1
|
Kadar EP, Eng H, Kalgutkar AS, Holliman CL, Steeno GS. Development of a sensitive LC-MS/MS assay to support human microdose study for an oral agonist of the GLP-1 receptor. Bioanalysis 2024; 16:545-555. [PMID: 39088035 PMCID: PMC11299791 DOI: 10.1080/17576180.2024.2349421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 04/26/2024] [Indexed: 08/02/2024] Open
Abstract
Aim: The purpose of this work was to determine the feasibility of supporting a clinical microdose study for PF-06882961 (danuglipron), an oral small molecule agonist of the GLP-1 receptor, by LC-MS/MS. Methodology: Statistical instrument parameter optimization using response surface methodology was employed to develop a LC-MS/MS method for the analyte, PF-06882961. Results: An LC-MS/MS method was developed and validated to support a proof of concept microdose pharmacokinetics preclinical study in monkeys, administered PF-06882961 (0.005 mg total, average dose = 0.0007 mg/kg) via intravenous bolus injection. Conclusion: The present study demonstrated the feasibility of analyzing human microdose plasma samples for PF-06882961 by LC-MS/MS, instead of accelerator mass spectrometry, thereby reducing cost and eliminating synthesis and exposure to 14C labeled material.
Collapse
Affiliation(s)
- Eugene P Kadar
- Medicine Design, Pfizer Worldwide Research & Development, Pfizer Inc., Groton, CT06430, USA
| | - Heather Eng
- Medicine Design, Pfizer Worldwide Research & Development, Pfizer Inc., Groton, CT06430, USA
| | - Amit S Kalgutkar
- Medicine Design, Pfizer Worldwide Research & Development, Pfizer Inc., Cambridge, MA02139, USA
| | - Christopher L Holliman
- Medicine Design, Pfizer Worldwide Research & Development, Pfizer Inc., Groton, CT06430, USA
| | - Gregory S Steeno
- Global Biometrics and Data Management, Pfizer Worldwide Research & Development, Pfizer Inc., Groton, CT06430, USA
| |
Collapse
|
2
|
Roffel AF, van Hoogdalem EJ. The application of Phase 0 and microtracer approaches in early clinical development: past, present, and future. Front Pharmacol 2024; 15:1369079. [PMID: 38562464 PMCID: PMC10982362 DOI: 10.3389/fphar.2024.1369079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 02/21/2024] [Indexed: 04/04/2024] Open
Abstract
Phase 0 microdosing studies were introduced to the drug development community approximately 20 years ago. A microdose is defined as less than 1/100th of the dose calculated based on animal data to yield a pharmacological effect in humans, with a maximum of 100 μg, or 30 nmoles for protein products. In our experience, Phase 0 microdose studies have not been fully embraced by the pharmaceutical industry. This notion is based on the number of Phase 0 studies that we have been involved in. Thus, we conducted at least 17 Phase 0 microdose studies in the Zero's (on average, two per year), but in the years beyond this, it was only 15 studies (1.4 per year); in these latter years, we did conduct a total of 23 studies which employed an intravenous (i.v.) microdose for absolute bioavailability (ABA) assessments (two per year on average), which are the most used and potentially informative type of clinical study using a microdose, albeit they are formally not microdose studies. In the current review, we summarize the past use of and experience with Phase 0 microdose designs in early clinical development, including intravenous 14C microdose ABA studies, and assess what is needed to increase the adoption of useful applications of Phase 0/microdose studies in the near future.
Collapse
|
3
|
Hu C, Yang W. Alternatives to animal models to study bacterial infections. Folia Microbiol (Praha) 2023; 68:703-739. [PMID: 37632640 DOI: 10.1007/s12223-023-01084-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 08/02/2023] [Indexed: 08/28/2023]
Abstract
Animal testing has made a significant and unequalled contribution to important discoveries and advancements in the fields of research, medicine, vaccine development, and drug discovery. Each year, millions of animals are sacrificed for various experiments, and this is an ongoing process. However, the debate on the ethical and sensible usage of animals in in vivo experimentation is equally important. The need to explore and adopt newer alternatives to animals so as to comply with the goal of reduce, refine, and replace needs attention. Besides the ever-increasing debate on ethical issues, animal research has additional drawbacks (need of trained labour, requirement of breeding area, lengthy protocols, high expenses, transport barriers, difficulty to extrapolate data from animals to humans, etc.). With this scenario, the present review has been framed to give a comprehensive insight into the possible alternative options worth exploring in this direction especially targeting replacements for animal models of bacterial infections. There have been some excellent reviews discussing on the alternate methods for replacing and reducing animals in drug research. However, reviews that discuss the replacements in the field of medical bacteriology with emphasis on animal bacterial infection models are purely limited. The present review discusses on the use of (a) non-mammalian models and (b) alternative systems such as microfluidic chip-based models and microdosing aiming to give a detailed insight into the prospects of these alternative platforms to reduce the number of animals being used in infection studies. This would enlighten the scientific community working in this direction to be well acquainted with the available new approaches and alternatives so that the 3R strategy can be successfully implemented in the field of antibacterial drug research and testing.
Collapse
Affiliation(s)
- Chengming Hu
- Queen Mary College, Nanchang University, Nanchang, China
| | - Wenlong Yang
- Department of Infectious Diseases, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China.
| |
Collapse
|
4
|
Hernández-Lozano I, Mairinger S, Filip T, Löbsch M, Stanek J, Kuntner C, Bauer M, Zeitlinger M, Hacker M, Helbich TH, Wanek T, Langer O. Positron Emission Tomography-Based Pharmacokinetic Analysis To Assess Renal Transporter-Mediated Drug-Drug Interactions of Antimicrobial Drugs. Antimicrob Agents Chemother 2023; 67:e0149322. [PMID: 36786609 PMCID: PMC10019293 DOI: 10.1128/aac.01493-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 01/23/2023] [Indexed: 02/15/2023] Open
Abstract
Transporter-mediated drug-drug interactions (DDIs) are of concern in antimicrobial drug development, as they can have serious safety consequences. We used positron emission tomography (PET) imaging-based pharmacokinetic (PK) analysis to assess the effect of different drugs, which may cause transporter-mediated DDIs, on the tissue distribution and excretion of [18F]ciprofloxacin as a radiolabeled model antimicrobial drug. Mice underwent PET scans after intravenous injection of [18F]ciprofloxacin, without and with pretreatment with either probenecid (150 mg/kg), cimetidine (50 mg/kg), or pyrimethamine (5 mg/kg). A 3-compartment kidney PK model was used to assess the involvement of renal transporters in the examined DDIs. Pretreatment with probenecid and cimetidine significantly decreased the renal clearance (CLrenal) of [18F]ciprofloxacin. The effect of cimetidine (-86%) was greater than that of probenecid (-63%), which contrasted with previously published clinical data. The kidney PK model revealed that the decrease in CLrenal was caused by inhibition of basal uptake transporters and apical efflux transporters in kidney proximal tubule cells. Changes in the urinary excretion of [18F]ciprofloxacin after pretreatment with probenecid and cimetidine resulted in increased blood and organ exposure to [18F]ciprofloxacin. Our results suggest that multiple membrane transporters mediate the tubular secretion of ciprofloxacin, with possible species differences between mice and humans. Concomitant medication inhibiting renal transporters may precipitate DDIs, leading to decreased urinary excretion and increased blood and organ exposure to ciprofloxacin, potentially exacerbating adverse effects. Our study highlights the strength of PET imaging-based PK analysis to assess transporter-mediated DDIs at a whole-body level.
Collapse
Affiliation(s)
| | - Severin Mairinger
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
- Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Thomas Filip
- Core Facility Laboratory Animal Breeding and Husbandry, Medical University of Vienna, Vienna, Austria
- Center for Biomedical Research, Medical University of Vienna, Vienna, Austria
| | - Mathilde Löbsch
- Core Facility Laboratory Animal Breeding and Husbandry, Medical University of Vienna, Vienna, Austria
| | - Johann Stanek
- Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Claudia Kuntner
- Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Martin Bauer
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Markus Zeitlinger
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Marcus Hacker
- Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Thomas H. Helbich
- Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Thomas Wanek
- Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Oliver Langer
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
- Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
5
|
Accelerator mass spectrometry for quantification of micro- and therapeutic dose diclofenac in microdialysis samples. Bioanalysis 2022; 14:1111-1122. [PMID: 36165918 DOI: 10.4155/bio-2022-0064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Background: Microdialysis sampling after drug microdosing may provide tissue pharmacokinetic data early in clinical drug development. However, low administered doses and small sample volumes pose an analytical challenge, particularly for highly protein-bound drugs. Materials & methods: Carbon-14 [14C]diclofenac was used as a model drug to assess the technical and analytical feasibility of in vivo microdialysis after microdose administration in an in vitro setup. Results: [14C]diclofenac dialysate concentrations were accurately quantified with accelerator MS. [14C]diclofenac dialysate recoveries were similar in the presence and absence of therapeutic diclofenac concentrations but were considerably decreased when albumin was added to the immersion solution, suggesting high protein binding. Conclusion: These results demonstrate the feasibility of combining microdosing and microdialysis to assess tissue pharmacokinetics.
Collapse
|