1
|
Schwahn BC, Barvíková K, Wu HT, Horman A, Emmett E, Kožich V. Pharmacodynamic profiling in three patients with molybdenum cofactor deficiency type A reveals prolonged biological effects after withdrawal of cyclic pyranopterin monophosphate. Mol Genet Metab 2024; 143:108563. [PMID: 39168057 DOI: 10.1016/j.ymgme.2024.108563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/06/2024] [Accepted: 08/08/2024] [Indexed: 08/23/2024]
Abstract
Molybdenum cofactor deficiency type A has successfully been treated in a small number of children with daily intravenous administration of cyclic pyranopterin monophosphate. Pharmacodynamic data for this novel treatment have not been published and alternative dosing intervals have not been explored. We monitored pharmacodynamic biomarkers of sulfite oxidase and xanthine oxidoreductase activity in three patients with MoCD-A for a period of 2 to 9 months after discontinuation of cPMP substitution. We found that the clinical and metabolic effects were sustained for longer than expected, over 7 days at least. Our data implicate a biological half-life of the molybdenum cofactor dependent enzyme activities of approximately 3 days and suggest the possibility that less frequent than once daily dosing intervals could be a safe alternative to current practice.
Collapse
Affiliation(s)
- B C Schwahn
- Manchester Centre for Genomic Medicine, St Mary's Hospital, Manchester University NHS Foundation Trust, Health Innovation Manchester, Manchester, UK.
| | - K Barvíková
- Department of Pediatrics and Inherited Metabolic Disorders, Charles University-First Faculty of Medicine and General University Hospital in Prague, Prague, Czech Republic
| | - H T Wu
- Manchester Centre for Genomic Medicine, St Mary's Hospital, Manchester University NHS Foundation Trust, Health Innovation Manchester, Manchester, UK
| | - A Horman
- Manchester Centre for Genomic Medicine, St Mary's Hospital, Manchester University NHS Foundation Trust, Health Innovation Manchester, Manchester, UK; Department of Chemical Pathology, Great Ormond Street Hospital, London, UK
| | - E Emmett
- Biochemical Sciences, Synnovis, Guys & St Thomas' NHS Foundation Trust, London, UK
| | - V Kožich
- Department of Pediatrics and Inherited Metabolic Disorders, Charles University-First Faculty of Medicine and General University Hospital in Prague, Prague, Czech Republic
| |
Collapse
|
2
|
Marshall CM, Federice JG, Bell CN, Cox PB, Njardarson JT. An Update on the Nitrogen Heterocycle Compositions and Properties of U.S. FDA-Approved Pharmaceuticals (2013-2023). J Med Chem 2024; 67:11622-11655. [PMID: 38995264 DOI: 10.1021/acs.jmedchem.4c01122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2024]
Abstract
This Perspective is a continuation of our analysis of U.S. FDA-approved small-molecule drugs (1938-2012) containing nitrogen heterocycles. In this study we report drug structure and property analyses of 321 unique new small-molecule drugs approved from January 2013 to December 2023 as well as information about frequency of important heteroatoms such as sulfur and fluorine and key small nitrogen substituents (CN and NO2). The most notable change is an incredible increase in drugs containing at least one nitrogen heterocycle─82%, compared to 59% from preceding decades─as well as a significant increase in the number of nitrogen heterocycles per drug. Pyridine has claimed the #1 high-frequency nitrogen heterocycle occurrence spot from piperidine (#2), with pyrimidine (#5), pyrazole (#6), and morpholine (#9) being the big top 10 climbers. Also notable is high number of fused nitrogen heterocycles, apparently driven largely by newly approved cancer drugs.
Collapse
Affiliation(s)
- Christopher M Marshall
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, United States
| | - John G Federice
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, United States
| | - Chloe N Bell
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, United States
| | - Philip B Cox
- Discovery Research, AbbVie Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Jon T Njardarson
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, United States
| |
Collapse
|
3
|
Walsh TJ. Meeting the Therapeutic Challenges of Emergent and Rare Invasive Fungal Diseases Through Novel Clinical Trial Designs. Open Forum Infect Dis 2024; 11:ofae257. [PMID: 38887484 PMCID: PMC11181194 DOI: 10.1093/ofid/ofae257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Indexed: 06/20/2024] Open
Abstract
Treatments for emerging and rare invasive fungal diseases (IFDs) represent a critical unmet medical need. For IFDs that occur less frequently than invasive aspergillosis, such as mucormycosis, hyalohyphomycosis, and phaeohyphomycosis, randomized controlled clinical trials are impractical and unlikely to meet urgent public health needs. Understanding regulatory approaches for approval of drugs for rare cancers and rare metabolic diseases could help meet the challenges of studying drugs for rare IFDs. A single-arm, controlled clinical trial with a high-quality external control(s), with confirmatory evidence from nonclinical studies, including pharmacokinetic/pharmacodynamic data in predictive animal models of the disease may support findings of effectiveness of new drugs and biologics. Control populations may include historical controls from published literature, patient registries, and/or contemporaneous external control groups. Continuous engagement among clinicians, industrial sponsors, and regulatory agencies to develop consensus on trial design and innovative development pathways for emergent and rare invasive fungal diseases is important.
Collapse
Affiliation(s)
- Thomas J Walsh
- Center for Innovative Therapeutics and Diagnostics, Office of the Director (citdx.org), Richmond, Virginia, USA
- Departments of Medicine and of Microbiology & Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
4
|
Romanelli MN, Braconi L, Gabellini A, Manetti D, Marotta G, Teodori E. Synthetic Approaches to Piperazine-Containing Drugs Approved by FDA in the Period of 2011-2023. Molecules 2023; 29:68. [PMID: 38202651 PMCID: PMC10780301 DOI: 10.3390/molecules29010068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 12/15/2023] [Accepted: 12/18/2023] [Indexed: 01/12/2024] Open
Abstract
The piperazine moiety is often found in drugs or in bioactive molecules. This widespread presence is due to different possible roles depending on the position in the molecule and on the therapeutic class, but it also depends on the chemical reactivity of piperazine-based synthons, which facilitate its insertion into the molecule. In this paper, we take into consideration the piperazine-containing drugs approved by the Food and Drug Administration between January 2011 and June 2023, and the synthetic methodologies used to prepare the compounds in the discovery and process chemistry are reviewed.
Collapse
Affiliation(s)
- Maria Novella Romanelli
- Section of Pharmaceutical and Nutraceutical Science, Department of Neurosciences, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Via Ugo Schiff, 6, Sesto Fiorentino, 50019 Florence, Italy; (L.B.); (A.G.); (D.M.); (G.M.); (E.T.)
| | | | | | | | | | | |
Collapse
|
5
|
McInturff EL, France SP, Leverett CA, Flick AC, Lindsey EA, Berritt S, Carney DW, DeForest JC, Ding HX, Fink SJ, Gibson TS, Gray K, Hubbell AK, Johnson AM, Liu Y, Mahapatra S, McAlpine IJ, Watson RB, O'Donnell CJ. Synthetic Approaches to the New Drugs Approved During 2021. J Med Chem 2023; 66:10150-10201. [PMID: 37528515 DOI: 10.1021/acs.jmedchem.3c00501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2023]
Abstract
Each year, new drugs are introduced to the market, representing structures that have affinity for biological targets implicated in human diseases and conditions. These new chemical entities (NCEs), particularly small molecules and antibody-drug conjugates, provide insight into molecular recognition and serve as potential leads for the design of future medicines. This annual review is part of a continuing series highlighting the most likely process-scale synthetic approaches to 35 NCEs that were first approved anywhere in the world during 2021.
Collapse
Affiliation(s)
- Emma L McInturff
- Groton Laboratories, Pfizer Worldwide Research and Development, 445 Eastern Point Road, Groton, Connecticut 06340, United States
| | - Scott P France
- Process Research & Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Carolyn A Leverett
- Groton Laboratories, Pfizer Worldwide Research and Development, 445 Eastern Point Road, Groton, Connecticut 06340, United States
| | - Andrew C Flick
- Takeda Pharmaceuticals, 9625 Towne Centre Drive, San Diego, California 92121, United States
| | - Erick A Lindsey
- Takeda Pharmaceuticals, 9625 Towne Centre Drive, San Diego, California 92121, United States
| | - Simon Berritt
- Groton Laboratories, Pfizer Worldwide Research and Development, 445 Eastern Point Road, Groton, Connecticut 06340, United States
| | - Daniel W Carney
- Takeda Pharmaceuticals, 9625 Towne Centre Drive, San Diego, California 92121, United States
| | - Jacob C DeForest
- La Jolla Laboratories, Pfizer Worldwide Research and Development, 10777 Science Center Drive, San Diego, California 92121, United States
| | - Hong X Ding
- Pharmacodia (Beijing) Co. Ltd., Beijing, 100085, China
| | - Sarah J Fink
- Takeda Pharmaceuticals, 125 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Tony S Gibson
- Takeda Pharmaceuticals, 9625 Towne Centre Drive, San Diego, California 92121, United States
| | - Kaitlyn Gray
- Groton Laboratories, Pfizer Worldwide Research and Development, 445 Eastern Point Road, Groton, Connecticut 06340, United States
| | - Aran K Hubbell
- Groton Laboratories, Pfizer Worldwide Research and Development, 445 Eastern Point Road, Groton, Connecticut 06340, United States
| | - Amber M Johnson
- Groton Laboratories, Pfizer Worldwide Research and Development, 445 Eastern Point Road, Groton, Connecticut 06340, United States
| | - Yiyang Liu
- Groton Laboratories, Pfizer Worldwide Research and Development, 445 Eastern Point Road, Groton, Connecticut 06340, United States
| | - Subham Mahapatra
- Groton Laboratories, Pfizer Worldwide Research and Development, 445 Eastern Point Road, Groton, Connecticut 06340, United States
| | - Indrawan J McAlpine
- Genesis Therapeutics, 11568 Sorrento Valley Road, Suite 8, San Diego, California 92121, United States
| | - Rebecca B Watson
- La Jolla Laboratories, Pfizer Worldwide Research and Development, 10777 Science Center Drive, San Diego, California 92121, United States
| | - Christopher J O'Donnell
- Groton Laboratories, Pfizer Worldwide Research and Development, 445 Eastern Point Road, Groton, Connecticut 06340, United States
| |
Collapse
|
6
|
Foteva V, Fisher JJ, Qiao Y, Smith R. Does the Micronutrient Molybdenum Have a Role in Gestational Complications and Placental Health? Nutrients 2023; 15:3348. [PMID: 37571285 PMCID: PMC10421405 DOI: 10.3390/nu15153348] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 07/24/2023] [Accepted: 07/25/2023] [Indexed: 08/13/2023] Open
Abstract
Molybdenum is an essential trace element for human health and survival, with molybdenum-containing enzymes catalysing multiple reactions in the metabolism of purines, aldehydes, and sulfur-containing amino acids. Recommended daily intakes vary globally, with molybdenum primarily sourced through the diet, and supplementation is not common. Although the benefits of molybdenum as an anti-diabetic and antioxidant inducer have been reported in the literature, there are conflicting data on the benefits of molybdenum for chronic diseases. Overexposure and deficiency can result in adverse health outcomes and mortality, although physiological doses remain largely unexplored in relation to human health. The lack of knowledge surrounding molybdenum intake and the role it plays in physiology is compounded during pregnancy. As pregnancy progresses, micronutrient demand increases, and diet is an established factor in programming gestational outcomes and maternal health. This review summarises the current literature concerning varied recommendations on molybdenum intake, the role of molybdenum and molybdoenzymes in physiology, and the contribution these play in gestational outcomes.
Collapse
Affiliation(s)
- Vladimira Foteva
- Mothers and Babies Research Program, Hunter Medical Research Institute, Newcastle, NSW 2305, Australia; (J.J.F.); (R.S.)
- School of Medicine and Public Health, University of Newcastle, Newcastle, NSW 2308, Australia
| | - Joshua J. Fisher
- Mothers and Babies Research Program, Hunter Medical Research Institute, Newcastle, NSW 2305, Australia; (J.J.F.); (R.S.)
- School of Medicine and Public Health, University of Newcastle, Newcastle, NSW 2308, Australia
| | - Yixue Qiao
- Academy of Pharmacy, Xi’an Jiaotong Liverpool University, Suzhou 215000, China;
| | - Roger Smith
- Mothers and Babies Research Program, Hunter Medical Research Institute, Newcastle, NSW 2305, Australia; (J.J.F.); (R.S.)
- School of Medicine and Public Health, University of Newcastle, Newcastle, NSW 2308, Australia
| |
Collapse
|
7
|
Yuan S, Wang DS, Liu H, Zhang SN, Yang WG, Lv M, Zhou YX, Zhang SY, Song J, Liu HM. New drug approvals for 2021: Synthesis and clinical applications. Eur J Med Chem 2022; 245:114898. [DOI: 10.1016/j.ejmech.2022.114898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/27/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022]
|
8
|
Kayki-Mutlu G, Aksoyalp ZS, Wojnowski L, Michel MC. A year in pharmacology: new drugs approved by the US Food and Drug Administration in 2021. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2022; 395:867-885. [PMID: 35543739 PMCID: PMC9091141 DOI: 10.1007/s00210-022-02250-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 04/29/2022] [Indexed: 12/16/2022]
Abstract
The second year of the COVID-19 pandemic had no adverse effect on the number of new drug approvals by the US Food and Drug Administration (FDA). Quite the contrary, with a total of 50 new drugs, 2021 belongs to the most successful FDA years. We assign these new drugs to one of three levels of innovation: (1) first drug against a condition ("first-in-indication"), (2) first drug using a novel molecular mechanism ("first-in-class"), and (3) "next-in-class", i.e., a drug using an already exploited molecular mechanism. We identify 21 first-in-class, 28 next-in-class, and only one first-in-indication drugs. By treatment area, the largest group is once again cancer drugs, many of which target specific genetic alterations. Every second drug approved in 2021 targets an orphan disease, half of them being cancers. Small molecules continue to dominate new drug approvals, followed by antibodies and non-antibody biopharmaceuticals. In 2021, the FDA continued to approve drugs without strong evidence of clinical effects, best exemplified by the aducanumab controversy.
Collapse
Affiliation(s)
- Gizem Kayki-Mutlu
- Department of Pharmacology, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| | - Zinnet Sevval Aksoyalp
- Department of Pharmacology, Faculty of Pharmacy, Izmir Katip Celebi University, Izmir, Turkey
| | - Leszek Wojnowski
- Department of Pharmacology, University Medical Center, Johannes Gutenberg University, Langenbeckstr. 1, 55118 Mainz, Germany
| | - Martin C. Michel
- Department of Pharmacology, University Medical Center, Johannes Gutenberg University, Langenbeckstr. 1, 55118 Mainz, Germany
| |
Collapse
|
9
|
Romanelli MN, Manetti D, Braconi L, Dei S, Gabellini A, Teodori E. The piperazine scaffold for novel drug discovery efforts: the evidence to date. Expert Opin Drug Discov 2022; 17:969-984. [PMID: 35848922 DOI: 10.1080/17460441.2022.2103535] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION . Piperazine is a structural element present in drugs belonging to various chemical classes and used for numerous different therapeutic applications; it has been considered a privileged scaffold for drug design. AREAS COVERED The authors have searched examples of piperazine-containing compounds among drugs recently approved by the FDA, and in some research fields (nicotinic receptor modulators, compounds acting against cancer and bacterial multi-drug resistance), looking in particular to the design behind the insertion of this moiety. EXPERT OPINION Piperazine is widely used due to its peculiar characteristics, such as solubility, basicity, chemical reactivity, and conformational properties. This moiety has represented an important tool to modulate pharmacokinetic and pharmacodynamic properties of drugs.
Collapse
Affiliation(s)
- Maria Novella Romanelli
- Department of Neuroscience, Psychology, Drug Research and Child's Health (NEUROFARBA), University of Florence, Section of Pharmaceutical and Nutraceutical Sciences, Via Ugo Schiff 6, 50019, Sesto Fiorentino, Italy
| | - Dina Manetti
- Department of Neuroscience, Psychology, Drug Research and Child's Health (NEUROFARBA), University of Florence, Section of Pharmaceutical and Nutraceutical Sciences, Via Ugo Schiff 6, 50019, Sesto Fiorentino, Italy
| | - Laura Braconi
- Department of Neuroscience, Psychology, Drug Research and Child's Health (NEUROFARBA), University of Florence, Section of Pharmaceutical and Nutraceutical Sciences, Via Ugo Schiff 6, 50019, Sesto Fiorentino, Italy
| | - Silvia Dei
- Department of Neuroscience, Psychology, Drug Research and Child's Health (NEUROFARBA), University of Florence, Section of Pharmaceutical and Nutraceutical Sciences, Via Ugo Schiff 6, 50019, Sesto Fiorentino, Italy
| | - Alessio Gabellini
- Department of Neuroscience, Psychology, Drug Research and Child's Health (NEUROFARBA), University of Florence, Section of Pharmaceutical and Nutraceutical Sciences, Via Ugo Schiff 6, 50019, Sesto Fiorentino, Italy
| | - Elisabetta Teodori
- Department of Neuroscience, Psychology, Drug Research and Child's Health (NEUROFARBA), University of Florence, Section of Pharmaceutical and Nutraceutical Sciences, Via Ugo Schiff 6, 50019, Sesto Fiorentino, Italy
| |
Collapse
|