1
|
Schaumleffel C. Evaluating Ease of Use and Patient Safety of Dasiglucagon Hypo Pal Autoinjector for the Management of Hypoglycemia. Patient Prefer Adherence 2023; 17:2141-2144. [PMID: 37663896 PMCID: PMC10473428 DOI: 10.2147/ppa.s325865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 08/23/2023] [Indexed: 09/05/2023] Open
Abstract
Introduction Severe hypoglycemia is a medical emergency that must be treated promptly in order to prevent complications or death in a patient. Patients who have been diagnosed with Type 1 diabetes and treated with insulin have the potential to experience a severe hypoglycemia episode, or low blood sugar. When a patient is experiencing severe hypoglycemia, it is imperative for this patient to receive glucose quickly. However, patients who are experiencing low blood sugar may not be able to manage for themselves, take food or liquid orally or may be unconscious. Glucagon is a medication that reverses low blood sugar. Up until 2018, glucagon had to be reconstituted immediately before injection because of the medication's lack of stability after reconstitution. A medication recently approved for patients 6 years through adult is Dasiglucagon. This form of glucagon comes in a ready-to-administer, pre-filled syringe, making it easier for caretakers and bystanders to administer in an emergency situation due to the readiness of the medication. Purpose The purpose of the paper is to evaluate literature that pertains to the ease of use and patient safety of dasiglucagon HypoPal autoinjector for the management of severe hypoglycemia.
Collapse
Affiliation(s)
- Carol Schaumleffel
- School of Nursing, College of Health Sciences and Professions, Ohio University, Athens, OH, USA
| |
Collapse
|
2
|
Liu XW, Shi TY, Gao D, Ma CY, Lin H, Yan D, Deng KJ. iPADD: A Computational Tool for Predicting Potential Antidiabetic Drugs Using Machine Learning Algorithms. J Chem Inf Model 2023; 63:4960-4969. [PMID: 37499224 DOI: 10.1021/acs.jcim.3c00564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Diabetes mellitus is a chronic metabolic disease, which causes an imbalance in blood glucose homeostasis and further leads to severe complications. With the increasing population of diabetes, there is an urgent need to develop drugs to treat diabetes. The development of artificial intelligence provides a powerful tool for accelerating the discovery of antidiabetic drugs. This work aims to establish a predictor called iPADD for discovering potential antidiabetic drugs. In the predictor, we used four kinds of molecular fingerprints and their combinations to encode the drugs and then adopted minimum-redundancy-maximum-relevance (mRMR) combined with an incremental feature selection strategy to screen optimal features. Based on the optimal feature subset, eight machine learning algorithms were applied to train models by using 5-fold cross-validation. The best model could produce an accuracy (Acc) of 0.983 with the area under the receiver operating characteristic curve (auROC) value of 0.989 on an independent test set. To further validate the performance of iPADD, we selected 65 natural products for case analysis, including 13 natural products in clinical trials as positive samples and 52 natural products as negative samples. Except for abscisic acid, our model can give correct prediction results. Molecular docking illustrated that quercetin and resveratrol stably bound with the diabetes target NR1I2. These results are consistent with the model prediction results of iPADD, indicating that the machine learning model has a strong generalization ability. The source code of iPADD is available at https://github.com/llllxw/iPADD.
Collapse
Affiliation(s)
- Xiao-Wei Liu
- School of Life Science and Technology and Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Tian-Yu Shi
- School of Life Science and Technology and Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Dong Gao
- School of Life Science and Technology and Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Cai-Yi Ma
- School of Life Science and Technology and Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Hao Lin
- School of Life Science and Technology and Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Dan Yan
- Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
- Beijing Institute of Clinical Pharmacy, Beijing 100050, China
| | - Ke-Jun Deng
- School of Life Science and Technology and Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China
| |
Collapse
|
3
|
Heller S, Battelino T, Bailey TS, Pieber TR, Hövelmann U, Plum-Mörschel L, Melgaard AE, Aronson R, DiMeglio LA, Johansen T, Danne T. Integrated safety and efficacy analysis of dasiglucagon for the treatment of severe hypoglycaemia in individuals with type 1 diabetes. Diabetes Obes Metab 2023; 25:1351-1360. [PMID: 36692230 DOI: 10.1111/dom.14987] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 01/20/2023] [Accepted: 01/22/2023] [Indexed: 01/25/2023]
Abstract
AIMS To perform an integrated analysis of the safety and efficacy of dasiglucagon, a glucagon analogue available in a ready-to-use aqueous formulation, to treat severe hypoglycaemia (SH) in type 1 diabetes (T1D). MATERIALS AND METHODS An integrated analysis of dasiglucagon safety was conducted on data from two placebo-controlled trials (placebo-controlled pool) and two placebo-controlled and four non-placebo-controlled trials (broad pool) in adults with T1D. An integrated analysis of dasiglucagon efficacy was conducted of pooled data and within demographic subgroups from the two placebo-controlled and two non-placebo-controlled trials in adults with T1D. RESULTS Dasiglucagon had a similar safety and tolerability profile to that of reconstituted glucagon. In the placebo-controlled datasets, no serious adverse events (AEs), AEs leading to withdrawal from the trial, or deaths were reported. The most common causally related AEs were nausea (56.5%) and vomiting (24.6%). The broad pool safety analysis showed similar results. Dasiglucagon efficacy in time to plasma glucose recovery from insulin-induced SH was similar to that of reconstituted glucagon (median 10.0 and 12.0 minutes, respectively) and superior to placebo (median 40.0 minutes; P < 0.0001). The median recovery time was consistent across all placebo-controlled trial subgroups. CONCLUSIONS Dasiglucagon was well tolerated and effective as a rapid rescue agent for insulin-induced SH in people with T1D.
Collapse
Affiliation(s)
| | - Tadej Battelino
- University Medical Center Ljubljana, and Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | | | | | | | | | | | - Ronnie Aronson
- LMC Diabetes and Endocrinology, Toronto, Ontario, Canada
| | | | | | - Thomas Danne
- Children's Hospital AUF DER BULT, Hannover, Germany
| |
Collapse
|
4
|
Dholariya S, Parchwani D, Dutta S, Singh R. Clinical efficacy and safety of dasiglucagon in severe hypoglycemia associated with patients of type 1 diabetes mellitus: a systematic review and meta-analysis. Expert Rev Clin Pharmacol 2023; 16:61-71. [PMID: 36266088 DOI: 10.1080/17512433.2023.2138343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
BACKGROUND AND AIMS This study was carried out to analyze the clinical safety and efficacy of dasiglucagon for the treatment of severe hypoglycemia in patients with type 1 diabetes mellitus (T1DM). METHODS We searched PubMed, Cochrane Library, Embase, and ClinicalTrials.gov for randomized controlled trials (RCTs) investigating the safety and efficacy of dasiglucagon in the treatment of hypoglycemia in patients with T1DM. Furthermore, time required for the recovery of blood glucose or to elevate blood glucose levels ≥20.0 mg/dL from baseline was analyzed. The data was analyzed in version 5.4 of review manager 5 (RevMan). RESULTS We included five published RCTs with a total of 347 patients . Dasiglucagon was significantly better at reducing the recovery time of blood glucose or increasing blood glucose levels 20.0 mg/dL from baseline compared to glucagon [pooled mean difference (PMD): 1.08%, 95% confidence interval (CI): 1.96 to 0.21, p = 0.02] and placebo (PMD: - 23.30%, 95% CI: 23.97 to 22.63, p < 0.00001). Overall, the safety outcome results of dasiglucagon were comparable with the native glucagon. CONCLUSIONS Dasiglucagon appears to be a promising human glucagon analog peptide for the safe and effective treatment of severe hypoglycemia in T1DM.
Collapse
Affiliation(s)
- Sagar Dholariya
- Department of Biochemistry, All India Institute of Medical Sciences, Rajkot, India
| | - Deepak Parchwani
- Department of Biochemistry, All India Institute of Medical Sciences, Rajkot, India
| | - Siddhartha Dutta
- Department of Pharmacology, All India Institute of Medical Sciences, Rajkot, India
| | - Ragini Singh
- Department of Biochemistry, All India Institute of Medical Sciences, Rajkot, India
| |
Collapse
|
5
|
Pontiroli AE, Rizzo M, Tagliabue E. Use of glucagon in severe hypoglycemia is scarce in most countries, and has not been expanded by new ready-to-use glucagons. Diabetol Metab Syndr 2022; 14:193. [PMID: 36550552 PMCID: PMC9780089 DOI: 10.1186/s13098-022-00950-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 11/11/2022] [Indexed: 12/24/2022] Open
Abstract
Glucagon (traditional kits for intramuscular administration, Glucagon and Glucagen), although recommended as a remedy for severe hypoglycemia (SH), has been reported to be under-utilized, likely because of technical problems. The aims of this study were to evaluate the use of glucagon in persons with type 1 diabetes in several countries, and to investigate if the availability of new ready-to-use glucagons (Baqsimi, Gvoke, Zegalogue, years 2019 to 2021) has expanded the overall use of glucagon. The source of data was IQVIA-MIDAS (units of glucagon sold), while data on persons with type 1 diabetes in countries were derived from IDF Diabetes Atlas. The use of glucagon has been steady from 2014 to 2019, with a small but significant increase from 2019 to 2021, paradoxically only in countries where new ready-to-use glucagons were not available. The use of glucagon has always been ten fold greater in countries where new ready-to-use glucagons became available than in the other countries (population 108,000,000 vs 28,100,000, 480,291 vs 182,018 persons with type 1 diabetes). A significant correlation was observed in all years between units of glucagon and persons with type 1 diabetes. Availability of new ready-to-use glucagons was associated with a small increase of sales, due only to new ready-to-use glucagons themselves. The use of glucagon (any type) remains low, approximately 1/10 of persons with type 1 diabetes. We conclude that use of glucagon is scarce in most countries, and so far has not been expanded by new ready-to-use glucagons such as the ones considered in this study.
Collapse
Affiliation(s)
- Antonio E. Pontiroli
- Dipartimento Di Scienze Della Salute, Università Degli Studi Di Milano, Milan, Italy
| | - Manfredi Rizzo
- Promise Department, School of Medicine, University of Palermo, Palermo, Italy
| | - Elena Tagliabue
- Value-Based Healthcare Unit, IRCCS MultiMedica, Milan, Italy
| |
Collapse
|
6
|
Story LH, Wilson LM. New Developments in Glucagon Treatment for Hypoglycemia. Drugs 2022; 82:1179-1191. [PMID: 35932416 DOI: 10.1007/s40265-022-01754-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/19/2022] [Indexed: 11/28/2022]
Abstract
Glucagon is essential for endogenous glucose regulation along with the paired hormone, insulin. Unlike insulin, pharmaceutical use of glucagon has been limited due to the unstable nature of the peptide. Glucagon has the potential to address hypoglycemia as a major limiting factor in the treatment of diabetes, which remains very common in the type 1 and type 2 diabetes. Recent developments are poised to change this paradigm and expand the use of glucagon for people with diabetes. Glucagon emergency kits have major limitations for their use in treating severe hypoglycemia. A complicated reconstitution and injection process often results in incomplete or aborted administration. New preparations include intranasal glucagon with an easy-to-use and needle-free nasal applicator as well as two stable liquid formulations in pre-filled injection devices. These may ease the burden of severe hypoglycemia treatment. The liquid preparations may also have a role in the treatment of non-severe hypoglycemia. Despite potential benefits of expanded use of glucagon, undesirable side effects (nausea, vomiting), cost, and complexity of adding another medication may limit real-world use. Additionally, more long-term safety and outcome data are needed before widespread, frequent use of glucagon is recommended by providers.
Collapse
Affiliation(s)
- LesleAnn Hayward Story
- Division of Endocrinology, Harold Schnitzer Diabetes Health Center, Oregon Health & Science University, Portland, OR, USA
| | - Leah M Wilson
- Division of Endocrinology, Harold Schnitzer Diabetes Health Center, Oregon Health & Science University, Portland, OR, USA.
| |
Collapse
|
7
|
Kayki-Mutlu G, Aksoyalp ZS, Wojnowski L, Michel MC. A year in pharmacology: new drugs approved by the US Food and Drug Administration in 2021. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2022; 395:867-885. [PMID: 35543739 PMCID: PMC9091141 DOI: 10.1007/s00210-022-02250-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 04/29/2022] [Indexed: 12/16/2022]
Abstract
The second year of the COVID-19 pandemic had no adverse effect on the number of new drug approvals by the US Food and Drug Administration (FDA). Quite the contrary, with a total of 50 new drugs, 2021 belongs to the most successful FDA years. We assign these new drugs to one of three levels of innovation: (1) first drug against a condition ("first-in-indication"), (2) first drug using a novel molecular mechanism ("first-in-class"), and (3) "next-in-class", i.e., a drug using an already exploited molecular mechanism. We identify 21 first-in-class, 28 next-in-class, and only one first-in-indication drugs. By treatment area, the largest group is once again cancer drugs, many of which target specific genetic alterations. Every second drug approved in 2021 targets an orphan disease, half of them being cancers. Small molecules continue to dominate new drug approvals, followed by antibodies and non-antibody biopharmaceuticals. In 2021, the FDA continued to approve drugs without strong evidence of clinical effects, best exemplified by the aducanumab controversy.
Collapse
Affiliation(s)
- Gizem Kayki-Mutlu
- Department of Pharmacology, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| | - Zinnet Sevval Aksoyalp
- Department of Pharmacology, Faculty of Pharmacy, Izmir Katip Celebi University, Izmir, Turkey
| | - Leszek Wojnowski
- Department of Pharmacology, University Medical Center, Johannes Gutenberg University, Langenbeckstr. 1, 55118 Mainz, Germany
| | - Martin C. Michel
- Department of Pharmacology, University Medical Center, Johannes Gutenberg University, Langenbeckstr. 1, 55118 Mainz, Germany
| |
Collapse
|
8
|
Al Shaer D, Al Musaimi O, Albericio F, de la Torre BG. 2021 FDA TIDES (Peptides and Oligonucleotides) Harvest. Pharmaceuticals (Basel) 2022; 15:ph15020222. [PMID: 35215334 PMCID: PMC8876803 DOI: 10.3390/ph15020222] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 02/06/2022] [Accepted: 02/11/2022] [Indexed: 12/11/2022] Open
Abstract
From the medical, pharmaceutical, and social perspectives, 2021 has been a year dominated by the COVID-19 pandemic. However, despite this global health crisis, the pharmaceutical industry has continued its endeavors, and 2021 could be considered an excellent year in terms of the drugs accepted by the US Food and Drug Administration (FDA). Thus, during this year, the FDA has approved 50 novel drugs, of which 36 are new chemical entities and 14 biologics. It has also authorized 10 TIDES (8 peptides, 2 oligonucleotides), in addition to 2 antibody-drug conjugates (ADCs) whose structures contain peptides. Thus, TIDES have accounted for about 24% of the approvals in the various drug categories. Importantly, this percentage has surpassed the figure in 2020 (10%), thus reflecting the remarkable success of TIDES. In this review, the approved TIDE-based drugs are analyzed on the basis of their chemical structure, medical target, mode of action, administration route, and adverse effects.
Collapse
Affiliation(s)
- Danah Al Shaer
- KRISP, School of Laboratory of Medicine and Medical Science, College of Health Sciences, University of KwaZulu-Natal, Durban 4001, South Africa; (D.A.S.); (B.G.d.l.T.)
| | - Othman Al Musaimi
- Surfaces and Particle Engineering Laboratory, Department of Chemical Engineering, Imperial College London, London SW7 2AZ, UK;
| | - Fernando Albericio
- School of Chemistry and Physics, University of KwaZulu-Natal, Durban 4001, South Africa
- CIBER-BBN, Networking Centre on Bioengineering, Biomaterials and Nanomedicine, Department of Organic Chemistry, University of Barcelona, 08028 Barcelona, Spain
- Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), 08034 Barcelona, Spain
- Correspondence: ; Tel.: +27-614-009-144
| | - Beatriz G. de la Torre
- KRISP, School of Laboratory of Medicine and Medical Science, College of Health Sciences, University of KwaZulu-Natal, Durban 4001, South Africa; (D.A.S.); (B.G.d.l.T.)
| |
Collapse
|
9
|
Pinnaro CT, Tansey MJ. The Evolution of Insulin Administration in Type 1 Diabetes. JOURNAL OF DIABETES MELLITUS 2021; 11:249-277. [PMID: 37745178 PMCID: PMC10516284 DOI: 10.4236/jdm.2021.115021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Insulin has been utilized in the treatment of type 1 diabetes (T1D) for 100 years. While there is still no cure for T1D, insulin administration has undergone a remarkable evolution which has contributed to improvements in quality of life and life expectancy in individuals with T1D. The advent of faster-acting and longer-acting insulins allowed for the implementation of insulin regimens more closely resembling normal insulin physiology. These improvements afforded better glycemic control, which is crucial for limiting microvascular complications and improving T1D outcomes. Suspension of insulin delivery in response to actual and forecasted hypoglycemia has improved quality of life and mitigated hypoglycemia without compromising glycemic control. Advances in continuous glucose monitoring (CGM) and insulin pumps, efforts to model glucose and insulin kinetics, and the application of control theory to T1D have made the automation of insulin delivery a reality. This review will summarize the past, present, and future of insulin administration in T1D.
Collapse
Affiliation(s)
- Catherina T Pinnaro
- University of Iowa Stead Family Department of Pediatrics
- Fraternal Order of Eagles Diabetes Research Center
| | - Michael J Tansey
- University of Iowa Stead Family Department of Pediatrics
- Fraternal Order of Eagles Diabetes Research Center
| |
Collapse
|
10
|
La Sala L, Pontiroli AE. New Fast Acting Glucagon for Recovery from Hypoglycemia, a Life-Threatening Situation: Nasal Powder and Injected Stable Solutions. Int J Mol Sci 2021; 22:ijms221910643. [PMID: 34638984 PMCID: PMC8508740 DOI: 10.3390/ijms221910643] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 09/27/2021] [Accepted: 09/29/2021] [Indexed: 12/12/2022] Open
Abstract
The goal of diabetes care is to achieve and maintain good glycemic control over time, so as to prevent or delay the development of micro- and macrovascular complications in type 1 (T1D) and type 2 diabetes (T2D). However, numerous barriers hinder the achievement of this goal, first of all the frequent episodes of hypoglycemia typical in patients treated with insulin as T1D patients, or sulphonylureas as T2D patients. The prevention strategy and treatment of hypoglycemia are important for the well-being of patients with diabetes. Hypoglycemia is strongly associated with an increased risk of cardiovascular disease in diabetic patients, due probably to the release of inflammatory markers and prothrombotic effects triggered by hypoglycemia. Treatment of hypoglycemia is traditionally based on administration of carbohydrates or of glucagon via intramuscular (IM) or subcutaneous injection (SC). The injection of traditional glucagon is cumbersome, such that glucagon is an under-utilized drug. In 1983, it was shown for the first time that intranasal (IN) glucagon increases blood glucose levels in healthy volunteers, and in 1989-1992 that IN glucagon is similar to IM glucagon in resolving hypoglycemia in normal volunteers and in patients with diabetes, both adults and children. IN glucagon was developed in 2010 and continued in 2015; in 2019 IN glucagon obtained approval in the US, Canada, and Europe for severe hypoglycemia in children and adults. In the 2010s, two ready-to-use injectable formulations, a stable non-aqueous glucagon solution and the glucagon analog dasiglucagon, were developed, showing an efficacy similar to traditional glucagon, and approved in the US in 2020 and in 2021, respectively, for severe hypoglycemia in adults and in children. Fast-acting glucagon (nasal administration and injected solutions) appears to represent a major breakthrough in the treatment of severe hypoglycemia in insulin-treated patients with diabetes, both adults and children. It is anticipated that the availability of fast-acting glucagon will expand the use of glucagon, improve overall metabolic control, and prevent hypoglycemia-related complications, in particular cardiovascular complications and cognitive impairment.
Collapse
Affiliation(s)
- Lucia La Sala
- IRCCS MultiMedica, Lab of Diabetology and Dysmetabolic Disease, PST Via Fantoli 16/15, 20138 Milan, Italy
- Correspondence: ; Tel.: +39-02-5540-6534 (ext. 6587)
| | - Antonio E. Pontiroli
- Dipartimento di Scienze della Salute, Università degli Studi di Milano, 20100 Milan, Italy;
| |
Collapse
|
11
|
Xu B, Tang G, Chen Z. Dasiglucagon: an effective medicine for severe hypoglycemia. Eur J Clin Pharmacol 2021; 77:1783-1790. [PMID: 34223944 DOI: 10.1007/s00228-021-03183-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 06/26/2021] [Indexed: 01/07/2023]
Abstract
PURPOSE Patients with type 1 diabetes mellitus (T1DM) receiving insulin therapy commonly suffer from insulin-mediated hypoglycemia and require glucagon for glycemic control to achieve normal plasma glucose (PG) levels. Severe hypoglycemia will endanger the life of patients and require intervention. Stable glucagon analog dasiglucagon was approved for the treatment of patients with severe hypoglycemia and is administered via Zegalogue autoinjector/Zegalogue prefilled syringe. The main purpose of this review article is to review the basic properties and clinical effects of dasiglucagon. METHOD We search related literature on CNKI, Web of Science and PubMed by keywords dasiglucagon, hypoglycemia, type 1 diabetes, glucagon. Carry out a careful review of the included literature. Dasiglucagon information on clinicaltrials.gov and https://www.fda.gov/ has been adopted. RESULTS AND CONCLUSION Dasiglucagon is a novel peptide analog of human glucagon, which can effectively rescue insulin-induced severe hypoglycemia in patients with T1DM and rapidly increase glycemic levels in a small dose under normal and hypoglycemic conditions. It has been proven that dasiglucagon has definite stability and solubility in aqueous formulations. Dasiglucagon has a higher absorption rate and longer plasma elimination half-life than traditional reconstituted glucagon. In three randomized, double-blind, placebo-controlled trials in children aged 6 to 17 years and adults with T1DM the median time to glycemic recovery in 10 min after dasiglucagon administration was significantly faster than placebo and 99% of patients recovered within 15 min after subcutaneous injection of dasiglucagon in the key phase 3 clinical trial. The most common adverse reactions in these phase 3 trials were vomiting, nausea, diarrhea, headache, and injection site pain.
Collapse
Affiliation(s)
- Bo Xu
- College of Pharmacy, University of South China, No. 28, Changsheng West Road, Zhengxiang District 421001, Hengyang, Hunan, China.
| | - Gaorui Tang
- College of Pharmacy, University of South China, No. 28, Changsheng West Road, Zhengxiang District 421001, Hengyang, Hunan, China
| | - Zhen Chen
- College of Pharmacy, University of South China, No. 28, Changsheng West Road, Zhengxiang District 421001, Hengyang, Hunan, China
| |
Collapse
|