1
|
Raggi A, Leonardi M, Arruda M, Caponnetto V, Castaldo M, Coppola G, Della Pietra A, Fan X, Garcia-Azorin D, Gazerani P, Grangeon L, Grazzi L, Hsiao FJ, Ihara K, Labastida-Ramirez A, Lange KS, Lisicki M, Marcassoli A, Montisano DA, Onan D, Onofri A, Pellesi L, Peres M, Petrušić I, Raffaelli B, Rubio-Beltran E, Straube A, Straube S, Takizawa T, Tana C, Tinelli M, Valeriani M, Vigneri S, Vuralli D, Waliszewska-Prosół M, Wang W, Wang Y, Wells-Gatnik W, Wijeratne T, Martelletti P. Hallmarks of primary headache: part 1 - migraine. J Headache Pain 2024; 25:189. [PMID: 39482575 DOI: 10.1186/s10194-024-01889-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 10/15/2024] [Indexed: 11/03/2024] Open
Abstract
BACKGROUND AND AIM Migraine is a common disabling conditions which, globally, affects 15.2% of the population. It is the second cause of health loss in terms of years lived with disability, the first among women. Despite being so common, it is poorly recognised and too often undertreated. Specialty centres and neurologists with specific expertise on headache disorders have the knowledge to provide specific care: however, those who do not regularly treat patients with migraine will benefit from a synopsis on the most relevant and updated information about this condition. This paper presents a comprehensive view on the hallmarks of migraine, from genetics and diagnostic markers, up to treatments and societal impact, and reports the elements that identify migraine specific features. MAIN RESULTS The most relevant hallmark of migraine is that it has common and individual features together. Besides the known clinical manifestations, migraine presentation is heterogeneous with regard to frequency of attacks, presence of aura, response to therapy, associated comorbidities or other symptoms, which likely reflect migraine heterogeneous genetic and molecular basis. The amount of therapies for acute and for prophylactic treatment is really wide, and one of the difficulties is with finding the best treatment for the single patient. In addition to this, patients carry out different daily life activities, and might show lifestyle habits which are not entirely adequate to manage migraine day by day. Education will be more and more important as a strategy of brain health promotion, because this will enable reducing the amount of subjects needing specialty care, thus leaving it to those who require it in reason of refractory condition or presence of comorbidities. CONCLUSIONS Recognizing the hallmarks of migraine and the features of single patients enables prescribing specific pharmacological and non-pharmacological treatments. Medical research on headaches today particularly suffers from the syndrome of single-disease approach, but it is important to have a cross-sectional and joint vision with other close specialties, in order to treat our patients with a comprehensive approach that a heterogeneous condition like migraine requires.
Collapse
Affiliation(s)
- Alberto Raggi
- Neurology, Public Health and Disability Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Celoria 11, Milan, 20133, Italy.
| | - Matilde Leonardi
- Neurology, Public Health and Disability Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Celoria 11, Milan, 20133, Italy
| | - Marco Arruda
- Department of Neuroscience, Glia Institute, Ribeirão Preto, Brazil
| | - Valeria Caponnetto
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Matteo Castaldo
- Department of Health Science and Technology, Faculty of Medicine, CNAP, Center for Sensory-Motor Interaction (SMI), Aalborg University, Gistrup, Denmark
- Department of Medicine and Surgery, Clinical Psychophysiology and Clinical Neuropsychology Labs, Parma University, Parma, Italy
| | - Gianluca Coppola
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome Polo Pontino ICOT, Latina, Italy
| | - Adriana Della Pietra
- Dept. Molecular Physiology and Biophysics, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Xiangning Fan
- Department of Medicine, University of Alberta, Edmonton, AB, Canada
| | - David Garcia-Azorin
- Department of Medicine, Toxicology and Dermatology, Faculty of Medicine, University of Valladolid, Valladolid, Spain
- Department of Neurology, Hospital Universitario Río Hortega, Valladolid, Spain
| | - Parisa Gazerani
- Department of Health Science and Technology, Faculty of Medicine, CNAP, Center for Sensory-Motor Interaction (SMI), Aalborg University, Gistrup, Denmark
- Department of Life Sciences and Health, Faculty of Health Sciences, Oslo Metropolitan University, Oslo, Norway
| | - Lou Grangeon
- Neurology Department, CHU de Rouen, Rouen, France
| | - Licia Grazzi
- Neuroalgology Unit and Headache Center, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy
| | - Fu-Jung Hsiao
- Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Keiko Ihara
- Department of Neurology, Keio University School of Medicine, Tokyo, Japan
- Japanese Red Cross Ashikaga Hospital, Tochigi, Japan
| | - Alejandro Labastida-Ramirez
- Division of Neuroscience, Faculty of Biology, Medicine, and Health, University of Manchester, Manchester, UK
| | - Kristin Sophie Lange
- Department of Neurology, Charité - Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität Zu Berlin, Berlin, Germany
- Berlin Institute of Health, Charité - Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität Zu Berlin, Berlin, Germany
| | - Marco Lisicki
- Instituto de Investigación Médica Mercedes y Martín Ferreyra (INIMEC), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Alessia Marcassoli
- Neurology, Public Health and Disability Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Celoria 11, Milan, 20133, Italy
| | - Danilo Antonio Montisano
- Neuroalgology Unit and Headache Center, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy
| | - Dilara Onan
- Department of Physiotherapy and Rehabilitation, Faculty of Heath Sciences, Yozgat Bozok University, Yozgat, Turkey
| | - Agnese Onofri
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Lanfranco Pellesi
- Department of Public Health Clinical Pharmacology, Pharmacy and Environmental Medicine, University of Southern Denmark, Odense, Denmark
| | - Mario Peres
- Hospital Israelita Albert Einstein, São Paulo, Brazil
- Instituto de Psiquiatria; Hospital das Clínicas da Faculdade de Medicina da USP, Sao Paulo, Brazil
| | - Igor Petrušić
- Laboratory for Advanced Analysis of Neuroimages, Faculty of Physical Chemistry, University of Belgrade, Belgrade, Serbia
| | - Bianca Raffaelli
- Department of Neurology, Charité - Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität Zu Berlin, Berlin, Germany
- Berlin Institute of Health, Charité - Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität Zu Berlin, Berlin, Germany
| | - Eloisa Rubio-Beltran
- Headache Group, Wolfson SPaRC, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Andreas Straube
- Department of Neurology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Sebastian Straube
- Department of Medicine, University of Alberta, Edmonton, AB, Canada
- School of Public Health, University of Alberta, Edmonton, AB, Canada
| | - Tsubasa Takizawa
- Department of Neurology, Keio University School of Medicine, Tokyo, Japan
| | - Claudio Tana
- Center of Excellence On Headache and Geriatrics Clinic, SS Annunziata Hospital of Chieti, Chieti, Italy
| | - Michela Tinelli
- Care Policy Evaluation Centre (CPEC), London School of Economics and Political Science, London, UK
| | - Massimiliano Valeriani
- Systems Medicine Department, University of Tor Vergata, Rome, Italy
- Developmental Neurology Unit, IRCSS Ospedale Pediatrico Bambino Gesù, Rome, Italy
| | - Simone Vigneri
- Neurology and Neurophysiology Service - Pain Medicine Unit, Santa Maria Maddalena Hospital, Occhiobello, Italy
| | - Doga Vuralli
- Department of Neurology and Algology, Neuropsychiatry Center, Neuroscience and Neurotechnology Center of Excellence (NÖROM), Gazi University Faculty of Medicine, Ankara, Türkiye
| | | | - Wei Wang
- Department of Neurology, Headache Center, School of Medicine, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China
- Department of Neurology, Headache Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yonggang Wang
- Beijing Tiantan Hospital Affiliated to Capital Medical University, Beijing, China
| | | | - Tissa Wijeratne
- Department of Neurology, Sunshine Hospital, St Albans, VIC, Australia
- Australian Institute of Migraine, Pascoe Vale South, VIC, Australia
| | | |
Collapse
|
2
|
Li Y, Wang L, Gao Z, Zhou J, Xie S, Li G, Hou C, Wang Z, Lv Z, Wang R, Han G. Neuropeptide Calcitonin Gene-Related Peptide Promotes Immune Homeostasis of Bacterial Meningitis by Inducing Major Histocompatibility Complex Class II Ubiquitination. J Infect Dis 2024; 229:855-865. [PMID: 37603461 DOI: 10.1093/infdis/jiad358] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 07/20/2023] [Accepted: 08/18/2023] [Indexed: 08/23/2023] Open
Abstract
BACKGROUND Calcitonin gene-related peptide (CGRP), an immunomodulatory neuropeptide, is important for regulating pain transmission, vasodilation, and the inflammatory response. However, the molecular mechanisms of the CGRP-mediated immune response remain unknown. METHODS The effects of CGRP on bacterial meningitis (BM) and its underlying mechanisms were investigated in BM mice in vivo and macrophages in vitro. RESULTS Peripheral injection of CGRP attenuated cytokine storms and protected mice from fatal pneumococcal meningitis, marked by increased bacterial clearance, improved neuroethology, and reduced mortality. When the underlying mechanisms were investigated, we found that CGRP induces proteasome-dependent degradation of major histocompatibility complex class II (MHC-II) in macrophages and then inhibits CD4+ T-cell activation. MARCH1 was identified as an E3 ligase that can be induced by CGRP engagement and promote K48-linked ubiquitination and degradation of MHC-II in macrophages. These results provide new insights into neuropeptide CGRP-mediated immune regulation mechanisms. CONCLUSIONS We conclude that targeting the nervous system and manipulating neuroimmune communication is a promising strategy for treating intracranial infections like BM.
Collapse
Affiliation(s)
- Yuxiang Li
- Department of Neuroimmune and Antibody Engineering, Beijing Institute of Basic Medical Sciences, Beijing
| | - Lanying Wang
- Joint National Laboratory for Antibody Drug Engineering, School of Medicine, Henan University, Kaifeng
| | - Zhenfang Gao
- Department of Neuroimmune and Antibody Engineering, Beijing Institute of Basic Medical Sciences, Beijing
| | - Jie Zhou
- Joint National Laboratory for Antibody Drug Engineering, School of Medicine, Henan University, Kaifeng
| | - Shun Xie
- Department of Neuroimmune and Antibody Engineering, Beijing Institute of Basic Medical Sciences, Beijing
| | - Ge Li
- Department of Neuroimmune and Antibody Engineering, Beijing Institute of Basic Medical Sciences, Beijing
| | - Chunmei Hou
- Department of Neuroimmune and Antibody Engineering, Beijing Institute of Basic Medical Sciences, Beijing
| | - Zhiding Wang
- Department of Neuroimmune and Antibody Engineering, Beijing Institute of Basic Medical Sciences, Beijing
| | - Zhonglin Lv
- Department of Hematology, The Second Medical Center and National Clinical Research Center for Geriatric Diseases, Chinese People's Liberation Army General Hospital, Beijing
| | - Renxi Wang
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China
| | - Gencheng Han
- Department of Neuroimmune and Antibody Engineering, Beijing Institute of Basic Medical Sciences, Beijing
| |
Collapse
|
3
|
Berger AA, Winnick A, Carroll AH, Welschmeyer A, Li N, Colon M, Paladini A, Ramírez GF, Hasoon J, Cornett EM, Song J, Varrassi G, Kaye AM, Kaye AD, Ganti L. Rimegepant for the treatment of migraine. Health Psychol Res 2022; 10:38534. [PMID: 36262478 PMCID: PMC9560892 DOI: 10.52965/001c.38534] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023] Open
Abstract
Migraine is a common form of primary headache, affecting up to 1 in every 6 Americans. The pathophysiology is an intricate interplay of genetic factors and environmental influence and is still being elucidated in ongoing studies. The trigeminovascular system is now known to have a significant role in the initiation of migraines, including the release of pain mediators such as CGRP and substance P. Traditional treatment of migraine is usually divided into acute and preventive treatment. Acute therapy includes non-specific therapy, such as NSAIDs and other analgesics, which may provide relief in mild to moderate migraines. 5-HT1 agonists may provide relief in severe migraine, but are not universally effective and carry a significant side-effect profile with frequent redosing requirement. Prophylactic therapy may reduce the occurrence of acute migraine attacks in selected patients, but does not completely eliminate it. More recently, CGRP antagonism has been studied and shown to be effective in both abortion and prevention of migraine. Novel medications, targeting CGRP, divide into CGRP antibodies and receptor antagonists (gepants). Rimegepant, a second-generation gepant, has shown efficacy in several clinical trials in treating acute migraine. Ongoing trials are also evaluating its role in migraine prophylaxis, and results are promising. It is also generally safer for use than existing options, does not appear to increase the chance of developing chronic migraines, and carries a very tolerable side effects profile. It is a part of a growing arsenal in migraine treatment, and may present the silver bullet for treatment of this disease.
Collapse
Affiliation(s)
- Amnon A Berger
- Department of Anesthesiology, Critical Care, and Pain Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School
| | - Ariel Winnick
- Soroka University Medical Center and Faculty of Health Sciences, Ben Gurion University of the Negev, University of California School of Optometry
| | | | | | | | - Marc Colon
- Department of Psychiatry, and Behavioral Medicine, Louisiana State University Health Science Center Shreveport
| | | | | | - Jamal Hasoon
- Department of Anesthesiology, Critical Care, and Pain Medicine, Beth Israel Deaconess Medical Center
| | | | | | | | - Adam M Kaye
- Department of Pharmacy Practice, Thomas J. Long School of Pharmacy and Health Sciences, University of the Pacific
| | - Alan D Kaye
- Department of Anesthesiology, Louisiana State University Shreveport
| | - Latha Ganti
- University of Central Florida College of Medicine
| |
Collapse
|
4
|
Mauritz MD, Hasan C, Schreiber L, Wegener-Panzer A, Barth S, Zernikow B. Differential Diagnosis of Cyclic Vomiting and Periodic Headaches in a Child with Ventriculoperitoneal Shunt: Case Report of Chronic Shunt Overdrainage. CHILDREN (BASEL, SWITZERLAND) 2022; 9:432. [PMID: 35327804 PMCID: PMC8946983 DOI: 10.3390/children9030432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/10/2022] [Accepted: 03/16/2022] [Indexed: 11/17/2022]
Abstract
Fourteen months after the implantation of a ventriculoperitoneal shunt catheter, a six-year-old boy developed recurrent, severe headaches and vomiting every three weeks. The attacks were of such severity that hospitalizations for analgesic and antiemetic therapies and intravenous rehydration and electrolyte substitution were repeatedly required. The patient was asymptomatic between the attacks. After an extensive diagnostic workup-including repeated magnetic resonance imaging (MRI) and neurosurgical examinations-common differential diagnoses, including shunt overdrainage, were ruled out. The patient was transferred to a specialized pediatric pain clinic with suspected cyclic vomiting syndrome (CVS). Despite intensive and in part experimental prophylactic and abortive pharmacological treatment, there was no improvement in his symptoms. Consecutive MRI studies reinvestigating the initially excluded shunt overdrainage indicated an overdrainage syndrome. Subsequently, the symptoms disappeared after disconnecting the shunt catheter. This case report shows that even if a patient meets CVS case definitions, other differential diagnoses must be carefully reconsidered to avoid fixation error.
Collapse
Affiliation(s)
- Maximilian David Mauritz
- Paediatric Palliative Care Centre, Children’s and Adolescents’ Hospital, Witten/Herdecke University, 45711 Datteln, Germany; (C.H.); (B.Z.)
| | - Carola Hasan
- Paediatric Palliative Care Centre, Children’s and Adolescents’ Hospital, Witten/Herdecke University, 45711 Datteln, Germany; (C.H.); (B.Z.)
- Department of Children’s Pain Therapy and Paediatric Palliative Care, Faculty of Health, School of Medicine, Witten/Herdecke University, 58448 Witten, Germany
| | - Lutz Schreiber
- Department of Pediatric Neurosurgery, Klinikum Vest, Academic Teaching Hospital, Ruhr University Bochum, 45657 Recklinghausen, Germany;
| | - Andreas Wegener-Panzer
- Department of Radiology, Children’s and Adolescents’ Hospital, Witten/Herdecke University, 45711 Datteln, Germany;
| | - Sylvia Barth
- Department of Pediatrics, Ostalb Klinikum Aalen, 73430 Aalen, Germany;
| | - Boris Zernikow
- Paediatric Palliative Care Centre, Children’s and Adolescents’ Hospital, Witten/Herdecke University, 45711 Datteln, Germany; (C.H.); (B.Z.)
- Department of Children’s Pain Therapy and Paediatric Palliative Care, Faculty of Health, School of Medicine, Witten/Herdecke University, 58448 Witten, Germany
| |
Collapse
|
5
|
Revisiting the bipolar disorder with migraine phenotype: Clinical features and comorbidity. J Affect Disord 2021; 295:156-162. [PMID: 34464877 DOI: 10.1016/j.jad.2021.08.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 08/16/2021] [Accepted: 08/18/2021] [Indexed: 01/26/2023]
Abstract
INTRODUCTION To evaluate the prevalence and clinical correlates of lifetime migraine among patients with bipolar disorder (BD). METHODS In a cross-sectional study, we evaluated 721 adults with BD from the Mayo Clinic Bipolar Disorder Biobank and compared clinical correlates of those with and without a lifetime history of migraine. A structured clinical interview (DSM-IV) and a clinician-assessed questionnaire were utilized to establish a BD diagnosis, lifetime history of migraine, and clinical correlates. RESULTS Two hundred and seven (29%) BD patients had a lifetime history of migraine. BD patients with migraine were younger and more likely to be female as compared to those without migraine (p values <0.01). In a multivariate logistic regression model, younger age (OR=0.98, p<0.01), female sex (OR=2.02, p<0.01), higher shape/weight concern (OR=1.04, p=0.02), greater anxiety disorder comorbidities (OR=1.24, p<0.01), and evening chronotype (OR=1.65, p=0.03) were associated with migraine. In separate regression models for each general medical comorbidity (controlled for age, sex, and site), migraines were significantly associated with fibromyalgia (OR=3.17, p<0.01), psoriasis (OR=2.65, p=0.03), and asthma (OR=2.0, p<0.01). Participants with migraine were receiving ADHD medication (OR=1.53, p=0.05) or compounds associated with weight loss (OR=1.53, p=0.02) at higher rates compared to those without migraine. LIMITATIONS Study design precludes determination of causality. Migraine subtypes and features were not assessed. CONCLUSIONS Migraine prevalence is high in BD and is associated with a more severe clinical burden that includes increased comorbidity with pain and inflammatory conditions. Further study of the BD-migraine phenotype may provide insight into common underlying neurobiological mechanisms.
Collapse
|
6
|
Wang M, Mason BN, Sowers LP, Kuburas A, Rea BJ, Russo AF. Investigating Migraine-Like Behavior using Light Aversion in Mice. J Vis Exp 2021. [PMID: 34459825 DOI: 10.3791/62839] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Migraine is a complex neurological disorder characterized by headache and sensory abnormalities, such as hypersensitivity to light, observed as photophobia. Whilst it is impossible to confirm that a mouse is experiencing migraine, light aversion can be used as a behavioral surrogate for the migraine symptom of photophobia. To test for light aversion, we utilize the light/dark assay to measure the time mice freely choose to spend in either a light or dark environment. The assay has been refined by introducing two critical modifications: pre-exposures to the chamber prior to running the test procedure and adjustable chamber lighting, permitting the use of a range of light intensities from 55 lux to 27,000 lux. Because the choice to spend more time in the dark is also indicative of anxiety, we also utilize a light-independent anxiety test, the open field assay, to distinguish anxiety from light-aversive behavior. Here, we describe a modified test paradigm for the light/dark and open field assays. The application of these assays is described for intraperitoneal injection of calcitonin gene-related peptide (CGRP) in two mouse strains and for optogenetic brain stimulation studies.
Collapse
Affiliation(s)
- Mengya Wang
- Department of Neuroscience and Pharmacology, University of Iowa
| | - Bianca N Mason
- School of Behavioral and Brain Sciences, University of Texas at Dallas
| | - Levi P Sowers
- Center for the Prevention and Treatment of Visual Loss, Veterans Administration Health Center, Iowa City, IA; Department of Molecular Physiology and Biophysics, University of Iowa
| | - Adisa Kuburas
- Department of Molecular Physiology and Biophysics, University of Iowa
| | - Brandon J Rea
- Center for the Prevention and Treatment of Visual Loss, Veterans Administration Health Center, Iowa City, IA; Department of Molecular Physiology and Biophysics, University of Iowa
| | - Andrew F Russo
- Center for the Prevention and Treatment of Visual Loss, Veterans Administration Health Center, Iowa City, IA; Department of Molecular Physiology and Biophysics, University of Iowa; Department of Neurology, University of Iowa;
| |
Collapse
|
7
|
Abstract
Pediatric headache impacts up to 80% of children, many recurrently, by the time they are 15 years old. Preventing the progression of episodic to chronic headache results in less truancy, staying current with schoolwork and improves children's quality of life. Lifestyle choices can play an important role in headache treatment. Early effective treatment of episodic headache can prevent transformation into a chronic form. While details of a child's headache are critical for making a proper diagnosis; patient education is critical and effective rescue and preventive treatment strategies enable patients to focus on enjoying activities of daily living. Recognizing "red flags" that may suggest a serious underlying etiology is critical in the early stages of diagnosing and preparing to treat children with headaches. Finally directing patients to manage their headaches at home and when to proceed to an emergency department, urgent care or infusion unit can lower the economic burden of acute headache management.
Collapse
Affiliation(s)
- Debra M O'Donnell
- Pediatric Neurologist, Dayton Children's Hospital, Division of Neurology, OH, United States.
| | - Anastazia Agin
- Pediatrician and Headache Specialist, Dayton Children's Hospital, Division of Neurology, OH, United States
| |
Collapse
|
8
|
Glia and Orofacial Pain: Progress and Future Directions. Int J Mol Sci 2021; 22:ijms22105345. [PMID: 34069553 PMCID: PMC8160907 DOI: 10.3390/ijms22105345] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 05/12/2021] [Accepted: 05/14/2021] [Indexed: 12/14/2022] Open
Abstract
Orofacial pain is a universal predicament, afflicting millions of individuals worldwide. Research on the molecular mechanisms of orofacial pain has predominately focused on the role of neurons underlying nociception. However, aside from neural mechanisms, non-neuronal cells, such as Schwann cells and satellite ganglion cells in the peripheral nervous system, and microglia and astrocytes in the central nervous system, are important players in both peripheral and central processing of pain in the orofacial region. This review highlights recent molecular and cellular findings of the glia involvement and glia–neuron interactions in four common orofacial pain conditions such as headache, dental pulp injury, temporomandibular joint dysfunction/inflammation, and head and neck cancer. We will discuss the remaining questions and future directions on glial involvement in these four orofacial pain conditions.
Collapse
|
9
|
Cai G, Xia Z, Charvet L, Xiao F, Datta A, Androulakis XM. A Systematic Review and Meta-Analysis on the Efficacy of Repeated Transcranial Direct Current Stimulation for Migraine. J Pain Res 2021; 14:1171-1183. [PMID: 33953607 PMCID: PMC8090858 DOI: 10.2147/jpr.s295704] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 03/05/2021] [Indexed: 01/03/2023] Open
Abstract
Purpose Transcranial direct current stimulation (tDCS) may have therapeutic potential in the management of migraine. However, studies to date have yielded conflicting results. We reviewed studies using repeated tDCS for longer than 4 weeks in migraine treatment, and performed meta-analysis on the efficacy of tDCS in migraine. Methods In this meta-analysis, we included the common outcome measurements reported across randomized controlled trials (RCTs). Subgroup analysis was performed at different post-treatment endpoints, and with different stimulation intensities and polarities. Results Five RCTs were included in the quantitative meta-analysis with a total of 104 migraine patients. We found a significant reduction of migraine pain intensity (MD: −1.44; CI: [−2.13, −0.76]) in active vs sham tDCS treated patients. Within active treatment groups, pain intensity and duration were significantly improved from baseline after tDCS treatment (intensity MD: −1.86; CI: [−3.30, −0.43]; duration MD: −4.42; CI: [−8.11, −0.74]) and during a follow-up period (intensity MD: −1.52; CI: [−1.84, −1.20]; duration MD: −1.94; CI: [−3.10, −0.77]). There was a significant reduction of pain intensity by both anodal (MD: −1.74; CI: [−2.80, −0.68]) and cathodal (MD: −1.49; CI: [−1.89, −1.09]) stimulation conditions. Conclusion tDCS treatment repeated over days for a period of 4 weeks or more is effective in reducing migraine pain intensity and duration of migraine episode. The benefit of tDCS can persist for at least 4 weeks after the completion of last tDCS session. Both anodal and cathodal stimulation are effective for reducing migraine pain intensity.
Collapse
Affiliation(s)
- Guoshuai Cai
- Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, Columbia, SC, 29208, USA
| | - Zhu Xia
- Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing, 211166, People's Republic of China
| | - Leigh Charvet
- Department of Neurology, NYU Grossman School of Medicine, New York City, NY, USA
| | - Feifei Xiao
- Department of Epidemiology and Biostatistics, Arnold School of Public Health, University of South Carolina, Columbia, SC, 29208, USA
| | - Abhishek Datta
- Research and Development, Soterix Medical, New York, NY, USA.,Department of Biomedical Engineering, City College of New York, New York, NY, USA
| | - X Michelle Androulakis
- Neurology, Columbia VA Health System, Columbia, SC, USA.,School of Medicine, University of South Carolina, Columbia, SC, USA
| |
Collapse
|
10
|
de Vries Lentsch S, Rubio-Beltrán E, MaassenVanDenBrink A. Changing levels of sex hormones and calcitonin gene-related peptide (CGRP) during a woman's life: Implications for the efficacy and safety of novel antimigraine medications. Maturitas 2021; 145:73-77. [PMID: 33541566 DOI: 10.1016/j.maturitas.2020.12.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 12/17/2020] [Accepted: 12/30/2020] [Indexed: 10/22/2022]
Abstract
Migraine is a neurovascular disorder that is three times more prevalent in women than in men and represents a large socio-economic burden. Therefore, the development of new preventive medications is an urgent matter. Currently, calcitonin gene-related peptide (CGRP), a neuropeptide released from trigeminal fibres, is an important target for migraine treatment. Accordingly, antibodies directed against CGRP or its receptor, as well as small-molecule CGRP receptor antagonists, have been developed for the prophylactic and acute treatment of migraine. Results from clinical phase III trials show a significant decrease in migraine days and relatively mild side-effects. However, CGRP is not only present in the trigeminal nerve, but it is also abundant in perivascular nerve fibres. Moreover, CGRP levels and hormones vary between sexes and during different life stages, and hormones affect CGRP, with a seemingly greater role for CGRP in females. In this review we discuss whether these aspects could be associated with differences in response and efficacy of drugs interfering with the CGRP pathway. Furthermore, CGRP has been described as playing a protective role in ischemic events, and CGRP seems to play a larger role in cardiac ischemic events in female patients. As cardiovascular risk is increased in female migraine patients and also increases significantly in females after menopause, further research into the risk of blocking CGRP in these patients is needed.
Collapse
Affiliation(s)
- Simone de Vries Lentsch
- Department of Neurology, Leiden University Medical Center, PO Box 9600, 2300 RC Leiden, the Netherlands; Div. of Pharmacology, Dept. of Internal Medicine, Erasmus University Medical Centre, PO Box 2040, 3000 CA Rotterdam, the Netherlands
| | - Eloísa Rubio-Beltrán
- Div. of Pharmacology, Dept. of Internal Medicine, Erasmus University Medical Centre, PO Box 2040, 3000 CA Rotterdam, the Netherlands
| | - Antoinette MaassenVanDenBrink
- Div. of Pharmacology, Dept. of Internal Medicine, Erasmus University Medical Centre, PO Box 2040, 3000 CA Rotterdam, the Netherlands.
| |
Collapse
|
11
|
Galcanezumab: A Review in the Prevention of Migraine and Treatment of Episodic Cluster Headache. Drugs 2021; 80:893-904. [PMID: 32504377 DOI: 10.1007/s40265-020-01329-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Galcanezumab (Emgality®) is a humanized monoclonal antibody targeting the calcitonin gene-related peptide (CGRP), thereby inhibiting its physiological activity, with CGRP playing a key role in the pathophysiology of migraine and headache disorders. In pivotal phase 3 trials, recommended dosages of subcutaneous galcanezumab once monthly were significantly more effective than placebo as preventive therapy in adults with episodic (EVOLVE-1 and -2; over 6 months) or chronic (REGAIN; over 3 months) migraine (± aura), including in patients who had failed several prior preventive migraine drugs (CONQUER; over 3 months). The beneficial effects of galcanezumab preventive treatment in reducing the number of monthly migraine headache days (MHDs) and improving health-related quality of life (HR-QOL) were sustained during up to 1 year of treatment. In adults with episodic cluster headache, galcanezumab treatment was associated with a significant reduction in the weekly frequency of cluster headache attacks across weeks 1-3 compared with placebo (primary endpoint), albeit during weeks 4-8, there was a convergence of results between these treatment groups. Although further evidence from the clinical setting is required to determine its long-term safety profile, given its convenient administration regimen, efficacy and short-term tolerability profile, monthly galcanezumab represents an important emerging option for the prevention of episodic and chronic migraine (± aura) and the treatment of episodic cluster headache.
Collapse
|
12
|
Slepukhina MA, Ivashchenko DV, Sheina MA, Muradian AA, Blagovestnov DA, Sychev DA. Pain pharmacogenetics. Drug Metab Pers Ther 2020; 35:dmpt-2020-2939. [PMID: 32776897 DOI: 10.1515/dmpt-2020-2939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 03/16/2020] [Indexed: 11/15/2022]
Abstract
Pain is a significant problem in medicine. The use of PGx markers to personalize postoperative analgesia can increase its effectiveness and avoid undesirable reactions. This article describes the mechanisms of nociception and antinociception and shows the pathophysiological mechanisms of pain in the human body. The main subject of this article is pharmacogenetic approach to the selection of anesthetics. Current review presents data for local and general anesthetics, opioids, and non-steroidal anti-inflammatory drugs. None of the anesthetics currently has clinical guidelines for pharmacogenetic testing. This literature review summarizes the results of original research available, to date, and draws attention to this area.
Collapse
Affiliation(s)
| | - Dmitriy V Ivashchenko
- Child Psychiatry and Psychotherapy Department, Department of Personalized Medicine, Russian Medical Academy of Continuous Professional Education, Moscow, Russia
| | - Maria A Sheina
- Department of Anesthesiology and Intensive Care, I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| | | | | | - Dmitriy A Sychev
- Department of Clinical Pharmacology and Therapeutics, Russian Medical Academy of Continuous Professional Education, Moscow, Russia
| |
Collapse
|
13
|
Mulder IA, Li M, de Vries T, Qin T, Yanagisawa T, Sugimoto K, van den Bogaerdt A, Danser AHJ, Wermer MJH, van den Maagdenberg AMJM, MaassenVanDenBrink A, Ferrari MD, Ayata C. Anti-migraine Calcitonin Gene-Related Peptide Receptor Antagonists Worsen Cerebral Ischemic Outcome in Mice. Ann Neurol 2020; 88:771-784. [PMID: 32583883 PMCID: PMC7540520 DOI: 10.1002/ana.25831] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 06/11/2020] [Accepted: 06/21/2020] [Indexed: 12/31/2022]
Abstract
Objective Calcitonin gene–related peptide (CGRP) pathway inhibitors are emerging treatments for migraine. CGRP‐mediated vasodilation is, however, a critical rescue mechanism in ischemia. We, therefore, investigated whether gepants, small molecule CGRP receptor antagonists, worsen cerebral ischemia. Methods Middle cerebral artery was occluded for 12 to 60 minutes in mice. We compared infarct risk and volumes, collateral flow, and neurological deficits after pretreatment with olcegepant (single or 10 daily doses of 0.1–1mg/kg) or rimegepant (single doses of 10–100mg/kg) versus vehicle. We also determined their potency on CGRP‐induced relaxations in mouse and human vessels, in vitro. Results Olcegepant (1mg/kg, single dose) increased infarct risk after 12‐ to 20‐minute occlusions mimicking transient ischemic attacks (14/19 vs 6/18 with vehicle, relative risk = 2.21, p < 0.022), and doubled infarct volumes (p < 0.001) and worsened neurological deficits (median score = 9 vs 5 with vehicle, p = 0.008) after 60‐minute occlusion. Ten daily doses of 0.1 to 1mg/kg olcegepant yielded similar results. Rimegepant 10mg/kg increased infarct volumes by 60% after 20‐minute ischemia (p = 0.03); 100mg/kg caused 75% mortality after 60‐minute occlusion. In familial hemiplegic migraine type 1 mice, olcegepant 1mg/kg increased infarct size after 30‐minute occlusion (1.6‐fold, p = 0.017). Both gepants consistently diminished collateral flow and reduced reperfusion success. Olcegepant was 10‐fold more potent than rimegepant on CGRP‐induced relaxations in mouse aorta. Interpretation Gepants worsened ischemic stroke in mice via collateral dysfunction. CGRP pathway blockers might thus aggravate coincidental cerebral ischemic events. The cerebrovascular safety of these agents must therefore be better delineated, especially in patients at increased risk of ischemic events or on prophylactic CGRP inhibition. ANN NEUROL 2020;88:771–784
Collapse
Affiliation(s)
- Inge A Mulder
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Mei Li
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Tessa de Vries
- Division of Pharmacology and Vascular Medicine, Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Tao Qin
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Takeshi Yanagisawa
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Kazutaka Sugimoto
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | | | - A H Jan Danser
- Division of Pharmacology and Vascular Medicine, Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Marieke J H Wermer
- Department of Neurology, Leiden University Medical Center, Leiden, the Netherlands
| | - Arn M J M van den Maagdenberg
- Department of Neurology, Leiden University Medical Center, Leiden, the Netherlands.,Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | - Antoinette MaassenVanDenBrink
- Division of Pharmacology and Vascular Medicine, Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Michel D Ferrari
- Department of Neurology, Leiden University Medical Center, Leiden, the Netherlands
| | - Cenk Ayata
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA.,Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
14
|
Russo A, Silvestro M, Scotto di Clemente F, Trojsi F, Bisecco A, Bonavita S, Tessitore A, Tedeschi G. Multidimensional assessment of the effects of erenumab in chronic migraine patients with previous unsuccessful preventive treatments: a comprehensive real-world experience. J Headache Pain 2020; 21:69. [PMID: 32517693 PMCID: PMC7282180 DOI: 10.1186/s10194-020-01143-0] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 06/01/2020] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND erenumab was safe and effective in clinical trials for the prevention of migraine. However, real-life data are still lacking. Here we report the clinical experience from an Italian real-world setting using erenumab in patients with chronic migraine experiencing previous unsuccessful preventive treatments. METHODS Seventy patients with chronic migraine and failure to ≥4 migraine preventive medication classes initially received monthly erenumab 70 mg s.c. Patients without a clinically meaningful improvement, considered as a > 30% reduction in headache days per month, after ≥3 months of therapy switched to monthly erenumab 140 mg. At the first administration and after 3 and 6 months, patients underwent extensive interviews to assess clinical parameters of disease severity and migraine-related disability and impact, and validated questionnaires to explore depression/anxiety, sleep, and quality of life (QoL). Finally, the Pain Catastrophizing Scale, Allodynia Symptom Checklist-12 and MIGraine attacks-Subjective COGnitive impairments scale (MIG-SCOG) were administered. RESULTS 70% of patients were "responders" after the third administration of erenumab 70 mg, whereas 30% switched to erenumab 140 mg; 29% (6 pts) responded after the sixth administration. The headache-day frequency was reduced from 21.1 ± 0.7 to 11.4 ± 0.9 days after the third administration (p < 0.001) and to 8.9 ± 0.7 days after the sixth administration (p < 0.001). 53% and 70% of patients, respectively, showed a reduction of ≥50% of headache days/month after the third and the sixth administrations. Also improved were headache pain severity, migraine-related disability, and impact on daily living, QoL, pain catastrophizing and allodynia (all p < 0.001), quality of sleep, symptoms of depression or anxiety (p < 0.05) but not MIG-SCOG. There were no new adverse event signals. CONCLUSION These real-world data support monthly erenumab 70 or 140 mg s.c. as a safe and effective preventive treatment to reduce headache frequency and severity in chronic migraine patients experiencing previous unsuccessful preventive treatments.
Collapse
Affiliation(s)
- Antonio Russo
- Department of Medical, Surgical, Neurological, Metabolic and Aging Sciences, Headache Center, University of Campania "Luigi Vanvitelli", Piazza Miraglia 2 - I, 80138, Naples, Italy.
| | - Marcello Silvestro
- Department of Medical, Surgical, Neurological, Metabolic and Aging Sciences, Headache Center, University of Campania "Luigi Vanvitelli", Piazza Miraglia 2 - I, 80138, Naples, Italy
| | - Fabrizio Scotto di Clemente
- Department of Medical, Surgical, Neurological, Metabolic and Aging Sciences, Headache Center, University of Campania "Luigi Vanvitelli", Piazza Miraglia 2 - I, 80138, Naples, Italy
| | - Francesca Trojsi
- Department of Medical, Surgical, Neurological, Metabolic and Aging Sciences, Headache Center, University of Campania "Luigi Vanvitelli", Piazza Miraglia 2 - I, 80138, Naples, Italy
| | - Alvino Bisecco
- Department of Medical, Surgical, Neurological, Metabolic and Aging Sciences, Headache Center, University of Campania "Luigi Vanvitelli", Piazza Miraglia 2 - I, 80138, Naples, Italy
| | - Simona Bonavita
- Department of Medical, Surgical, Neurological, Metabolic and Aging Sciences, Headache Center, University of Campania "Luigi Vanvitelli", Piazza Miraglia 2 - I, 80138, Naples, Italy
| | - Alessandro Tessitore
- Department of Medical, Surgical, Neurological, Metabolic and Aging Sciences, Headache Center, University of Campania "Luigi Vanvitelli", Piazza Miraglia 2 - I, 80138, Naples, Italy
| | - Gioacchino Tedeschi
- Department of Medical, Surgical, Neurological, Metabolic and Aging Sciences, Headache Center, University of Campania "Luigi Vanvitelli", Piazza Miraglia 2 - I, 80138, Naples, Italy
- Institute for Diagnosis and Care, 'Hermitage-Capodimonte', Naples, Italy
| |
Collapse
|
15
|
Urits I, Clark G, An D, Wesp B, Zhou R, Amgalan A, Berger AA, Kassem H, Ngo AL, Kaye AD, Kaye RJ, Cornett EM, Viswanath O. An Evidence-Based Review of Fremanezumab for the Treatment of Migraine. Pain Ther 2020; 9:195-215. [PMID: 32222952 PMCID: PMC7203396 DOI: 10.1007/s40122-020-00159-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Indexed: 11/27/2022] Open
Abstract
Migraine headache is a common, chronic, debilitating disease with a complex etiology. Current therapy for migraine headache comprises either treatments targeting acute migraine pain or prophylactic therapy aimed at increasing the length of time between migraine episodes. Recent evidence suggests that calcium gene-related peptide (CGRP) is a critical component in the pathogenesis of migraines. Fremanezumab, a monoclonal antibody against CGRP, was recently approved by the Food and Drug Administration (FDA) after multiple studies showed that it was well-tolerated, safe, and effective in the treatment of migraines. Further research is needed to elucidate the long-term effects of fremanezumab and CGRP-antagonists in general, and additional data is required in less healthy patients to estimate its effects in these populations and potentially increase the eligible group of recipients. This is a comprehensive review of the current literature on the efficacy and safety of fremanezumab for the treatment of chronic migraine. In this review we provide an update on the epidemiology, pathogenesis, diagnosis, and current treatment of migraine, and summarize the evidence for fremanezumab as a treatment for migraine.
Collapse
Affiliation(s)
- Ivan Urits
- Beth Israel Deaconess Medical Center, Department of Anesthesiology, Critical Care, and Pain Medicine, Harvard Medical School, Boston, MA, USA.
| | - Gavin Clark
- Georgetown University School of Medicine, Washington, DC, USA
| | - Daniel An
- Georgetown University School of Medicine, Washington, DC, USA
| | - Bredan Wesp
- Georgetown University School of Medicine, Washington, DC, USA
| | - Rebecca Zhou
- Georgetown University School of Medicine, Washington, DC, USA
| | | | - Amnon A Berger
- Beth Israel Deaconess Medical Center, Department of Anesthesiology, Critical Care, and Pain Medicine, Harvard Medical School, Boston, MA, USA
| | - Hisham Kassem
- Department of Anesthesiology, Mount Sinai Medical Center, Miami Beach, FL, USA
| | - Anh L Ngo
- Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Department of Pain Medicine, Pain Specialty Group, Newington, NH, USA
| | - Alan D Kaye
- Department of Anesthesiology, Louisiana State University Health Shreveport, Shreveport, LA, USA
| | - Rachel J Kaye
- Medical University of South Carolina, Charleston, SC, USA
| | - Elyse M Cornett
- Department of Anesthesiology, Louisiana State University Health Shreveport, Shreveport, LA, USA
| | - Omar Viswanath
- Valley Anesthesiology and Pain Consultants - Envision Physician Services, Phoenix, AZ, USA
- Department of Anesthesiology, Creighton University School of Medicine, Omaha, NE, USA
- Department of Anesthesiology, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, USA
| |
Collapse
|
16
|
Lamb YN. Fremanezumab in the prevention of migraine: a profile of its use. DRUGS & THERAPY PERSPECTIVES 2019. [DOI: 10.1007/s40267-019-00680-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
17
|
Wootten D, Miller LJ. Structural Basis for Allosteric Modulation of Class B G Protein-Coupled Receptors. Annu Rev Pharmacol Toxicol 2019; 60:89-107. [PMID: 31454292 DOI: 10.1146/annurev-pharmtox-010919-023301] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Recent advances in our understanding of the structure and function of class B G protein-coupled receptors (GPCRs) provide multiple opportunities for targeted development of allosteric modulators. Given the pleiotropic signaling patterns emanating from these receptors in response to a variety of natural agonist ligands, modulators have the potential to sculpt the responses to meet distinct needs of different groups of patients. In this review, we provide insights into how this family of GPCRs differs from the rest of the superfamily, how orthosteric agonists bind and activate these receptors, the potential for allosteric modulators to interact with various regions of these targets, and the allosteric influence of endogenous proteins on the pharmacology of these receptors, all of which are important considerations when developing new therapies.
Collapse
Affiliation(s)
- Denise Wootten
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, and Department of Pharmacology, Monash University, Parkville 3052, Australia; .,School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Laurence J Miller
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, and Department of Pharmacology, Monash University, Parkville 3052, Australia; .,Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Scottsdale, Arizona 85259, USA;
| |
Collapse
|
18
|
Abstract
Fremanezumab-vfrm (hereafter referred to as fremanezumab) [AJOVY™] is a fully humanized monoclonal antibody (IgG2Δa) developed by Teva Pharmaceuticals to selectively target calcitonin gene-related peptide (a vasodilatory neuropeptide involved in the pathophysiology of migraine). Its use has been associated with significant reductions in migraine frequency, the requirement for acute headache medication use and headache-related disability compared with placebo in multinational, phase III studies, and in September 2018 fremanezumab was approved by the US FDA for the preventive treatment of migraine in adults. A regulatory assessment for fremanezumab as a preventive treatment of migraine in adults is underway in the EU. Fremanezumab is also undergoing phase III development for the preventive treatment of cluster headache (although a phase III chronic cluster headache study has been suspended due to the results of a prespecified futility analysis) and phase II development for the preventive treatment of post-traumatic headache disorder. This article summarizes the milestones in the development of fremanezumab leading to this first approval in the USA for the preventive treatment of migraine in adults.
Collapse
Affiliation(s)
- Sheridan M Hoy
- Springer, Private Bag 65901, Mairangi Bay, Auckland, 0754, New Zealand.
| |
Collapse
|
19
|
Borkum JM. CGRP and Brain Functioning: Cautions for Migraine Treatment. Headache 2019; 59:1339-1357. [DOI: 10.1111/head.13591] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/09/2019] [Indexed: 12/13/2022]
Affiliation(s)
- Jonathan M. Borkum
- Department of Psychology University of Maine Orono ME USA
- Health Psych Maine Waterville ME USA
| |
Collapse
|
20
|
Kumar A, Potts JD, DiPette DJ. Protective Role of α-Calcitonin Gene-Related Peptide in Cardiovascular Diseases. Front Physiol 2019; 10:821. [PMID: 31312143 PMCID: PMC6614340 DOI: 10.3389/fphys.2019.00821] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 06/11/2019] [Indexed: 01/09/2023] Open
Abstract
α-Calcitonin gene-related peptide (α-CGRP) is a regulatory neuropeptide of 37 amino acids. It is widely distributed in the central and peripheral nervous system, predominantly in cell bodies of the dorsal root ganglion (DRG). It is the most potent vasodilator known to date and has inotropic and chronotropic effects. Using pharmacological and genetic approaches, our laboratory and other research groups established the protective role of α-CGRP in various cardiovascular diseases such as heart failure, experimental hypertension, myocardial infarction, and myocardial ischemia/reperfusion injury (I/R injury). α-CGRP acts as a depressor to attenuate the rise in blood pressure in three different models of experimental hypertension: (1) DOC-salt, (2) subtotal nephrectomy-salt, and (3) L-NAME-induced hypertension during pregnancy. Subcutaneous administration of α-CGRP lowers the blood pressure in hypertensive and normotensive humans and rodents. Recent studies also demonstrated that an α-CGRP analog, acylated α-CGRP, with extended half-life (~7 h) reduces blood pressure in Ang-II-induced hypertensive mouse, and protects against abdominal aortic constriction (AAC)-induced heart failure. Together, these studies suggest that α-CGRP, native or a modified form, may be a potential therapeutic agent to treat patients suffering from cardiac diseases.
Collapse
Affiliation(s)
- Ambrish Kumar
- Department of Cell Biology and Anatomy, School of Medicine, University of South Carolina, Columbia, SC, United States
| | - Jay D Potts
- Department of Cell Biology and Anatomy, School of Medicine, University of South Carolina, Columbia, SC, United States
| | - Donald J DiPette
- Department of Internal Medicine, School of Medicine, University of South Carolina, Columbia, SC, United States
| |
Collapse
|
21
|
Russo AF. CGRP-based Migraine Therapeutics: How Might They Work, Why So Safe, and What Next? ACS Pharmacol Transl Sci 2019; 2:2-8. [PMID: 31559394 PMCID: PMC6761833 DOI: 10.1021/acsptsci.8b00036] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Indexed: 01/20/2023]
Abstract
Migraine is a debilitating neurological condition that involves the neuropeptide calcitonin gene-related peptide (CGRP). An exciting development is the recent FDA approval of the first in an emerging class of CGRP-targeted drugs designed to prevent migraine. Yet despite this efficacy, there are some fundamental unanswered questions, such as where and how CGRP works in migraine. Preclinical data suggest that CGRP acts via both peripheral and central mechanisms. The relevance of peripheral sites is highlighted by the clinical efficacy of CGRP-blocking antibodies, even though they do not appreciably cross the blood-brain barrier. The most likely sites of action are within the dura and trigeminal ganglia. Furthermore, it would be foolish to ignore perivascular actions in the dura since CGRP is the most potent vasodilatory peptide. Ultimately, the consequence of blocking CGRP or its receptor is reduced peripheral neural sensitization. Underlying their efficacy is the question of why the antibodies have such an excellent safety profile so far. This may be due to the presence of a second CGRP receptor and vesicular release of a large bolus of peptides. Finally, despite the promise of these drugs, there are unmet gaps because they do not work for all patients; so what next? We can expect advances on several fronts, including CGRP receptor structures that may help development of centrally-acting antagonists, combinatorial treatments that integrate other therapies, and development of drugs that target other neuropeptides. This is truly an exciting time for CGRP and the migraine field with many more discoveries on the horizon.
Collapse
Affiliation(s)
- Andrew F. Russo
- Departments
of Molecular Physiology and Biophysics, Neurology, University of Iowa, Iowa City, Iowa 52242, United States
- Center
for the Prevention and Treatment of Visual Loss, Iowa VA Health Care System, Iowa City, Iowa 52246, United States
| |
Collapse
|
22
|
Yu ES, Priyadharsini S S Y, Venkatesan T. Migraine, Cyclic Vomiting Syndrome, and Other Gastrointestinal Disorders. ACTA ACUST UNITED AC 2018; 16:511-527. [PMID: 30361855 DOI: 10.1007/s11938-018-0202-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
PURPOSE OF REVIEW Cyclic vomiting syndrome (CVS) is a chronic functional gastrointestinal disorder characterized by episodic nausea and vomiting and is diagnosed using Rome IV criteria. CVS is being recognized more frequently in adults with a prevalence of 2%. It is associated with several functional disorders like autonomic dysfunction, anxiety, and depression, but the strongest association is with migraine. We will elucidate the close relationship between migraine and CVS and briefly discuss its association with other gastrointestinal disorders. RECENT FINDINGS We highlight similarities in pathophysiology, clinical presentation, and response to medications between CVS and migraine (tricyclic antidepressants, triptans, antiepileptics). We also discuss novel therapies like CGRP inhibitors which are effective in migraine and have potential for adaptation in patients with CVS. Using migraine as a template should enable investigators to elucidate the mechanisms underlying this disorder, develop novel therapies, and direct future research in CVS.
Collapse
Affiliation(s)
- Elliot S Yu
- Department of Internal Medicine, The Hub for Collaborative Medicine, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
| | - Yasodara Priyadharsini S S
- Division of Gastroenterology and Hepatology, The Hub for Collaborative Medicine, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
| | - Thangam Venkatesan
- Division of Gastroenterology and Hepatology, The Hub for Collaborative Medicine, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA.
| |
Collapse
|