1
|
Sinha S, Ravi PR, Somvanshi M, Rashmi SR. Solid lipid nanoparticles for increased oral bioavailability of acalabrutinib in chronic lymphocytic leukaemia. DISCOVER NANO 2024; 19:218. [PMID: 39739083 DOI: 10.1186/s11671-024-04157-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Accepted: 11/28/2024] [Indexed: 01/02/2025]
Abstract
Acalabrutinib (ACP) is a first-line treatment for chronic lymphocytic leukemia but suffers from poor and variable oral bioavailability due to its pH-dependent solubility, CYP3A4 metabolism, and P-gp efflux. Thus, the objective of this study was to improve the solubility and dissolution behaviour, in turn enhancing bioavailability, by formulating solid lipid nanoparticles (SLNs). ACP loaded SLNs (ACP-SLNs) were prepared via solvent-free hot emulsification followed by a double sonication process. A combination of glyceryl di-behenate and stearyl palmitate along with Tween 80 was used as the lipid phase to dissolve ACP. A 1% w/v Poloxomer188 solution served as the aqueous phase. The optimized ACP-SLNs were spherical in shape and had particle size of 234.7-257.5 nm, PDI of 0.261-0.320 and loading efficiency of 18.70 ± 1.78%. A typical biphasic release pattern was observed from ACP-SLNs in the in vitro dissolution studies under gastrointestinal and plasma pH conditions (> 90% drug release at pH 4.5 ± 0.2, 6.8 ± 0.2 (representing GIT), and 7.4 ± 0.2 (representing plasma) at 8, 16 and 24 h, respectively). The freeze-dried product was stable when stored at 5 °C for over 6 months. Compared with the bulk drug suspension, the ACP-SLNs suspension resulted in 2.29-fold increase in oral bioavailability and more importantly 2.46-fold increase in the distribution of drug to spleen. Additionally, inhibition of lymph production and flow by administering cycloheximide resulted in 46.01% decrease in the overall absorption of ACP-SLNs, indicating the significance of lymphatic uptake process in the oral absorption of ACP-SLNs.
Collapse
Affiliation(s)
- Swagata Sinha
- Department of Pharmacy, Birla Institute of Technology and Science Pilani, BITS-Pilani Hyderabad Campus, Jawahar Nagar, Kapra Mandal, Medchal District, Telangana, 500078, India
| | - Punna Rao Ravi
- Department of Pharmacy, Birla Institute of Technology and Science Pilani, BITS-Pilani Hyderabad Campus, Jawahar Nagar, Kapra Mandal, Medchal District, Telangana, 500078, India.
| | - Makarand Somvanshi
- Department of Pharmacy, Birla Institute of Technology and Science Pilani, BITS-Pilani Hyderabad Campus, Jawahar Nagar, Kapra Mandal, Medchal District, Telangana, 500078, India
| | - S R Rashmi
- Department of Pharmacy, Birla Institute of Technology and Science Pilani, BITS-Pilani Hyderabad Campus, Jawahar Nagar, Kapra Mandal, Medchal District, Telangana, 500078, India
| |
Collapse
|
2
|
Lu T, Li T, Wu MK, Zheng CC, He XM, Zhu HL, Li L, Man RJ. Molecular simulations required to target novel and potent inhibitors of cancer invasion. Expert Opin Drug Discov 2023; 18:1367-1377. [PMID: 37676052 DOI: 10.1080/17460441.2023.2254695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 08/30/2023] [Indexed: 09/08/2023]
Abstract
INTRODUCTION Computer-aided drug design (CADD) is a computational approach used to discover, develop, and analyze drugs and active molecules with similar biochemical properties. Molecular simulation technology has significantly accelerated drug research and reduced manufacturing costs. It is an optimized drug discovery method that greatly improves the efficiency of novel drug development processes. AREASCOVERED This review discusses the development of molecular simulations of effective cancer inhibitors and traces the main outcomes of in silico studies by introducing representative categories of six important anticancer targets. The authors provide views on this topic from the perspective of both medicinal chemistry and artificial intelligence, indicating the major challenges and predicting trends. EXPERT OPINION The goal of introducing CADD into cancer treatment is to realize a highly efficient, accurate, and desired approach with a high success rate for identifying potent drug candidates. However, the major challenge is the lack of a sophisticated data-filtering mechanism to verify bottom data from mixed-quality references. Consequently, despite the continuous development of algorithms, computer power, and interface optimization, specific data filtering mechanisms will become an urgent and crucial issue in the future.
Collapse
Affiliation(s)
| | - Tong Li
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, Guangxi University for Nationalities, Nanning, China
| | - Meng-Ke Wu
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, Guangxi University for Nationalities, Nanning, China
| | - Chi-Chong Zheng
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, Guangxi University for Nationalities, Nanning, China
| | - Xue-Mei He
- Agro-food Science and Technology Research Institute, Guangxi Academy of Agricultural Science, Nanning, China
| | - Hai-Liang Zhu
- School of Life Sciences, Nanjing University, Nanjing, China
| | - Li Li
- Agro-food Science and Technology Research Institute, Guangxi Academy of Agricultural Science, Nanning, China
| | - Ruo-Jun Man
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, Guangxi University for Nationalities, Nanning, China
| |
Collapse
|
3
|
Hughes JH, Woo KH, Keizer RJ, Goswami S. Clinical Decision Support for Precision Dosing: Opportunities for Enhanced Equity and Inclusion in Health Care. Clin Pharmacol Ther 2023; 113:565-574. [PMID: 36408716 DOI: 10.1002/cpt.2799] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 11/13/2022] [Indexed: 11/22/2022]
Abstract
Precision dosing aims to tailor doses to individual patients with the goal of improving treatment efficacy and avoiding toxicity. Clinical decision support software (CDSS) plays a crucial role in mediating this process, translating knowledge derived from clinical trials and real-world data (RWD) into actionable insights for clinicians to use at the point of care. However, not all patient populations are proportionally represented in clinical trials and other data sources that inform CDSS tools, limiting the applicability of these tools for underrepresented populations. Here, we review some of the limitations of existing CDSS tools and discuss methods for overcoming these gaps. We discuss considerations for study design and modeling to create more inclusive CDSS, particularly with an eye toward better incorporation of biological indicators in place of race, ethnicity, or sex. We also review inclusive practices for collection of these demographic data, during both study design and in software user interface design. Because of the role CDSS plays in both recording routine clinical care data and disseminating knowledge derived from data, CDSS presents a promising opportunity to continuously improve precision dosing algorithms using RWD to better reflect the diversity of patient populations.
Collapse
Affiliation(s)
| | - Kara H Woo
- InsightRX, San Francisco, California, USA
| | | | | |
Collapse
|
4
|
Frustaci AM, Deodato M, Zamprogna G, Cairoli R, Montillo M, Tedeschi A. Next Generation BTK Inhibitors in CLL: Evolving Challenges and New Opportunities. Cancers (Basel) 2023; 15:1504. [PMID: 36900295 PMCID: PMC10000925 DOI: 10.3390/cancers15051504] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/05/2023] [Accepted: 02/24/2023] [Indexed: 03/08/2023] Open
Abstract
Ibrutinib revolutionized the CLL treatment approach and prognosis demonstrating its efficacy and safety even at extended follow-up. During the last few years, several next-generation inhibitors have been developed to overcome the occurrence of toxicity or resistance in patients on continuous treatment. In a head-to-head comparison of two phase III trials, both acalabrutinib and zanubrutinib demonstrated a lower incidence of adverse events in respect to ibrutinib. Nevertheless, resistance mutations remain a concern with continuous therapy and were demonstrated with both first- and next-generation covalent inhibitors. Reversible inhibitors showed efficacy independently of previous treatment and the presence of BTK mutations. Other strategies are currently under development in CLL, especially for high-risk patients, and include BTK inhibitor combinations with BCl2 inhibitors with or without anti-CD20 monoclonal antibodies. Finally, new mechanisms for BTK inhibition are under investigations in patients progressing with both covalent and non-covalent BTK and BCl2 inhibitors. Here we summarize and discuss results from main experiences on irreversible and reversable BTK inhibitors in CLL.
Collapse
Affiliation(s)
- Anna Maria Frustaci
- ASST Grande Ospedale Metropolitano Niguarda, Niguarda Cancer Center, Piazza Ospedale Maggiore 3, 20162 Milano, Italy
| | | | | | | | | | | |
Collapse
|
5
|
Podoll T, Pearson PG, Kaptein A, Evarts J, de Bruin G, Emmelot-van Hoek M, de Jong A, van Lith B, Sun H, Byard S, Fretland A, Hoogenboom N, Barf T, Slatter JG. Identification and Characterization of ACP-5862, the Major Circulating Active Metabolite of Acalabrutinib: Both Are Potent and Selective Covalent Bruton Tyrosine Kinase Inhibitors . J Pharmacol Exp Ther 2023; 384:173-186. [PMID: 36310034 DOI: 10.1124/jpet.122.001116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 10/12/2022] [Accepted: 10/17/2022] [Indexed: 12/27/2022] Open
Abstract
Acalabrutinib is a covalent Bruton tyrosine kinase (BTK) inhibitor approved for relapsed/refractory mantle cell lymphoma and chronic lymphocytic leukemia/small lymphocytic lymphoma. A major metabolite of acalabrutinib (M27, ACP-5862) was observed in human plasma circulation. Subsequently, the metabolite was purified from an in vitro biosynthetic reaction and shown by nuclear magnetic resonance spectroscopy to be a pyrrolidine ring-opened ketone/amide. Synthesis confirmed its structure, and covalent inhibition of wild-type BTK was observed in a biochemical kinase assay. A twofold lower potency than acalabrutinib was observed but with similar high kinase selectivity. Like acalabrutinib, ACP-5862 was the most selective toward BTK relative to ibrutinib and zanubrutinib. Because of the potency, ACP-5862 covalent binding properties, and potential contribution to clinical efficacy of acalabrutinib, factors influencing acalabrutinib clearance and ACP-5862 formation and clearance were assessed. rCYP (recombinant cytochrome P450) reaction phenotyping indicated that CYP3A4 was responsible for ACP-5862 formation and metabolism. ACP-5862 formation Km (Michaelis constant) and Vmax were 2.78 μM and 4.13 pmol/pmol CYP3A/min, respectively. ACP-5862 intrinsic clearance was 23.6 μL/min per mg. Acalabrutinib weakly inhibited CYP2C8, CYP2C9, and CYP3A4, and ACP-5862 weakly inhibited CYP2C9 and CYP2C19; other cytochrome P450s, UGTs (uridine 5'-diphospho-glucuronosyltransferases), and aldehyde oxidase were not inhibited. Neither parent nor ACP-5862 strongly induced CYP1A2, CYP2B6, or CYP3A4 mRNA. Acalabrutinib and ACP-5862 were substrates of multidrug resistance protein 1 and breast cancer resistance protein but not OATP1B1 or OATP1B3. Our work indicates that ACP-5862 may contribute to clinical efficacy in acalabrutinib-treated patients and illustrates how proactive metabolite characterization allows timely assessment of drug-drug interactions and potential contributions of metabolites to pharmacological activity. SIGNIFICANCE STATEMENT: This work characterized the major metabolite of acalabrutinib, ACP-5862. Its contribution to the pharmacological activity of acalabrutinib was assessed based on covalent Bruton tyrosine kinase binding kinetics, kinase selectivity, and potency in cellular assays. The metabolic clearance and in vitro drug-drug interaction potential were also evaluated for both acalabrutinib and ACP-5862. The current data suggest that ACP-5862 may contribute to the clinical efficacy observed in acalabrutinib-treated patients and demonstrates the value of proactive metabolite identification and pharmacological characterization.
Collapse
Affiliation(s)
- Terry Podoll
- Acerta Pharma (a member of the AstraZeneca group), South San Francisco, California (T.P., J.E., A.F., J.G.S.); Acerta Pharma (a member of the AstraZeneca group) Oss, The Netherlands (G.d.B., M.E.-v.H., A.d.J., B.v.L., N.H.); Pearson Pharma Partners, Westlake Village, California (P.G.P.); Covance Laboratories, Madison, Wisconsin (H.S.); Arcinova, Alnwick, United Kingdom (S.B.); and Covalution Holding B.V., Ravenstein, The Netherlands (A.K., T.B.)
| | - Paul G Pearson
- Acerta Pharma (a member of the AstraZeneca group), South San Francisco, California (T.P., J.E., A.F., J.G.S.); Acerta Pharma (a member of the AstraZeneca group) Oss, The Netherlands (G.d.B., M.E.-v.H., A.d.J., B.v.L., N.H.); Pearson Pharma Partners, Westlake Village, California (P.G.P.); Covance Laboratories, Madison, Wisconsin (H.S.); Arcinova, Alnwick, United Kingdom (S.B.); and Covalution Holding B.V., Ravenstein, The Netherlands (A.K., T.B.)
| | - Allard Kaptein
- Acerta Pharma (a member of the AstraZeneca group), South San Francisco, California (T.P., J.E., A.F., J.G.S.); Acerta Pharma (a member of the AstraZeneca group) Oss, The Netherlands (G.d.B., M.E.-v.H., A.d.J., B.v.L., N.H.); Pearson Pharma Partners, Westlake Village, California (P.G.P.); Covance Laboratories, Madison, Wisconsin (H.S.); Arcinova, Alnwick, United Kingdom (S.B.); and Covalution Holding B.V., Ravenstein, The Netherlands (A.K., T.B.)
| | - Jerry Evarts
- Acerta Pharma (a member of the AstraZeneca group), South San Francisco, California (T.P., J.E., A.F., J.G.S.); Acerta Pharma (a member of the AstraZeneca group) Oss, The Netherlands (G.d.B., M.E.-v.H., A.d.J., B.v.L., N.H.); Pearson Pharma Partners, Westlake Village, California (P.G.P.); Covance Laboratories, Madison, Wisconsin (H.S.); Arcinova, Alnwick, United Kingdom (S.B.); and Covalution Holding B.V., Ravenstein, The Netherlands (A.K., T.B.)
| | - Gerjan de Bruin
- Acerta Pharma (a member of the AstraZeneca group), South San Francisco, California (T.P., J.E., A.F., J.G.S.); Acerta Pharma (a member of the AstraZeneca group) Oss, The Netherlands (G.d.B., M.E.-v.H., A.d.J., B.v.L., N.H.); Pearson Pharma Partners, Westlake Village, California (P.G.P.); Covance Laboratories, Madison, Wisconsin (H.S.); Arcinova, Alnwick, United Kingdom (S.B.); and Covalution Holding B.V., Ravenstein, The Netherlands (A.K., T.B.)
| | - Maaike Emmelot-van Hoek
- Acerta Pharma (a member of the AstraZeneca group), South San Francisco, California (T.P., J.E., A.F., J.G.S.); Acerta Pharma (a member of the AstraZeneca group) Oss, The Netherlands (G.d.B., M.E.-v.H., A.d.J., B.v.L., N.H.); Pearson Pharma Partners, Westlake Village, California (P.G.P.); Covance Laboratories, Madison, Wisconsin (H.S.); Arcinova, Alnwick, United Kingdom (S.B.); and Covalution Holding B.V., Ravenstein, The Netherlands (A.K., T.B.)
| | - Anouk de Jong
- Acerta Pharma (a member of the AstraZeneca group), South San Francisco, California (T.P., J.E., A.F., J.G.S.); Acerta Pharma (a member of the AstraZeneca group) Oss, The Netherlands (G.d.B., M.E.-v.H., A.d.J., B.v.L., N.H.); Pearson Pharma Partners, Westlake Village, California (P.G.P.); Covance Laboratories, Madison, Wisconsin (H.S.); Arcinova, Alnwick, United Kingdom (S.B.); and Covalution Holding B.V., Ravenstein, The Netherlands (A.K., T.B.)
| | - Bart van Lith
- Acerta Pharma (a member of the AstraZeneca group), South San Francisco, California (T.P., J.E., A.F., J.G.S.); Acerta Pharma (a member of the AstraZeneca group) Oss, The Netherlands (G.d.B., M.E.-v.H., A.d.J., B.v.L., N.H.); Pearson Pharma Partners, Westlake Village, California (P.G.P.); Covance Laboratories, Madison, Wisconsin (H.S.); Arcinova, Alnwick, United Kingdom (S.B.); and Covalution Holding B.V., Ravenstein, The Netherlands (A.K., T.B.)
| | - Hao Sun
- Acerta Pharma (a member of the AstraZeneca group), South San Francisco, California (T.P., J.E., A.F., J.G.S.); Acerta Pharma (a member of the AstraZeneca group) Oss, The Netherlands (G.d.B., M.E.-v.H., A.d.J., B.v.L., N.H.); Pearson Pharma Partners, Westlake Village, California (P.G.P.); Covance Laboratories, Madison, Wisconsin (H.S.); Arcinova, Alnwick, United Kingdom (S.B.); and Covalution Holding B.V., Ravenstein, The Netherlands (A.K., T.B.)
| | - Stephen Byard
- Acerta Pharma (a member of the AstraZeneca group), South San Francisco, California (T.P., J.E., A.F., J.G.S.); Acerta Pharma (a member of the AstraZeneca group) Oss, The Netherlands (G.d.B., M.E.-v.H., A.d.J., B.v.L., N.H.); Pearson Pharma Partners, Westlake Village, California (P.G.P.); Covance Laboratories, Madison, Wisconsin (H.S.); Arcinova, Alnwick, United Kingdom (S.B.); and Covalution Holding B.V., Ravenstein, The Netherlands (A.K., T.B.)
| | - Adrian Fretland
- Acerta Pharma (a member of the AstraZeneca group), South San Francisco, California (T.P., J.E., A.F., J.G.S.); Acerta Pharma (a member of the AstraZeneca group) Oss, The Netherlands (G.d.B., M.E.-v.H., A.d.J., B.v.L., N.H.); Pearson Pharma Partners, Westlake Village, California (P.G.P.); Covance Laboratories, Madison, Wisconsin (H.S.); Arcinova, Alnwick, United Kingdom (S.B.); and Covalution Holding B.V., Ravenstein, The Netherlands (A.K., T.B.)
| | - Niels Hoogenboom
- Acerta Pharma (a member of the AstraZeneca group), South San Francisco, California (T.P., J.E., A.F., J.G.S.); Acerta Pharma (a member of the AstraZeneca group) Oss, The Netherlands (G.d.B., M.E.-v.H., A.d.J., B.v.L., N.H.); Pearson Pharma Partners, Westlake Village, California (P.G.P.); Covance Laboratories, Madison, Wisconsin (H.S.); Arcinova, Alnwick, United Kingdom (S.B.); and Covalution Holding B.V., Ravenstein, The Netherlands (A.K., T.B.)
| | - Tjeerd Barf
- Acerta Pharma (a member of the AstraZeneca group), South San Francisco, California (T.P., J.E., A.F., J.G.S.); Acerta Pharma (a member of the AstraZeneca group) Oss, The Netherlands (G.d.B., M.E.-v.H., A.d.J., B.v.L., N.H.); Pearson Pharma Partners, Westlake Village, California (P.G.P.); Covance Laboratories, Madison, Wisconsin (H.S.); Arcinova, Alnwick, United Kingdom (S.B.); and Covalution Holding B.V., Ravenstein, The Netherlands (A.K., T.B.)
| | - J Greg Slatter
- Acerta Pharma (a member of the AstraZeneca group), South San Francisco, California (T.P., J.E., A.F., J.G.S.); Acerta Pharma (a member of the AstraZeneca group) Oss, The Netherlands (G.d.B., M.E.-v.H., A.d.J., B.v.L., N.H.); Pearson Pharma Partners, Westlake Village, California (P.G.P.); Covance Laboratories, Madison, Wisconsin (H.S.); Arcinova, Alnwick, United Kingdom (S.B.); and Covalution Holding B.V., Ravenstein, The Netherlands (A.K., T.B.)
| |
Collapse
|
6
|
Sharma S, Pepin X, Burri H, Zheng L, Kuptsova-Clarkson N, de Jong A, Yu T, MacArthur HL, Majewski M, Byrd JC, Furman RR, Ware JA, Mann J, Ramies D, Munugalavadla V, Sheridan L, Tomkinson H. Bioequivalence and Relative Bioavailability Studies to Assess a New Acalabrutinib Formulation That Enables Coadministration With Proton-Pump Inhibitors. Clin Pharmacol Drug Dev 2022; 11:1294-1307. [PMID: 36029150 DOI: 10.1002/cpdd.1153] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 07/11/2022] [Indexed: 01/27/2023]
Abstract
Acalabrutinib is a Bruton tyrosine kinase (BTK) inhibitor approved to treat adults with chronic lymphocytic leukemia, small lymphocytic lymphoma, or previously treated mantle cell lymphoma. As the bioavailability of the acalabrutinib capsule (AC) depends on gastric pH for solubility and is impaired by acid-suppressing therapies, coadministration with proton-pump inhibitors (PPIs) is not recommended. Three studies in healthy subjects (N = 30, N = 66, N = 20) evaluated the pharmacokinetics (PKs), pharmacodynamics (PDs), safety, and tolerability of acalabrutinib maleate tablet (AT) formulated with pH-independent release. Subjects were administered AT or AC (orally, fasted state), AT in a fed state, or AT in the presence of a PPI, and AT or AC via nasogastric (NG) route. Acalabrutinib exposures (geometric mean [% coefficient of variation, CV]) were comparable for AT versus AC (AUCinf 567.8 ng h/mL [36.9] vs 572.2 ng h/mL [38.2], Cmax 537.2 ng/mL [42.6] vs 535.7 ng/mL [58.4], respectively); similar results were observed for acalabrutinib's active metabolite (ACP-5862) and for AT-NG versus AC-NG. The geometric mean Cmax for acalabrutinib was lower when AT was administered in the fed versus the fasted state (Cmax 255.6 ng/mL [%CV, 46.5] vs 504.9 ng/mL [49.9]); AUCs were similar. For AT + PPI, geometric mean Cmax was lower (371.9 ng/mL [%CV, 81.4] vs 504.9 ng/mL [49.9]) and AUCinf was higher (AUCinf 694.1 ng h/mL [39.7] vs 559.5 ng h/mL [34.6]) than AT alone. AT and AC were similar in BTK occupancy. Most adverse events were mild with no new safety concerns. Acalabrutinib formulations were comparable and AT could be coadministered with PPIs, food, or via NG tube without affecting the PKs or PDs.
Collapse
Affiliation(s)
| | - Xavier Pepin
- New Modalities and Parenteral Development, Pharmaceutical Technology & Development, Operations, AstraZeneca, Macclesfield, England, UK
| | - Harini Burri
- AstraZeneca, South San Francisco, California, USA
| | | | | | | | - Ting Yu
- AstraZeneca, South San Francisco, California, USA
| | | | | | - John C Byrd
- Department of Internal Medicine and University of Cincinnati Cancer Center, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Richard R Furman
- New York-Presbyterian/Weill Cornell Medicine, New York, New York, USA
| | | | - James Mann
- Oral Product Development, Pharmaceutical Technology & Development, Operations, AstraZeneca, Macclesfield, England, UK
| | - David Ramies
- AstraZeneca, South San Francisco, California, USA
| | | | - Louise Sheridan
- Pharmaceutical Technology & Development, Operations, AstraZeneca, Macclesfield, England, UK
| | | |
Collapse
|
7
|
Zou HX, Zhang YF, Zhong DF, Jiang Y, Liu F, Zhao QY, Zuo Z, Zhang YF, Yan XY. Effect of autoinduction and food on the pharmacokinetics of furmonertinib and its active metabolite characterized by a population pharmacokinetic model. Acta Pharmacol Sin 2022; 43:1865-1874. [PMID: 34789919 PMCID: PMC9252999 DOI: 10.1038/s41401-021-00798-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 10/14/2021] [Accepted: 10/14/2021] [Indexed: 12/15/2022] Open
Abstract
Furmonertinib (AST2818) is a novel third-generation irreversible EGFR TKI and recently has been approved in China for the treatment of non-small cell lung cancer (NSCLC) with EGFR-sensitizing and T790M resistance mutations. In the current study, we developed a semi-mechanistic population pharmacokinetic model to characterize the nonstationary pharmacokinetics (PK) of the furmonertinib and its active metabolite AST5902 simultaneously. The PK data of furmonertinib and AST5902 were obtained from 38 NSCLC patients and 16 healthy volunteers receiving 20-240 mg furmonertinib in three clinical trials. A nonlinear mixed-effects modeling approach was used to describe the PK data. The absorption process of furmonertinib was described by a transit compartment model. The disposition of both furmonertinib and AST5902 was described by a two-compartment model. An indirect response model accounted for the autoinduction of furmonertinib metabolism mediated by CYP3A4. The model-based simulation suggested that furmonertinib clearance was increased in one cycle of treatment (orally once daily for 21 days) compared to baseline, ranging from 1.1 to 1.8 fold corresponding to the dose range of 20-240 mg. The concentration of furmonertinib was decreased over time whereas that of AST5902 was increased. Interestingly, the concentration of the total active compounds (furmonertinib and AST5902) appeared to be stable. The food intake, serum alkaline phosphatase and body weight were identified as statistically significant covariates. The mechanism of food effect on PK was investigated, where the food intake might increase the bioavailability of furmonertinib via increasing the splanchnic blood flow. Overall, a population PK model was successfully developed to characterize the nonstationary PK of furmonertinib and AST5902 simultaneously. The concentrations of total active compounds were less affected by the autoinduction of furmonertinib metabolism.
Collapse
Affiliation(s)
- Hui-Xi Zou
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Yu-Feng Zhang
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Da-Fang Zhong
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Yong Jiang
- Shanghai Allist Pharmaceutical Technology Co., Ltd., Shanghai, 201203, China
| | - Fei Liu
- Shanghai Allist Pharmaceutical Technology Co., Ltd., Shanghai, 201203, China
| | - Qian-Yu Zhao
- Shanghai Allist Pharmaceutical Technology Co., Ltd., Shanghai, 201203, China
| | - Zhong Zuo
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Yi-Fan Zhang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
| | - Xiao-Yu Yan
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China.
| |
Collapse
|
8
|
Physiologically based pharmacokinetic combined BTK occupancy modeling for optimal dosing regimen prediction of acalabrutinib in patients alone, with different CYP3A4 variants, co-administered with CYP3A4 modulators and with hepatic impairment. Eur J Clin Pharmacol 2022; 78:1435-1446. [PMID: 35680661 DOI: 10.1007/s00228-022-03338-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 05/15/2022] [Indexed: 11/03/2022]
Abstract
PURPOSE To develop a mathematical model combined between physiologically based pharmacokinetic and BTK occupancy (PBPK-BO) to simultaneously predict pharmacokinetic (PK) and pharmacodynamic (PD) changes of acalabrutinib (ACA) and active metabolite ACP-5862 in healthy humans as well as PD in patients. Next, to use the PBPK-BO to determine the optimal dosing regimens in patients alone, with different CYP3A4 variants, when co-administration with four CYP3A4 modulators and in patients with hepatic impairment, respectively. METHODS The PBPK-BO model was built using physicochemical and biochemical properties of ACA and ACP-5862 and then verified by observed PK and PD data from healthy humans and patients. Finally, the model was applied to determine optimal dosing regimens in various clinical situations. RESULTS The simulations demonstrated that 100 mg ACA twice daily (BID) was the optimal dosing regimen in patients alone. Additionally, dosage regimens might be reduced to 50 mg BID in patients with five CYP3A4 variants. Moreover, the dosing regimen should be modified to 100 mg (even to 50 mg) once daily (QD) when co-administration with erythromycin or clarithromycin, and be increased to 200 mg BID with rifampicin, and but be avoided co-administration with itraconazole. Furthermore, dosage regimen simulations showed that optimal dosing might be decreased to 50 mg BID in patients with mild and moderate hepatic impairment, and be avoided taking ACA in severely hepatically impaired patients. CONCLUSION This PBPK-BO model can predict PK and PD in healthy humans and patients and also predict the optimal dosing regimens in various clinical situations.
Collapse
|
9
|
Xu Y, Izumi R, Nguyen H, Kwan A, Kuo H, Madere J, Slatter JG, Podoll T, Vishwanathan K, Marbury T, Smith W, Preston RA, Sharma S, Ware JA. Evaluation of the Pharmacokinetics and Safety of a Single Dose of Acalabrutinib in Subjects With Hepatic Impairment. J Clin Pharmacol 2021; 62:812-822. [PMID: 34897701 PMCID: PMC9303693 DOI: 10.1002/jcph.2013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 12/10/2021] [Indexed: 11/07/2022]
Abstract
Acalabrutinib received approval for treatment of adult patients with mantle cell lymphoma who received at least one prior therapy and adult patients with chronic lymphocytic leukemia or small lymphocytic lymphoma. This study investigated the impact of hepatic impairment (HI) on acalabrutinib PK and safety at a single 50-mg dose in fasted subjects. This study was divided into two studies: study 1, an open-label, parallel-group study in Child-Pugh Class A or B subjects and healthy subjects, and study 2, an open-label, parallel-group study in Child-Pugh Class C subjects and healthy subjects. Baseline characteristics and safety profiles were similar across groups. Acalabrutinib exposure (area under the curve [AUC]) increased slightly (1.90- and 1.48-fold) in subjects with mild (Child-Pugh Class A) and moderate (Child-Pugh Class B) HI compared with healthy subjects. In severe HI (Child-Pugh Class C), acalabrutinib exposure (AUC and maximum concentration [Cmax ]) increased approximately 5.0-fold and 3.6-fold, respectively. Results were consistent across total and unbound exposures. Severe HI did not impact total/unbound metabolite (ACP-5862) exposures; metabolite to parent ratio decreased to 0.6 - 0.8 (versus 3.1 - 3.6 in healthy subjects). In summary, single oral dose of 50 mg acalabrutinib was safe and well tolerated in subjects with mild, moderate and severe HI and in healthy control subjects. In subjects with severe HI, mean acalabrutinib exposure increased by up to 5-fold and should be avoided. Acalabrutinib does not require dose adjustment in patients with mild or moderate HI. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Yan Xu
- Quantitative Clinical Pharmacology, AstraZeneca, South San Francisco, CA, USA
| | - Raquel Izumi
- Clinical Development, AstraZeneca, South San Francisco, CA, USA
| | - Helen Nguyen
- Clinical Development, AstraZeneca, South San Francisco, CA, USA
| | - Anna Kwan
- Clinical Development, AstraZeneca, South San Francisco, CA, USA
| | - Howard Kuo
- Quantitative Clinical Pharmacology, AstraZeneca, South San Francisco, CA, USA
| | - Jeannine Madere
- Clinical Development, AstraZeneca, South San Francisco, CA, USA
| | - J Greg Slatter
- Quantitative Clinical Pharmacology, AstraZeneca, South San Francisco, CA, USA
| | - Terry Podoll
- Quantitative Clinical Pharmacology, AstraZeneca, South San Francisco, CA, USA
| | - Karthick Vishwanathan
- Clinical Pharmacology and Quantitative Pharmacology, Clinical Pharmacology and Safety Sciences, AstraZeneca, Boston, MA, USA
| | | | - William Smith
- Alliance for Multispecialty Research, University of Tennessee Medical Center, Knoxville, TN, USA
| | - Richard A Preston
- Division of Clinical Pharmacology, Department of Medicine, The Peggy and Harold Katz Family Drug Discovery Center, University of Miami Clinical and Translational Science Institutes (CTSI), University of Miami, Miami, FL, USA
| | - Shringi Sharma
- Quantitative Clinical Pharmacology, AstraZeneca, South San Francisco, CA, USA
| | - Joseph A Ware
- Quantitative Clinical Pharmacology, AstraZeneca, South San Francisco, CA, USA
| |
Collapse
|
10
|
Tam CS, Ou YC, Trotman J, Opat S. Clinical pharmacology and PK/PD translation of the second-generation Bruton's tyrosine kinase inhibitor, zanubrutinib. Expert Rev Clin Pharmacol 2021; 14:1329-1344. [PMID: 34491123 DOI: 10.1080/17512433.2021.1978288] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Introduction: Bruton's tyrosine kinase (BTK) inhibitors have revolutionized the treatment of B-cell lymphomas. Zanubrutinib was designed to achieve improved therapeutic concentrations and minimize off-target activities putatively accounting, in part, for the adverse effects seen with other BTK inhibitors.Areas covered: This drug profile covers zanubrutinib clinical pharmacology and the translation of pharmacokinetics (PK) and pharmacodynamics (PD) to clinical efficacy and safety profiles, by highlighting key differences between zanubrutinib and other BTK inhibitors. We discuss PK, sustained BTK occupancy, and potential factors affecting PK of zanubrutinib, including food effects, hepatic impairment, and drug-drug interactions. These data, along with exposure-response analyses, were used to support the recommended dose of 320 mg, either once daily or as 160 mg twice daily. Translation of PK/PD attributes into clinical effects was demonstrated in a randomized, phase 3 head-to-head study comparing it with ibrutinib in patients with Waldenström macroglobulinemia.Expert opinion: Among the approved BTK inhibitors, zanubrutinib is less prone to PK modulation by intrinsic and extrinsic factors, leading to more consistent, sustained therapeutic exposures and improved dosing convenience. Zanubrutinib PK/PD has translated into durable responses and improved safety, representing an important new treatment option for patients who benefit from BTK therapy.
Collapse
Affiliation(s)
- Constantine S Tam
- Department of Haematology, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia.,Department of Haematology, St Vincent's Hospital, Fitzroy, VIC, Australia.,Department of Haematology, University of Melbourne, Parkville, VIC, Australia.,Department of Haematology, Royal Melbourne Hospital, Parkville, VIC, Australia
| | - Ying C Ou
- Sr. Director, Clinical Pharmacology, BeiGene USA Inc., San Mateo, CA, USA
| | - Judith Trotman
- Department of Haematology, Concord Repatriation Hospital, Concord, NSW, Australia.,Department of Haematology, The University of Sydney, Concord, NSW, Australia
| | - Stephen Opat
- Director, Clinical Haematology, Monash Health, Clayton, VIC, Australia.,Director, Clinical Haematology, Monash University, Clayton, VIC, Australia
| |
Collapse
|
11
|
Miao Y, Xu W, Li J. Assessing the pharmacokinetics of acalabrutinib in the treatment of chronic lymphocytic leukemia. Expert Opin Drug Metab Toxicol 2021; 17:1023-1030. [PMID: 34275396 DOI: 10.1080/17425255.2021.1955855] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
INTRODUCTION The first-in-class BTK inhibitor ibrutinib has substantially changed the therapeutic landscape of chronic lymphocytic leukemia (CLL). The next-generation BTK inhibitor acalabrutinib is more selective and may have less off-target toxicities as compared to ibrutinib. Acalabrutinib has demonstrated safety and efficacy in CLL and has been approved to treat CLL. AREAS COVERED Current clinical trials investigated acalabrutinib monotherapy or acalabrutinib-based combination therapies in relapsed/refractory and treatment-naive CLL. Data on the efficacy and safety of acalabrutinib in clinical trials were summarized in this review. The pharmacokinetic and pharmacodynamic data of acalabrutinib were also discussed. EXPERT OPINION Acalabrutinib selectively inhibits BTK by covalent binding and shows rapid absorption and elimination. Acalabrutinib does not inhibit EGFR, TEC, or ITK and shows fewer off-target toxicities. Completed phase 3 trials have demonstrated that acalabrutinib improves the outcomes of patients with relapsed/refractory CLL and patients with treatment-naive CLL. The phase 3 trial that evaluates acalabrutinib versus ibrutinib has met its primary endpoint. Early phase studies suggested the combinations of acalabrutinib with a CD20 antibody and venetoclax led to high rates of undetectable minimal residual disease in the bone marrow in CLL patients and might provide a fixed-duration therapeutic option for patients with CLL.
Collapse
Affiliation(s)
- Yi Miao
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China.,Key Laboratory of Hematology of Nanjing Medical University, Nanjing, China.,Pukou CLL Center, Nanjing, China
| | - Wei Xu
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China.,Key Laboratory of Hematology of Nanjing Medical University, Nanjing, China.,Pukou CLL Center, Nanjing, China
| | - Jianyong Li
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China.,Key Laboratory of Hematology of Nanjing Medical University, Nanjing, China.,Pukou CLL Center, Nanjing, China
| |
Collapse
|
12
|
Edlund H, Bellanti F, Liu H, Vishwanathan K, Tomkinson H, Ware J, Sharma S, Buil-Bruna N. Improved characterization of the pharmacokinetics of acalabrutinib and its pharmacologically active metabolite, ACP-5862, in patients with B-cell malignancies and in healthy subjects using a population pharmacokinetic approach. Br J Clin Pharmacol 2021; 88:846-852. [PMID: 34265100 DOI: 10.1111/bcp.14988] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 06/29/2021] [Accepted: 07/05/2021] [Indexed: 12/24/2022] Open
Abstract
This analysis aimed to describe the pharmacokinetics (PK) of acalabrutinib and its active metabolite, ACP-5862. A total of 8935 acalabrutinib samples from 712 subjects and 2394 ACP-5862 samples from 304 subjects from 12 clinical studies in patients with B-cell malignancies and healthy subjects were analysed by nonlinear mixed-effects modelling. Acalabrutinib PK was characterized by a 2-compartment model with first-order elimination. The large variability in absorption was adequately described by transit compartment chain and first-order absorption, with between-occasion variability on the mean transit time and relative bioavailability. The PK of ACP-5862 was characterized by a 2-compartment model with first-order elimination, and the formation rate was defined as the acalabrutinib clearance multiplied by the fraction metabolized. Health status, Eastern Cooperative Oncology Group performance status, and coadministration of proton-pump inhibitors were significant covariates. However, none of the investigated covariates led to clinically meaningful changes in exposure, supporting a flat dosing of acalabrutinib.
Collapse
Affiliation(s)
- Helena Edlund
- Clinical Pharmacology & Quantitative Pharmacology (CPQP), Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | | | - Huan Liu
- Clinical Pharmacology & Quantitative Pharmacology (CPQP), Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Boston, MA, USA
| | - Karthick Vishwanathan
- Clinical Pharmacology & Quantitative Pharmacology (CPQP), Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Boston, MA, USA
| | - Helen Tomkinson
- Clinical Pharmacology & Quantitative Pharmacology (CPQP), Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge, UK
| | - Joseph Ware
- Quantitative Clinical Pharmacology, AstraZeneca, South San Francisco, CA, USA
| | - Shringi Sharma
- Quantitative Clinical Pharmacology, AstraZeneca, South San Francisco, CA, USA
| | - Núria Buil-Bruna
- Clinical Pharmacology & Quantitative Pharmacology (CPQP), Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge, UK
| |
Collapse
|
13
|
Benner B, Scarberry L, Stiff A, Duggan MC, Good L, Lapurga G, Butchar JP, Tridandapani S, Carson WE. Evidence for interaction of the NLRP3 inflammasome and Bruton's tyrosine kinase in tumor-associated macrophages: implications for myeloid cell production of interleukin-1beta. Oncoimmunology 2019; 8:1659704. [PMID: 31646085 PMCID: PMC6791459 DOI: 10.1080/2162402x.2019.1659704] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 08/20/2019] [Accepted: 08/21/2019] [Indexed: 01/05/2023] Open
Abstract
An inflammatory microenvironment has been shown to play an important role in the growth and metastasis of tumors. The NLRP3 inflammasome is a multi-protein complex of the innate immune system that is responsible for the production of the potent inflammatory cytokine IL-1β. Tumor- associated macrophages (TAM) are an expanded population of immune cells found in the tumor microenvironment that can promote the initiation and metastasis of tumor cells. Their presence has been correlated with disease burden, highlighting the therapeutic potential of targeting this population. However, to date clinically relevant pharmacologic strategies to target TAM remain elusive. Here, we show that in vitro generated TAM harbor NLRP3 inflammasome components and produce IL-1β. Ibrutinib, an irreversible inhibitor of Bruton's tyrosine kinase (BTK), is in clinical use for the treatment of B- cell malignancies. We report that BTK is expressed by human in vitro generated TAM and murine macrophages and that it physically associates with the NLRP3 inflammasome. Furthermore, ibrutinib is able to inhibit BTK phosphorylation in TAM generated in vitro. Treatment of TAM with ibrutinib significantly impaired the ability of these cells to produce IL-1β. The present study provides evidence that BTK physically associates with the NLRP3 inflammasome and that inhibition of BTK with ibrutinib can impair the production of IL-1β by in vitro generated TAM. Thus, ibrutinib could potentially be of clinical use in abrogating inflammation-associated cancer progression and the immune-suppressive effects of myeloid cells within the tumor microenvironment.
Collapse
Affiliation(s)
- Brooke Benner
- Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA
| | - Luke Scarberry
- Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA
| | - Andrew Stiff
- Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA
| | - Megan C. Duggan
- Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA
| | - Logan Good
- Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA
| | - Gabriella Lapurga
- Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA
| | | | | | - William E. Carson
- Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA
- Division of Surgical Oncology, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
14
|
Zhou D, Podoll T, Xu Y, Moorthy G, Vishwanathan K, Ware J, Slatter JG, Al-Huniti N. Evaluation of the Drug-Drug Interaction Potential of Acalabrutinib and Its Active Metabolite, ACP-5862, Using a Physiologically-Based Pharmacokinetic Modeling Approach. CPT-PHARMACOMETRICS & SYSTEMS PHARMACOLOGY 2019; 8:489-499. [PMID: 31044521 PMCID: PMC6656940 DOI: 10.1002/psp4.12408] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 03/22/2019] [Indexed: 12/18/2022]
Abstract
Acalabrutinib, a selective, covalent Bruton tyrosine kinase inhibitor, is a CYP3A substrate and weak CYP3A/CYP2C8 inhibitor. A physiologically‐based pharmacokinetic (PBPK) model was developed for acalabrutinib and its active metabolite ACP‐5862 to predict potential drug–drug interactions (DDIs). The model indicated acalabrutinib would not perpetrate a CYP2C8 or CYP3A DDI with the sensitive CYP substrates rosiglitazone or midazolam, respectively. The model reasonably predicted clinically observed acalabrutinib DDI with the CYP3A perpetrators itraconazole (4.80‐fold vs. 5.21‐fold observed) and rifampicin (0.21‐fold vs. 0.23‐fold observed). An increase of two to threefold acalabrutinib area under the curve was predicted for coadministration with moderate CYP3A inhibitors. When both the parent drug and active metabolite (total active components) were considered, the magnitude of the CYP3A DDI was much less significant. PBPK dosing recommendations for DDIs should consider the magnitude of the parent drug excursion, relative to safe parent drug exposures, along with the excursion of total active components to best enable safe and adequate pharmacodynamic coverage.
Collapse
Affiliation(s)
- Diansong Zhou
- Quantitative Clinical Pharmacology, Early Clinical Development, IMED Biotech Unit, AstraZeneca, Boston, Massachusetts, USA
| | - Terry Podoll
- DMPK/Clinical Pharmacology, Acerta Pharma, South San Francisco, California, USA
| | - Yan Xu
- DMPK/Clinical Pharmacology, Acerta Pharma, South San Francisco, California, USA
| | - Ganesh Moorthy
- Quantitative Clinical Pharmacology, Early Clinical Development, IMED Biotech Unit, AstraZeneca, Boston, Massachusetts, USA
| | - Karthick Vishwanathan
- Quantitative Clinical Pharmacology, Early Clinical Development, IMED Biotech Unit, AstraZeneca, Boston, Massachusetts, USA
| | - Joseph Ware
- DMPK/Clinical Pharmacology, Acerta Pharma, South San Francisco, California, USA
| | - J Greg Slatter
- DMPK/Clinical Pharmacology, Acerta Pharma, South San Francisco, California, USA
| | - Nidal Al-Huniti
- Quantitative Clinical Pharmacology, Early Clinical Development, IMED Biotech Unit, AstraZeneca, Boston, Massachusetts, USA
| |
Collapse
|
15
|
Daryaee F, Tonge PJ. Pharmacokinetic-pharmacodynamic models that incorporate drug-target binding kinetics. Curr Opin Chem Biol 2019; 50:120-127. [PMID: 31030171 DOI: 10.1016/j.cbpa.2019.03.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 03/08/2019] [Accepted: 03/09/2019] [Indexed: 01/30/2023]
Abstract
Pharmacokinetic/pharmacodynamic (PK/PD) models predict the effect time course resulting from a drug dose. In this review, we summarize the development of mechanistic PK/PD models that explicitly integrate the kinetics of drug-target interactions into predictions of drug activity. Such mechanistic models are expected to have several advantages over approaches in which concentration and effect are linked using variations of the Hill equation, and where preclinical data are often used as a starting point for modeling drug activity. Instead, explicit use of the full kinetic scheme for drug binding enables time-dependent changes in target occupancy to be calculated using the kinetics of drug-target interactions and drug PK, providing a more precise picture of target engagement and drug action in the non-equilibrium environment of the human body. The mechanistic PK/PD models also generate target vulnerability functions that link target occupancy and effect, and inform on the sensitivity of a target to engagement by a drug. Key factors such as the rate of target turnover can also be integrated into the modeling which, together with target vulnerability, provide additional information on the PK profile required to achieve the desired pharmacological effect and on the utility of kinetic selectivity in developing drugs for specific targets.
Collapse
Affiliation(s)
- Fereidoon Daryaee
- Center for Advanced Study of Drug Action, Department of Chemistry, New York, USA
| | - Peter J Tonge
- Center for Advanced Study of Drug Action, Department of Chemistry, New York, USA; Department of Radiology, Stony Brook University, Stony Brook, New York, USA.
| |
Collapse
|