1
|
Zhang YB, Wang JF, Wang MX, Peng J, Kong XD, Tian J. Nano-based drug delivery systems for active ingredients from traditional Chinese medicine: Harnessing the power of nanotechnology. Front Pharmacol 2024; 15:1405252. [PMID: 38910887 PMCID: PMC11190311 DOI: 10.3389/fphar.2024.1405252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 05/20/2024] [Indexed: 06/25/2024] Open
Abstract
Introduction: Traditional Chinese medicine (TCM) is gaining worldwide popularity as a complementary and alternative medicine. The isolation and characterization of active ingredients from TCM has become optional strategies for drug development. In order to overcome the inherent limitations of these natural products such as poor water solubility and low bioavailability, the combination of nanotechnology with TCM has been explored. Taking advantage of the benefits offered by the nanoscale, various drug delivery systems have been designed to enhance the efficacy of TCM in the treatment and prevention of diseases. Methods: The manuscript aims to present years of research dedicated to the application of nanotechnology in the field of TCM. Results: The manuscript discusses the formulation, characteristics and therapeutic effects of nano-TCM. Additionally, the formation of carrier-free nanomedicines through self-assembly between active ingredients of TCM is summarized. Finally, the paper discusses the safety behind the application of nano-TCM and proposes potential research directions. Discussion: Despite some achievements, the safety of nano-TCM still need special attention. Furthermore, exploring the substance basis of TCM formulas from the perspective of nanotechnology may provide direction for elucidating the scientific intension of TCM formulas.
Collapse
Affiliation(s)
| | | | | | | | | | - Jie Tian
- Department of Pharmacy, Affiliated Hospital of Jining Medical University, Jining, China
| |
Collapse
|
2
|
Li Z, Chen L, Rong D, Yuan L, Xie Y. Photochemical acridone-mediated direct arylation of (hetero)arenes with aryl diazonium salts. Org Biomol Chem 2023; 21:8739-8743. [PMID: 37872813 DOI: 10.1039/d3ob01389h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
A metal-free photochemical C-H direct arylation using acridone as a photoredox catalyst to facilitate the reaction is described. Diazonium salts as precursors for aryl radicals, demonstrated by a fluorescence quenching experiment and free radical trapping experiment, allow the functionalization of (hetero)arenes under mild conditions. A series of valuable substituted biaryl and aryl-heteroaryl compounds were prepared in moderate to good yields via the coupling. Moreover, this methodology is shown to be applicable to scale-up synthesis.
Collapse
Affiliation(s)
- Zhenhua Li
- Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, College of Pharmaceutical Sciences, Zhejiang University of Technology, Chao Wang Road 18, Hangzhou, P. R. China.
| | - Lijun Chen
- Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, College of Pharmaceutical Sciences, Zhejiang University of Technology, Chao Wang Road 18, Hangzhou, P. R. China.
| | - Dayou Rong
- Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, College of Pharmaceutical Sciences, Zhejiang University of Technology, Chao Wang Road 18, Hangzhou, P. R. China.
| | - Longfeng Yuan
- Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, College of Pharmaceutical Sciences, Zhejiang University of Technology, Chao Wang Road 18, Hangzhou, P. R. China.
| | - Yuanyuan Xie
- Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, College of Pharmaceutical Sciences, Zhejiang University of Technology, Chao Wang Road 18, Hangzhou, P. R. China.
| |
Collapse
|
3
|
Zhang M, Zou Y, Li Y, Wang H, Sun W, Liu B. The history and mystery of sacubitril/valsartan: From clinical trial to the real world. Front Cardiovasc Med 2023; 10:1102521. [PMID: 37057101 PMCID: PMC10086241 DOI: 10.3389/fcvm.2023.1102521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 03/13/2023] [Indexed: 03/30/2023] Open
Abstract
Heart failure is a serious threat to human health, with morbidity and mortality rates increasing despite the existence of multiple treatment options. Therefore, it is necessary to identify new therapeutic targets for this disease. Sacubitril/valsartan is a supramolecular sodium salt complex of the enkephalinase inhibitor prodrug sacubitril and the angiotensin receptor blocker valsartan. Its combined action increases endogenous natriuretic peptides while inhibiting the renin-angiotensin-aldosterone system and exerting cardioprotective effects. Clinical evidence suggests that sacubitril/valsartan is superior to conventional renin-angiotensin-aldosterone inhibitor therapy for patients with reduced ejection fraction heart failure who can tolerate angiotensin-converting enzyme inhibitors or angiotensin II receptor blockers. The therapy reduces the risk of heart failure hospitalization, cardiovascular mortality, and all-cause mortality and has a better safety and tolerability record. This review describes the potential pathophysiological mechanisms of cardiomyocyte injury amelioration by sacubitril/valsartan. We explore the protective effects of sacubitril/valsartan and outline the therapeutic value in patients with heart failure by summarizing the results of recent large clinical trials. Furthermore, a preliminary outlook shows that sacubitril/valsartan may be effective at treating other diseases, and provides some exploratory observations that lay the foundation for future studies on this drug.
Collapse
Affiliation(s)
| | | | | | | | - Wei Sun
- Correspondence: Wei Sun Bin Liu
| | - Bin Liu
- Correspondence: Wei Sun Bin Liu
| |
Collapse
|
4
|
Mustafa NH, Jalil J, Zainalabidin S, Saleh MS, Asmadi AY, Kamisah Y. Molecular mechanisms of sacubitril/valsartan in cardiac remodeling. Front Pharmacol 2022; 13:892460. [PMID: 36003518 PMCID: PMC9393311 DOI: 10.3389/fphar.2022.892460] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 07/11/2022] [Indexed: 12/11/2022] Open
Abstract
Cardiovascular diseases have become a major clinical burden globally. Heart failure is one of the diseases that commonly emanates from progressive uncontrolled hypertension. This gives rise to the need for a new treatment for the disease. Sacubitril/valsartan is a new drug combination that has been approved for patients with heart failure. This review aims to detail the mechanism of action for sacubitril/valsartan in cardiac remodeling, a cellular and molecular process that occurs during the development of heart failure. Accumulating evidence has unveiled the cardioprotective effects of sacubitril/valsartan on cellular and molecular modulation in cardiac remodeling, with recent large-scale randomized clinical trials confirming its supremacy over other traditional heart failure treatments. However, its molecular mechanism of action in cardiac remodeling remains obscure. Therefore, comprehending the molecular mechanism of action of sacubitril/valsartan could help future research to study the drug's potential therapy to reduce the severity of heart failure.
Collapse
Affiliation(s)
- Nor Hidayah Mustafa
- Centre for Drug and Herbal Research Development, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Juriyati Jalil
- Centre for Drug and Herbal Research Development, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Satirah Zainalabidin
- Program of Biomedical Science, Centre of Applied and Health Sciences, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Mohammed S.M. Saleh
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Ahmad Yusof Asmadi
- Unit of Pharmacology, Faculty of Medicine and Defence Health, Universiti Pertahanan Nasional Malaysia, Kuala Lumpur, Malaysia
| | - Yusof Kamisah
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| |
Collapse
|
5
|
Gan L, Lyu X, Yang X, Zhao Z, Tang Y, Chen Y, Yao Y, Hong F, Xu Z, Chen J, Gu L, Mao H, Liu Y, Sun J, Zhou Z, Du X, Jiang H, Li Y, Sun N, Liang X, Zuo L. Application of Angiotensin Receptor–Neprilysin Inhibitor in Chronic Kidney Disease Patients: Chinese Expert Consensus. Front Med (Lausanne) 2022; 9:877237. [PMID: 35928297 PMCID: PMC9343998 DOI: 10.3389/fmed.2022.877237] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 06/20/2022] [Indexed: 11/13/2022] Open
Abstract
Chronic kidney disease (CKD) is a global public health problem, and cardiovascular disease is the most common cause of death in patients with CKD. The incidence and prevalence of cardiovascular events during the early stages of CKD increases significantly with a decline in renal function. More than 50% of dialysis patients die from cardiovascular disease, including coronary heart disease, heart failure, arrhythmia, and sudden cardiac death. Therefore, developing effective methods to control risk factors and improve prognosis is the primary focus during the diagnosis and treatment of CKD. For example, the SPRINT study demonstrated that CKD drugs are effective in reducing cardiovascular and cerebrovascular events by controlling blood pressure. Uncontrolled blood pressure not only increases the risk of these events but also accelerates the progression of CKD. A co-crystal complex of sacubitril, which is a neprilysin inhibitor, and valsartan, which is an angiotensin receptor blockade, has the potential to be widely used against CKD. Sacubitril inhibits neprilysin, which further reduces the degradation of natriuretic peptides and enhances the beneficial effects of the natriuretic peptide system. In contrast, valsartan alone can block the angiotensin II-1 (AT1) receptor and therefore inhibit the renin–angiotensin–aldosterone system. These two components can act synergistically to relax blood vessels, prevent and reverse cardiovascular remodeling, and promote natriuresis. Recent studies have repeatedly confirmed that the first and so far the only angiotensin receptor–neprilysin inhibitor (ARNI) sacubitril/valsartan can reduce blood pressure more effectively than renin–angiotensin system inhibitors and improve the prognosis of heart failure in patients with CKD. Here, we propose clinical recommendations based on an expert consensus to guide ARNI-based therapeutics and reduce the occurrence of cardiovascular events in patients with CKD.
Collapse
Affiliation(s)
- Liangying Gan
- Department of Nephrology, Peking University People's Hospital, Beijing, China
| | - Xiaoxi Lyu
- Institute of Materia Medica, Peking Union Medical College, Chinese Academy of Medical Science, Beijing, China
| | | | - Zhanzheng Zhao
- First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ying Tang
- The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Yuanhan Chen
- Guangdong Provincial People's Hospital, Guangzhou, China
| | - Ying Yao
- Tongji Hospital Affiliated to Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | | | - Zhonghao Xu
- Bethune First Hospital of Jilin University, Changchun, China
| | - Jihong Chen
- Shenzhen Bao'an People's Hospital, Shenzhen, China
| | - Leyi Gu
- Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | | | - Ying Liu
- First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Jing Sun
- Shandong Provincial Hospital, Jinan, China
| | - Zhu Zhou
- First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Xuanyi Du
- The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Hong Jiang
- People's Hospital of Xinjiang, Urumqi, China
| | - Yong Li
- Huashan Hospital, Fudan University, Shanghai, China
| | - Ningling Sun
- Peking University People's Hospital, Beijing, China
| | - Xinling Liang
- Guangdong Provincial People's Hospital, Guangzhou, China
| | - Li Zuo
- Department of Nephrology, Peking University People's Hospital, Beijing, China
- *Correspondence: Li Zuo
| |
Collapse
|
6
|
Raschi E, Diemberger I, Sabatino M, Poluzzi E, De Ponti F, Potena L. Evaluating sacubitril/valsartan as a treatment option for heart failure with reduced ejection fraction and preserved ejection fraction. Expert Opin Pharmacother 2022; 23:303-320. [PMID: 35050813 DOI: 10.1080/14656566.2022.2027909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Sacubitril/valsartan is the first-in-class angiotensin-receptor neprilysin inhibitor approved in 2015 for the treatment of heart failure with reduced ejection fraction (HFrEF). On 16 February 2021, the Food and Drug Administration acknowledged that "Benefits are most clearly evident in patients with left ventricular ejection fraction below normal," thus potentially extending the use in subjects with heart failure and preserved ejection fraction (HFpEF). AREAS COVERED The authors outline the regulatory history, pharmacokinetics, pharmacodynamics, and risk-benefit profile of sacubitril/valsartan in HFrEF and HFpEF. A critical cross-trial comparison is presented, including sodium-glucose cotransporter 2 inhibitors (SGLT2i), together with an insight into the latest European Society of Cardiology guidelines, where the new category of heart failure with mildly reduced ejection fraction is introduced. EXPERT OPINION Sacubitril/valsartan is a foundation of the pharmacological armamentarium in HFrEF to counteract the neuro-hormonal changes and reverse cardiac remodeling, together with beta-blockers, SGLT2i and mineralocorticoid receptor antagonists. The optimal sequence algorithm is an evolving issue, and the authors provide the reader with their personal perspective. A multidisciplinary management is encouraged to minimize the therapeutic inertia and manage tolerability issues, thus supporting adherence. Pragmatic trials, pharmacovigilance, and high-quality real-world evidence are crucial toward personalized safe prescribing of sacubitril/valsartan.
Collapse
Affiliation(s)
- Emanuel Raschi
- Pharmacology Unit, Department of Medical and Surgical Sciences, Alma Mater Studiorum - University of Bologna, Bologna, Italy
| | - Igor Diemberger
- Cardiology Unit, Department of Experimental, Diagnostic and Specialty Medicine, Alma Mater Studiorum - University of Bologna, Bologna, Italy
| | - Mario Sabatino
- Cardiology Unit, Department of Experimental, Diagnostic and Specialty Medicine, Alma Mater Studiorum - University of Bologna, Bologna, Italy
| | - Elisabetta Poluzzi
- Pharmacology Unit, Department of Medical and Surgical Sciences, Alma Mater Studiorum - University of Bologna, Bologna, Italy
| | - Fabrizio De Ponti
- Pharmacology Unit, Department of Medical and Surgical Sciences, Alma Mater Studiorum - University of Bologna, Bologna, Italy
| | - Luciano Potena
- Cardiology Unit, IRCCS Azienda Ospedaliero-universitaria Di Bologna, Bologna, Italy
| |
Collapse
|
7
|
Aimo A, Vergaro G, Passino C, Clerico A. Evaluation of pathophysiological relationships between renin-angiotensin and ACE-ACE2 systems in cardiovascular disorders: from theory to routine clinical practice in patients with heart failure. Crit Rev Clin Lab Sci 2021; 58:530-545. [PMID: 34196254 DOI: 10.1080/10408363.2021.1942782] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Despite the progressive improvements in diagnosis and therapy during the first 20 years of this century, the morbidity and mortality of patients with heart failure (HF) remain high, resulting in an enormous health and economic burden. Only a further improvement in understanding the pathophysiological mechanisms related to the development of cardiac injury and dysfunction can allow more innovative and personalized approaches to HF management. The renin-angiotensin system (RAS) has a critical role in cardiovascular physiology by regulating blood pressure and electrolyte balance. The RAS is mainly regulated by both angiotensin converting enzyme (ACE) and type 2 angiotensin converting enzyme (ACE2). However, the balance between the various peptides and peptidases constituting the RAS/ACE pathway remains in great part unraveled in patients with HF. This review summarizes the role of the RAS/ACE axis in cardiac physiology and HF pathophysiology as well as some analytical issues relevant to the clinical and laboratory assessment of inter-relationships between these two systems. There is evidence that RAS peptides represent a dynamic network of peptides, which are altered in different HF states and influenced by medical therapy. However, the mechanisms of signal transduction have not been fully elucidated under physiological and pathophysiological conditions. Further investigations are necessary to explore novel molecular mechanisms related to the RAS, which will provide alternative therapeutic agents. Moreover, monitoring the circulating levels of active RAS peptides in HF patients may enable a personalized approach by facilitating assessment of the pathophysiological status of several cardiovascular diseases and thus better selection of therapies for HF patients.
Collapse
Affiliation(s)
- Alberto Aimo
- Fondazione CNR - Regione Toscana G. Monasterio, Scuola Superiore Sant'Anna, Pisa, Italy
| | - Giuseppe Vergaro
- Fondazione CNR - Regione Toscana G. Monasterio, Scuola Superiore Sant'Anna, Pisa, Italy
| | - Claudio Passino
- Fondazione CNR - Regione Toscana G. Monasterio, Scuola Superiore Sant'Anna, Pisa, Italy
| | - Aldo Clerico
- Fondazione CNR - Regione Toscana G. Monasterio, Scuola Superiore Sant'Anna, Pisa, Italy
| |
Collapse
|
8
|
Pang Z, Weng X, Wei Y, Gao Y, Zhang J, Qian S. Modification of hygroscopicity and tabletability of l-carnitine by a cocrystallization technique. CrystEngComm 2021. [DOI: 10.1039/d0ce01820a] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
LC-MYR cocrystal with significant enhanced dissolution,tabletability and decreased hygroscopicity is more suitable for manufacturing solid dosage forms.
Collapse
Affiliation(s)
- Zunting Pang
- School of Traditional Chinese Pharmacy
- China Pharmaceutical University
- Nanjing
- P. R. China
| | - Xingye Weng
- School of Pharmacy
- China Pharmaceutical University
- Nanjing
- P. R. China
| | - Yuanfeng Wei
- School of Traditional Chinese Pharmacy
- China Pharmaceutical University
- Nanjing
- P. R. China
| | - Yuan Gao
- School of Traditional Chinese Pharmacy
- China Pharmaceutical University
- Nanjing
- P. R. China
| | - Jianjun Zhang
- School of Pharmacy
- China Pharmaceutical University
- Nanjing
- P. R. China
| | - Shuai Qian
- School of Traditional Chinese Pharmacy
- China Pharmaceutical University
- Nanjing
- P. R. China
| |
Collapse
|
9
|
Sobowale CO, Hori Y, Ajijola OA. Neuromodulation Therapy in Heart Failure: Combined Use of Drugs and Devices. J Innov Card Rhythm Manag 2020; 11:4151-4159. [PMID: 32724706 PMCID: PMC7377644 DOI: 10.19102/icrm.2020.110705] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 05/20/2020] [Indexed: 12/11/2022] Open
Abstract
Heart failure (HF) is the fastest-growing cardiovascular disease globally. The autonomic nervous system plays an important role in the regulation and homeostasis of cardiac function but, once there is HF, it takes on a detrimental role in cardiac function that makes it a rational target. In this review, we cover the remodeling of the autonomic nervous system in HF and the latest treatments available targeting it.
Collapse
Affiliation(s)
- Christopher O Sobowale
- UCLA Cardiac Arrhythmia Center, UCLA Neurocardiology Research Center, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Yuichi Hori
- UCLA Cardiac Arrhythmia Center, UCLA Neurocardiology Research Center, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA.,Department of Cardiology, Dokkyo Medical University Saitama Medical Center, Saitama, Japan
| | - Olujimi A Ajijola
- UCLA Cardiac Arrhythmia Center, UCLA Neurocardiology Research Center, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| |
Collapse
|
10
|
Salazar J, Rojas-Quintero J, Cano C, Pérez JL, Ramírez P, Carrasquero R, Torres W, Espinoza C, Chacín-González M, Bermúdez V. Neprilysin: A Potential Therapeutic Target of Arterial Hypertension? Curr Cardiol Rev 2020; 16:25-35. [PMID: 31241018 PMCID: PMC7062041 DOI: 10.2174/1573403x15666190625160352] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 06/13/2019] [Accepted: 06/13/2019] [Indexed: 02/07/2023] Open
Abstract
Arterial hypertension is the most prevalent chronic disease in the adult population of developed countries and it constitutes a significant risk factor in the development of cardiovascular disease, contributing to the emergence of many comorbidities, among which heart failure excels, a clinical syndrome that nowadays represents a major health problem with uncountable hospitalizations and the indolent course of which progressively worsens until quality of life decreases and lastly death occurs prematurely. In the light of this growing menace, each day more efforts are invested in the field of cardiovascular pharmacology, searching for new therapeutic options that allow us to modulate the physiological systems that appear among these pathologies. Therefore, in the later years, the study of natriuretic peptides has become so relevant, which mediate beneficial effects at the cardiovascular level such as diuresis, natriuresis, and decreasing cardiac remodeling; their metabolism is mediated by neprilysin, a metalloproteinase, widely expressed in the human and capable of catalyzing many substrates. The modulation of these functions has been studied by decades, giving room to Sacubitril, the first neprilysin inhibitor, which in conjunction with an angiotensin receptor blocker has provided a high efficacy and tolerability among patients with heart failure, for whom it has already been approved and recommended. Nonetheless, in the matter of arterial hypertension, significant findings have arisen that demonstrate the potential role that it will play among the pharmacological alternatives in the upcoming years.
Collapse
Affiliation(s)
- Juan Salazar
- Endocrine and Metabolic Disease Research Center, School of Medicine, University of Zulia, Maracaibo, Venezuela
| | - Joselyn Rojas-Quintero
- Pulmonary and Critical Care Medicine Department, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, United States
| | - Clímaco Cano
- Endocrine and Metabolic Disease Research Center, School of Medicine, University of Zulia, Maracaibo, Venezuela
| | - José L Pérez
- Endocrine and Metabolic Disease Research Center, School of Medicine, University of Zulia, Maracaibo, Venezuela
| | - Paola Ramírez
- Endocrine and Metabolic Disease Research Center, School of Medicine, University of Zulia, Maracaibo, Venezuela
| | - Rubén Carrasquero
- Endocrine and Metabolic Disease Research Center, School of Medicine, University of Zulia, Maracaibo, Venezuela
| | - Wheeler Torres
- Endocrine and Metabolic Disease Research Center, School of Medicine, University of Zulia, Maracaibo, Venezuela
| | | | | | - Valmore Bermúdez
- Universidad Simon Bolívar, Facultad de Ciencias de la Salud, Barranquilla, Colombia
| |
Collapse
|
11
|
He L, Wang T, Chen BW, Lu FM, Xu J. Puerarin inhibits apoptosis and inflammation in myocardial cells via PPARα expression in rats with chronic heart failure. Exp Ther Med 2019; 18:3347-3356. [PMID: 31602208 PMCID: PMC6777288 DOI: 10.3892/etm.2019.7984] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 07/12/2019] [Indexed: 12/15/2022] Open
Abstract
Chronic heart failure affects myocardial energy metabolism and cardiac function. Puerarin has been reported to improve cardiac function through regulation of energy metabolism in mice with myocardial infarction. The aim of the current study was to determine whether puerarin can improve body weight and reduce inflammation and apoptosis in rats with chronic heart failure. Rats were divided into three groups: Puerarin, PBS and sham group. Transverse aortic constriction was performed to induce chronic heart failure in the puerarin an PBS groups. Cardiac function, apoptosis and inflammation were evaluated following a 4-week treatment in rats with chronic heart failure. The results demonstrated that puerarin significantly increased the survival rate of rats and improved cardiac function compared with the PBS group. In addition, puerarin decreased lactate dehydrogenase and succinate dehydrogenase activity compared with the PBS group. Puerarin treatment increased the expression levels of glucose transporter type 4 and decreased the expression levels of CD36. Additionally, puerarin decreased the levels inflammatory factors, including tumor necrosis factor α, interleukin (IL)-1β and IL-6 in serum and myocardial tissue compared with the PBS group. Puerarin upregulated peroxisome proliferator-activated receptor α (PPARα) and its downstream target genes nuclear respiratory factor 1, FOS proto-oncogene, YY1 transcription factor, acetyl-coenzyme A carboxylase a, Fas cell surface death receptor, L-type pyruvate kinase and acetyl-coenzyme A dehydrogenase medium chain in myocardial cells from rats with chronic heart failure. These results demonstrated that puerarin inhibited apoptosis and inflammation in myocardial cells via the PPARα pathway. In conclusion, the present study indicated that puerarin may exhibit antiapoptotic and anti-inflammatory activity through the PPARα pathway in rats with chronic heart failure.
Collapse
Affiliation(s)
- Le He
- Department of Cardiology, Tianjin Chest Hospital, Tianjin 300222, P.R. China
| | - Tong Wang
- Department of Endocrinology, Tianjin Yellow River Hospital, Tianjin 300110, P.R. China
| | - Bing-Wei Chen
- Department of Cardiology, Tianjin Chest Hospital, Tianjin 300222, P.R. China
| | - Feng-Min Lu
- Department of Cardiology, Tianjin Chest Hospital, Tianjin 300222, P.R. China
| | - Jing Xu
- Department of Cardiology, Tianjin Chest Hospital, Tianjin 300222, P.R. China
| |
Collapse
|
12
|
Okamoto R, Ali Y, Hashizume R, Suzuki N, Ito M. BNP as a Major Player in the Heart-Kidney Connection. Int J Mol Sci 2019; 20:ijms20143581. [PMID: 31336656 PMCID: PMC6678680 DOI: 10.3390/ijms20143581] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Revised: 07/15/2019] [Accepted: 07/17/2019] [Indexed: 02/07/2023] Open
Abstract
Brain natriuretic peptide (BNP) is an important biomarker for patients with heart failure, hypertension and cardiac hypertrophy. Although it is known that BNP levels are relatively higher in patients with chronic kidney disease and no heart disease, the mechanism remains unknown. Here, we review the functions and the roles of BNP in the heart-kidney interaction. In addition, we discuss the relevant molecular mechanisms that suggest BNP is protective against chronic kidney diseases and heart failure, especially in terms of the counterparts of the renin-angiotensin-aldosterone system (RAAS). The renal medulla has been reported to express depressor substances. The extract of the papillary tips from kidneys may induce the expression and secretion of BNP from cardiomyocytes. A better understanding of these processes will help accelerate pharmacological treatments for heart-kidney disease.
Collapse
Affiliation(s)
- Ryuji Okamoto
- Department of Cardiology and Nephrology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie 514-8507, Japan.
| | - Yusuf Ali
- Department of Cardiology and Nephrology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie 514-8507, Japan
| | - Ryotaro Hashizume
- Department of Pathology and Matrix Biology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie 514-8507, Japan
| | - Noboru Suzuki
- Department of Animal Genomics, Functional Genomics Institute, Mie University Life Science Research Center, 2-174 Edobashi, Tsu, Mie 514-8507, Japan
| | - Masaaki Ito
- Department of Cardiology and Nephrology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie 514-8507, Japan
| |
Collapse
|
13
|
Bell DSH, Goncalves E. Heart failure in the patient with diabetes: Epidemiology, aetiology, prognosis, therapy and the effect of glucose-lowering medications. Diabetes Obes Metab 2019; 21:1277-1290. [PMID: 30724013 DOI: 10.1111/dom.13652] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Revised: 01/29/2019] [Accepted: 02/03/2019] [Indexed: 12/24/2022]
Abstract
In people with type 2 diabetes the frequency of heart failure (HF) is increased and mortality from HF is higher than with non-diabetic HF. The increased frequency of HF is attributable to the cardiotoxic tetrad of ischaemic heart disease, left ventricular hypertrophy, diabetic cardiomyopathy and an extracellular volume expansion resistant to atrial natriuretic peptides. Activation of the renin-angiotensin-aldosterone system and sympathetic nervous systems results in cardiac remodelling, which worsens cardiac function. Reversal of remodelling can be achieved, and cardiac function improved in people with HF with reduced ejection fraction (HFrEF) by treatment with angiotensin-converting enzyme inhibitors and β-blockers. However, with HF with preserved ejection fraction (HFpEF), only therapy for the underlying risk factors helps. Blockers of mineralocorticoid receptors may be beneficial in both HFrEF and HFpEF. Glucose-lowering drugs can have a negative effect (insulin, sulphonylureas, dipeptidyl peptidase-4 inhibitors and thiazolidinediones), a neutral effect (α-glucosidase inhibitors and glucagon-like peptide-1 receptor agonists) or a positive effect (sodium-glucose co-transporter-2 inhibitors and metformin).
Collapse
|
14
|
Sacubitril/Valsartanstive Heart Failure: Cardiogenic Shock. Case Rep Cardiol 2018; 2018:8231576. [PMID: 29862089 PMCID: PMC5976952 DOI: 10.1155/2018/8231576] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 01/29/2018] [Indexed: 12/11/2022] Open
Abstract
Sacubitril/valsartan is a combination drug described as a new class of dual-acting angiotensin receptor-neprilysin inhibitor (ARNi) for heart failure. We present a case of a patient with NYHA class IV systolic heart failure who was refractory to all other classes of heart failure medications and was started on this new medication. On sacubitril/valsartan, he developed cardiogenic shock. This led us to reevaluate the use and risks of this medication in the class IV heart failure population.
Collapse
|
15
|
Milner J, Cunha A, Gamboa-Cruz C, Reis J, Campos M, António N. Recent major advances in cardiovascular pharmacotherapy. Eur J Clin Pharmacol 2018; 74:853-862. [DOI: 10.1007/s00228-018-2453-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 03/19/2018] [Indexed: 12/11/2022]
|
16
|
Di Mauro V, Barandalla-Sobrados M, Catalucci D. The noncoding-RNA landscape in cardiovascular health and disease. Noncoding RNA Res 2018; 3:12-19. [PMID: 30159435 PMCID: PMC6084835 DOI: 10.1016/j.ncrna.2018.02.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 12/27/2017] [Accepted: 02/08/2018] [Indexed: 12/22/2022] Open
Abstract
The cardiovascular system plays a pivotal role in regulating and maintaining homeostasis in the human body. Therefore any alteration in regulatory networks that orchestrate heart development as well as adaptation to physiological and environmental stress might result in pathological conditions, which represent the leading cause of death worldwide [1]. The latest advances in genome-wide techniques challenged the "protein-central dogma" with the discovery of the so-called non-coding RNAs (ncRNAs). Despite their lack of protein coding potential, ncRNAs have been largely demonstrated to regulate the majority of biological processes and have also been largely implicated in cardiovascular disorders. This review will first discuss the important mechanistic aspects of some of the classes of ncRNAs such as biogenesis, mechanism of action, as well as their involvement in cardiac diseases. The ncRNA potential uses as therapeutic molecules, with a specific focus on the latest technologies for their in vivo delivery as drug targets, will be described.
Collapse
Affiliation(s)
- Vittoria Di Mauro
- National Research Council, Institute of Genetics and Biomedical Research, Milan Unit, Milan, Italy
- Humanitas Clinical and Research Center, Rozzano, Milan, Italy
| | - Maria Barandalla-Sobrados
- National Research Council, Institute of Genetics and Biomedical Research, Milan Unit, Milan, Italy
- Humanitas Clinical and Research Center, Rozzano, Milan, Italy
| | - Daniele Catalucci
- National Research Council, Institute of Genetics and Biomedical Research, Milan Unit, Milan, Italy
- Humanitas Clinical and Research Center, Rozzano, Milan, Italy
| |
Collapse
|
17
|
Clerico A, Zaninotto M, Passino C, Plebani M. New issues on measurement of B-type natriuretic peptides. Clin Chem Lab Med 2017; 56:32-39. [PMID: 28809748 DOI: 10.1515/cclm-2017-0433] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 07/16/2017] [Indexed: 12/11/2022]
Abstract
The measurement of the active hormone of B-type natriuretic peptide (BNP) system actually has several analytical limitations and difficulties in clinical interpretations compared to that of inactive peptide N-terminal proBNP (NT-proBNP) because of the different biochemical and pathophysiological characteristics of two peptides and quality specifications of commercial immunoassay methods used for their measurement. Because of the better analytical characteristics of NT-proBNP immunoassays and the easier pathophysiological and clinical interpretations of variations of NT-proBNP levels in patients with heart failure (HF), some authors claimed to measure the inactive peptide NT-proBNP instead of the active hormone BNP for management of HF patients. The measurement of the active peptide hormone BNP gives different, but complementary, pathophysiological and clinical information compared to inactive NT-proBNP. In particular, the setup of new more sensitive and specific assays for the biologically active peptide BNP1-32 should give better accurate information on circulating natriuretic activity. In conclusion, at present time, clinicians should accurately consider both the clinical setting of patients and the analytical characteristics of BNP and NT-proBNP immunoassays in order to correctly interpret the variations of natriuretic peptides measured by commercially available laboratory methods, especially in patients treated with the new drug class of angiotensin receptor-neprilysin inhibitors.
Collapse
|
18
|
Marques da Silva P, Aguiar C. Sacubitril/valsartan: An important piece in the therapeutic puzzle of heart failure. REVISTA PORTUGUESA DE CARDIOLOGIA (ENGLISH EDITION) 2017. [DOI: 10.1016/j.repce.2016.11.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
19
|
Sacubitril/valsartan: um importante avanço no puzzle terapêutico da insuficiência cardíaca. Rev Port Cardiol 2017; 36:655-668. [DOI: 10.1016/j.repc.2016.11.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 11/26/2016] [Indexed: 12/18/2022] Open
|
20
|
Flick AC, Ding HX, Leverett CA, Kyne RE, Liu KKC, Fink SJ, O’Donnell CJ. Synthetic Approaches to the New Drugs Approved During 2015. J Med Chem 2017; 60:6480-6515. [DOI: 10.1021/acs.jmedchem.7b00010] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Andrew C. Flick
- Groton
Laboratories, Pfizer Worldwide Research and Development, 445
Eastern Point Road, Groton, Connecticut 06340, United States
| | - Hong X. Ding
- Pharmacodia (Beijing) Co., Ltd., Beijing, 100085, China
| | - Carolyn A. Leverett
- Groton
Laboratories, Pfizer Worldwide Research and Development, 445
Eastern Point Road, Groton, Connecticut 06340, United States
| | - Robert E. Kyne
- Celgene Corporation, 200 Cambridge
Park Drive, Cambridge, Massachusetts 02140, United States
| | - Kevin K. -C. Liu
- China Novartis Institutes for BioMedical Research Co., Ltd., Shanghai, 201203, China
| | | | - Christopher J. O’Donnell
- Groton
Laboratories, Pfizer Worldwide Research and Development, 445
Eastern Point Road, Groton, Connecticut 06340, United States
| |
Collapse
|
21
|
Aspromonte N, Gulizia MM, Clerico A, Di Tano G, Emdin M, Feola M, Iacoviello M, Latini R, Mortara A, Valle R, Misuraca G, Passino C, Masson S, Aimo A, Ciaccio M, Migliardi M. ANMCO/ELAS/SIBioC Consensus Document: biomarkers in heart failure. Eur Heart J Suppl 2017; 19:D102-D112. [PMID: 28751838 PMCID: PMC5520761 DOI: 10.1093/eurheartj/sux027] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Biomarkers have dramatically impacted the way heart failure (HF) patients are evaluated and managed. A biomarker is a characteristic that is objectively measured and evaluated as an indicator of normal biological or pathogenic processes, or pharmacological responses to a therapeutic intervention. Natriuretic peptides [B-type natriuretic peptide (BNP) and N-terminal proBNP] are the gold standard biomarkers in determining the diagnosis and prognosis of HF, and a natriuretic peptide-guided HF management looks promising. In the last few years, an array of additional biomarkers has emerged, each reflecting different pathophysiological processes in the development and progression of HF: myocardial insult, inflammation, fibrosis, and remodelling, but their role in the clinical care of the patient is still partially defined and more studies are needed before to be well validated. Moreover, several new biomarkers have the potential to identify patients with early renal dysfunction and appear to have promise to help the management cardio-renal syndrome. With different biomarkers reflecting HF presence, the various pathways involved in its progression, as well as identifying unique treatment options for HF management, a closer cardiologist-laboratory link, with a multi-biomarker approach to the HF patient, is not far ahead, allowing the unique opportunity for specifically tailoring care to the individual pathological phenotype.
Collapse
Affiliation(s)
- Nadia Aspromonte
- CCU-Cardiology Department, Presidio Ospedaliero San Filippo Neri, Via Martinotti, 20, 00135 Rome, Italy
| | - Michele Massimo Gulizia
- Cardiology Department, Ospedale Garibaldi-Nesima, Azienda di Rilievo Nazionale e Alta Specializzazione “Garibaldi”, Catania, Italy
| | - Aldo Clerico
- Laboratory of Endocrinology and Cardiovascular Cell Biology, Fondazione Toscana G. Monasterio-CNR, Scuola Superiore Sant’Anna, Pisa, Italy
| | - Giuseppe Di Tano
- Istituti Ospitalieri, Cardiology Unit, Cremona, and Scuola Superiore Sant’Anna, Pisa, Italy
| | - Michele Emdin
- Cardiology and Cardiovascular Medicine Department, Fondazione Toscana G. Monasterio, Italy
| | - Mauro Feola
- Cardiac Rehabilitation - Congestive Cardiac Unit, Ospedale Maggiore SS. Trinità, Fossano (CN), Italy
| | | | - Roberto Latini
- Cardiovascular Research Department, Istituto Mario Negri, Milano, Italy
| | - Andrea Mortara
- Clinical Cardiology and Heart Failure Unit, Policlinico di Monza, Monza (MB), Italy
| | - Roberto Valle
- Cardiology Department, Ospedale Civile, Chioggia (Venezia), Italy
| | | | - Claudio Passino
- Cardiology and Cardiovascular Medicine Department, Fondazione Toscana G. Monasterio, Italy
| | - Serge Masson
- Cardiovascular Research Department, Istituto Mario Negri, Milano, Italy
| | - Alberto Aimo
- Cardiology and Cardiovascular Medicine Department, Fondazione Toscana G. Monasterio, Italy
| | - Marcello Ciaccio
- Clinical Biochemistry and Molecular Medicine Section, Dipartimento di Pathobiology and Medical Biotechnology Department, Università degli Studi, Palermo, Italy
| | - Marco Migliardi
- Laboratory of Analysis, A.O. Ordine Mauriziano, Torino, Italy
| |
Collapse
|
22
|
Abstract
Kidney disease is commonly found in heart failure (HF) patients. They share many risk factors and common pathophysiological pathways which often lead to mutual dysfunction. Both haemodynamic and non-haemodynamic mechanisms are involved in the development of renal impairment in heart failure patients. Moreover, the presence of a chronic kidney disease is a significant independent predictor of worse outcome in chronic as well as in acute decompensated HF. As a consequence, an accurate evaluation of renal function plays a key role in the management of HF patients. Serum creatinine levels and glomerular filtration rate (GFR) estimates are the corner stones of renal function evaluation in clinical practice. However, to overcome their limits, several emerging glomerular and tubular biomarkers have been proposed over the last years. Alongside the renal biomarkers, imaging techniques could complement the laboratory data exploring different pathophysiological pathways. In particular, Doppler evaluation of renal circulation is a highly feasible technique that can effectively identify HF patients prone to develop renal dysfunction and with a worse outcome. Finally, some classes of drugs currently used in heart failure treatment can affect renal function and their use can be influenced by the presence of chronic kidney disease.
Collapse
|
23
|
Keating GM, McCormack PL. Sacubitril/valsartan in chronic heart failure with reduced ejection fraction: a guide to its use. DRUGS & THERAPY PERSPECTIVES 2016. [DOI: 10.1007/s40267-016-0361-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|