ADC at the preclinical and clinical stages to support their successful development. Despite the numerous available options, fit-for-purpose modeling approaches for the PK and PD of ADCs should be critically planned and well-thought-out to adequately support the development of an ADC.
Collapse
Affiliation(s)
- Peiying Zuo
- Pharmacometrics US, Clinical Pharmacology & Exploratory Development, Astellas Pharma, Inc., USA, 1 Astellas Way, Northbrook, Illinois, 60062, USA.
| |
Collapse
|
11
|
Masters JC, Barry E, Knight B. Population Pharmacokinetics of Gemtuzumab Ozogamicin in Pediatric Patients with Relapsed or Refractory Acute Myeloid Leukemia. Clin Pharmacokinet 2020; 58:271-282. [PMID: 30022367 DOI: 10.1007/s40262-018-0694-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
BACKGROUND AND OBJECTIVE To date, the population pharmacokinetics (popPK) of gemtuzumab ozogamicin (GO), a CD33-directed antibody-drug conjugate consisting of hP67.6 antibody linked to N-acetyl gamma calicheamicin used in the treatment of acute myeloid leukemia (AML), has not been characterized in pediatric patients. This report describes the popPK of GO following intravenous administration in 29 pediatric patients aged ≤ 17 years with relapsed or refractory AML who were enrolled in the 0903A1-102-US phase I/II study. METHODS The pharmacokinetics (PK) of GO, as represented by total hP67.6 antibody, were described by a two-compartment model with two clearance components: a linear clearance (CL1) and time-dependent clearance that includes a decay coefficient. The PK of unconjugated calicheamicin (UC; payload) were described by a two-compartment model with CL1 and an input rate of formation based on antibody rate of elimination. Allometric scaling was included in both models, with baseline body weight as a fixed effect on CL1 and central volume. RESULTS AND CONCLUSIONS PK parameters for hP67.6 and UC were not significantly affected by any of the available demographic factors and safety laboratory values tested as covariates (except baseline body weight). Simulations to compare GO dosing regimens (6, 7.5, and 9 mg/m2 on days 1 and 15 versus, 3 mg/m2 fractionated dosing on days 1, 4, and 7) were performed, showing that total antibody and UC trough concentrations were maintained at higher concentrations during treatment following the more frequent dosing than following the original regimen. STUDY IDENTIFIER 0903A1-102-US.
Collapse
Affiliation(s)
- Joanna C Masters
- Clinical Pharmacology, Oncology, Global Product Development, Pfizer Inc, 10555 Science Center Drive, San Diego, CA, 92121, USA.
| | - Elly Barry
- Pfizer Global Product Development Oncology, 300 Technology Square, Suite 302, Cambridge, MA, 02139-3520, USA
| | - Beverly Knight
- Clinical Pharmacology, Oncology, Global Product Development, Pfizer Inc, 10555 Science Center Drive, San Diego, CA, 92121, USA
| |
Collapse
|
12
|
Bensalem A, Ternant D. Pharmacokinetic Variability of Therapeutic Antibodies in Humans: A Comprehensive Review of Population Pharmacokinetic Modeling Publications. Clin Pharmacokinet 2020; 59:857-874. [DOI: 10.1007/s40262-020-00874-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
13
|
Modelling of the Time-Varying Pharmacokinetics of Therapeutic Monoclonal Antibodies: A Literature Review. Clin Pharmacokinet 2019; 59:37-49. [DOI: 10.1007/s40262-019-00816-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
14
|
Fostvedt LK, Hibma JE, Masters JC, Vandendries E, Ruiz-Garcia A. Pharmacokinetic/Pharmacodynamic Modeling to Support the Re-approval of Gemtuzumab Ozogamicin. Clin Pharmacol Ther 2019; 106:1006-1017. [PMID: 31070776 PMCID: PMC6852000 DOI: 10.1002/cpt.1500] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 03/13/2019] [Indexed: 11/07/2022]
Abstract
Gemtuzumab ozogamicin (Mylotarg; Pfizer, New York, NY) was the first antibody-drug conjugate to be approved for CD33-positive acute myeloid leukemia (AML). However, it was voluntarily withdrawn from the US market due to lack of clinical benefit in the confirmatory phase III trial. In 2012, several investigator cooperative studies using a different dosing regimen showed efficacy, but pharmacokinetic (PK) data were not collected in these trials. Through simulation of expected concentrations for new dosing regimens, PK/pharmacodynamic modeling was able to support the safety and efficacy of these regimens. Significant exposure-response relationships were found for the attainment of complete remission with and without platelet recovery, attainment of blast-free status, the time course of myelosuppression, several grade ≥ 3 hepatic adverse events, and veno-occlusive disease. Gemtuzumab ozogamicin received full approval by the US Food and Drug Administration (FDA) in September 2017 for newly diagnosed and relapsed AML in adult patients and relapsed AML in pediatric patients aged 2-17 years.
Collapse
Affiliation(s)
- Luke K Fostvedt
- Pfizer Global Product Development, La Jolla, California, USA
| | | | | | - Erik Vandendries
- Pfizer Global Product Development, Cambridge, Massachusetts, USA
| | - Ana Ruiz-Garcia
- Pfizer Global Product Development, La Jolla, California, USA
| |
Collapse
|
15
|
Abstract
Antibody-drug conjugates are monoclonal antibodies attached to biologically active drugs through chemical linkers that deliver and release cytotoxic agents at the tumor site, reducing the likelihood of systemic exposure and therefore toxicity. Currently, there are about 110 ongoing studies implementing antibody-drug conjugates in the treatment of multiple human malignancies. Antibody-drug conjugates carry a feature of the specificity of a monoclonal antibody and the anti-neoplastic potential of a cytotoxin. The first antibody-drug conjugate was approved in 2001, and the field of antibody-drug conjugates has expanded since then with three more antibody-drug conjugates being added to the market. The complex structure of the antibody-drug conjugate poses a challenge in designing a clinically adequate molecule. Antibody-drug conjugates are usually well tolerated with some predictable adverse reactions, as well as new medical issues, that need careful approach. This review provides an outline of the current status of the efficacy and safety of antibody-drug conjugates in malignant diseases.
Collapse
Affiliation(s)
- Anna Wolska-Washer
- Department of Hematology, Medical University of Lodz and Copernicus Memorial Hospital, Ul. Ciolkowskiego 2, 93-510, Lodz, Poland
| | - Tadeusz Robak
- Department of Hematology, Medical University of Lodz and Copernicus Memorial Hospital, Ul. Ciolkowskiego 2, 93-510, Lodz, Poland.
| |
Collapse
|