1
|
Hutson E, Hardy L, Ellington E, Crouse EL. Advancements in Psychiatric Care: DSM-5-TR Revisions and Recent Psychopharmacological Developments. J Psychosoc Nurs Ment Health Serv 2025:1-13. [PMID: 39992879 DOI: 10.3928/02793695-20250214-02] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2025]
Abstract
PURPOSE To summarize the major updates in psychiatric diagnoses and treatments in the Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition, Text Revision (DSM-5-TR). METHOD Critical revisions, including updates to >70 diagnoses and the addition of prolonged grief disorder, are summarized, as well as the language updates related to gender dysphoria and suicidal behavior. RESULTS Alongside diagnostic updates, numerous new medications and extensions of indications for existing drugs have been approved by the U.S. Food and Drug Administration directly influencing treatment strategies. CONCLUSION Staying informed about these changes is crucial for psychiatric-mental health nurses and nurse practitioners dedicated to delivering exceptional patient care and promoting improved health outcomes. [Journal of Psychosocial Nursing and Mental Health Services, xx(xx), xx-xx.].
Collapse
|
2
|
France SP, Lindsey EA, McInturff EL, Berritt S, DeForest J, Flick AC, Fink S, Gibson TS, Gray K, Hubbell AK, Johnson AM, Liu Y, Mahapatra S, Watson RB, Zhou Z. Synthetic Approaches to the New Drugs Approved during 2023. J Med Chem 2025. [PMID: 39898601 DOI: 10.1021/acs.jmedchem.4c02079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
This review is the next installment of an annual series that discusses the synthetic routes to access 28 small molecule drugs that were approved worldwide in 2023. A brief description of each drug's mechanism of action, the history of its discovery and development, and the synthetic approaches published in primary or patent literature that were most likely used for clinical studies or development are included. Synthetic chemistry, used to convert complex intermediates to active compounds or build a new drug from basic building block chemicals, is critical to delivery of new drugs and treatments for disease to patients.
Collapse
Affiliation(s)
- Scott P France
- Process Research and Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Erick A Lindsey
- Takeda San Diego, 9265 Town Center Drive, San Diego, California 92121, United States
| | - Emma L McInturff
- Chemical Research and Development, Pfizer, Inc., Groton, Connecticut 06340, United States
| | - Simon Berritt
- Medicine Design, Pfizer, Inc., Groton, Connecticut 06340, United States
| | - Jacob DeForest
- Medicine Design, Pfizer, Inc., La Jolla, California 92121, United States
| | - Andrew C Flick
- Takeda San Diego, 9265 Town Center Drive, San Diego, California 92121, United States
| | - Sarah Fink
- Crosswalk Therapeutics, Cambridge, Massachusetts 02139, United States
| | - Tony S Gibson
- Takeda San Diego, 9265 Town Center Drive, San Diego, California 92121, United States
| | - Kaitlyn Gray
- Chemical Research and Development, Pfizer, Inc., Groton, Connecticut 06340, United States
| | - Aran K Hubbell
- Chemical Research and Development, Pfizer, Inc., Groton, Connecticut 06340, United States
| | - Amber M Johnson
- Chemical Research and Development, Pfizer, Inc., Groton, Connecticut 06340, United States
| | - Yiyang Liu
- Process Research and Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Subham Mahapatra
- Medicine Design, Pfizer, Inc., Groton, Connecticut 06340, United States
| | - Rebecca B Watson
- Chemical Research and Development, Pfizer, Inc., Groton, Connecticut 06340, United States
| | - Zhiyao Zhou
- Process Research and Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| |
Collapse
|
3
|
Moss L, Laudenslager M, Steffen KJ, Sockalingam S, Coughlin JW. Antidepressants and Weight Gain: An Update on the Evidence and Clinical Implications. Curr Obes Rep 2025; 14:2. [PMID: 39753939 DOI: 10.1007/s13679-024-00598-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/14/2024] [Indexed: 01/14/2025]
Abstract
PURPOSE OF REVIEW To highlight recent research on antidepressant use and weight change and explore best clinical practices for reducing weight gain and obesity risk in individuals with depression. RECENT FINDINGS Research on antidepressant use and weight gain suggests that genetic and biological factors including metabolizer phenotypes and inflammation can help to predict an individual's threshold for weight change among specific agents. For individuals with increased susceptibility to metabolic complications, medications including bupropion, fluoxetine, and newer agents (e.g., gepirone) have shown to be efficacious in improving depressive symptoms while concurrently reducing metabolic risks. Additional areas of focus following antidepressant related weight gain include switching to a weight neutral drug alternative, integrated behavioral interventions, and/or pharmacotherapy including GLP-1 receptor agonists (e.g., metformin, liraglutide). Individuals experiencing depression are at heightened risk of metabolic disorders and weight gain, which may be further exacerbated by antidepressant treatment. The increased support of weight neutral antidepressant agents in addition to innovative lifestyle interventions, breakthroughs in drug mechanisms, anti-obesity medications and overall familiarity with the side effects of each antidepressant class will help clinicians make appropriate decisions when treating patients with depression.
Collapse
Affiliation(s)
- Lauren Moss
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, 21224, USA
| | - Marci Laudenslager
- Department of Internal Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21224, USA
| | - Kristine J Steffen
- North Dakota State University, College of Health Professions, Fargo, ND, 58103, USA
- Sanford Center for Biobehavioral Research, Fargo, ND, 58103, USA
| | - Sanjeev Sockalingam
- Toronto Western Hospital Bariatric Surgery Program, Toronto, Canada
- Centre for Addiction and Mental Health, University of Toronto, Toronto, ON, M6J 1H4, Canada
| | - Janelle W Coughlin
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, 21224, USA.
| |
Collapse
|
4
|
Luo W, Liu Y, Qin H, Zhao Z, Wang S, He W, Tang S, Peng J. Nitrogen-containing heterocyclic drug products approved by the FDA in 2023: Synthesis and biological activity. Eur J Med Chem 2024; 279:116838. [PMID: 39255645 DOI: 10.1016/j.ejmech.2024.116838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 09/01/2024] [Accepted: 09/03/2024] [Indexed: 09/12/2024]
Abstract
This article profiles 13 newly approved nitrogen-containing heterocyclic drugs by the U.S. Food and Drug Administration (FDA) in 2023. These drugs target a variety of therapeutic areas including proteinuria in patients with IgA nephropathy, migraine in adults, Rett syndrome, PI3Kδ syndrome, vasomotor symptoms, alopecia areata, acute myeloid leukemia, postpartum depression, myelofibrosis, and various cancer and tumor types. The molecular structures of these approved drugs feature common aromatic heterocyclic compounds such as pyrrole, imidazole, pyrazole, isoxazole, pyridine, and pyrimidine, as well as aliphatic heterocyclic compounds like caprolactam, piperazine, and piperidine. Some compounds also contain multiple heteroatoms like 1,2,4-thiadiazole and 1,2,4-triazole. The article provides a comprehensive overview of the bioactivity spectrum, medicinal chemistry discovery, and synthetic methods for each compound.
Collapse
Affiliation(s)
- Weijiang Luo
- Department of Medicinal Chemistry, School of Pharmacy, Hengyang Medical School, University of South China, China
| | - Yiqi Liu
- Department of Medicinal Chemistry, School of Pharmacy, Hengyang Medical School, University of South China, China
| | - Hui Qin
- Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Zeyan Zhao
- Department of Medicinal Chemistry, School of Pharmacy, Hengyang Medical School, University of South China, China
| | - Suqi Wang
- Department of Medicinal Chemistry, School of Pharmacy, Hengyang Medical School, University of South China, China
| | - Weimin He
- School of Chemistry and Chemical Engineering, University of South China, Hengyang, Hunan, 421001, China.
| | - Shengsong Tang
- Hunan Province Key Laboratory for Antibody-based Drug and Intelligent Delivery System, School of Pharmaceutical Sciences, Hunan University of Medicine, China.
| | - Junmei Peng
- Department of Medicinal Chemistry, School of Pharmacy, Hengyang Medical School, University of South China, China.
| |
Collapse
|
5
|
Bai YR, Seng DJ, Xu Y, Zhang YD, Zhou WJ, Jia YY, Song J, He ZX, Liu HM, Yuan S. A comprehensive review of small molecule drugs approved by the FDA in 2023: Advances and prospects. Eur J Med Chem 2024; 276:116706. [PMID: 39053188 DOI: 10.1016/j.ejmech.2024.116706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 07/21/2024] [Indexed: 07/27/2024]
Abstract
In 2023, the U.S. Food and Drug Administration has approved 55 novel medications, consisting of 17 biologics license applications and 38 new molecular entities. Although the biologics license applications including antibody and enzyme replacement therapy set a historical record, the new molecular entities comprising small molecule drugs, diagnostic agent, RNA interference therapy and biomacromolecular peptide still account for over 50 % of the newly approved medications. The novel and privileged scaffolds derived from drugs, active molecules and natural products are consistently associated with the discovery of new mechanisms, the expansion of clinical indications and the reduction of side effects. Moreover, the structural modifications based on the promising scaffolds can provide the clinical candidates with the improved biological activities, bypass the patent protection and greatly shorten the period of new drug discovery. Therefore, conducting an appraisal of drug approval experience and related information will expedite the identification of more potent drug molecules. In this review, we comprehensively summarized the pertinent information encompassing the clinical application, mechanism, elegant design and development processes of 28 small molecule drugs, and expected to provide the promising structural basis and design inspiration for pharmaceutical chemists.
Collapse
Affiliation(s)
- Yi-Ru Bai
- Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, 450018, China; School of Pharmaceutical Sciences & Key Laboratory of Advanced Drug Preparation Technologies, Zhengzhou University, Zhengzhou, 450001, China
| | - Dong-Jie Seng
- Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, 450018, China
| | - Ying Xu
- Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, 450018, China
| | - Yao-Dong Zhang
- Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, 450018, China
| | - Wen-Juan Zhou
- Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, 450018, China
| | - Yang-Yang Jia
- Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, 450018, China
| | - Jian Song
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Zhang-Xu He
- Pharmacy College, Henan University of Chinese Medicine, Zhengzhou, 450046, China.
| | - Hong-Min Liu
- Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, 450018, China; School of Pharmaceutical Sciences & Key Laboratory of Advanced Drug Preparation Technologies, Zhengzhou University, Zhengzhou, 450001, China.
| | - Shuo Yuan
- Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, 450018, China; School of Pharmaceutical Sciences & Key Laboratory of Advanced Drug Preparation Technologies, Zhengzhou University, Zhengzhou, 450001, China.
| |
Collapse
|
6
|
Gonda X, Tarazi FI, Dome P. The emergence of antidepressant drugs targeting GABA A receptors: A concise review. Biochem Pharmacol 2024; 228:116481. [PMID: 39147329 DOI: 10.1016/j.bcp.2024.116481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/06/2024] [Accepted: 08/09/2024] [Indexed: 08/17/2024]
Abstract
Depression is among the most common psychiatric illnesses, which imposes a major socioeconomic burden on patients, caregivers, and the public health system. Treatment with classical antidepressants (e.g. tricyclic antidepressants and selective serotonine reuptake inhibitors), which primarily affect monoaminergic systems has several limitations, such as delayed onset of action and moderate efficacy in a relatively large proportion of depressed patients. Furthermore, depression is highly heterogeneus, and its different subtypes, including post-partum depression, involve distinct neurobiology, warranting a differential approach to pharmacotherapy. Given these shortcomings, the need for novel antidepressants that are superior in efficacy and faster in onset of action is fully justified. The development and market introduction of rapid-acting antidepressants has accelerated in recent years. Some of these new antidepressants act through the GABAergic system. In this review, we discuss the discovery, efficacy, and limitations of treatment with classic antidepressants. We provide a detailed discussion of GABAergic neurotransmission, with a special focus on GABAA receptors, and possible explanations for the mood-enhancing effects of GABAergic medications (in particular neurosteroids acting at GABAA receptors), and, ultimately, we present the most promising molecules belonging to this family which are currently used in clinical practice or are in late phases of clinical development.
Collapse
Affiliation(s)
- Xenia Gonda
- Department of Psychiatry and Psychotherapy, Semmelweis University, Budapest, Hungary; NAP3.0-SE Neuropsychopharmacology Research Group, Hungarian Brain Research Program, Semmelweis University, Budapest, Hungary.
| | - Frank I Tarazi
- Department of Psychiatry and Neurology, Harvard Medical School and McLean Hospital, Boston, MA, USA
| | - Peter Dome
- Department of Psychiatry and Psychotherapy, Semmelweis University, Budapest, Hungary; Nyiro Gyula National Institute of Psychiatry and Addictology, Budapest, Hungary
| |
Collapse
|
7
|
Riebel M, Brunner LM, Nothdurfter C, Wein S, Schwarzbach J, Liere P, Schumacher M, Rupprecht R. Neurosteroids and translocator protein 18 kDa (TSPO) ligands as novel treatment options in depression. Eur Arch Psychiatry Clin Neurosci 2024:10.1007/s00406-024-01843-7. [PMID: 38976049 DOI: 10.1007/s00406-024-01843-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 06/06/2024] [Indexed: 07/09/2024]
Abstract
Recently, the gamma-aminobutyric acid (GABA) system has come into focus for the treatment of anxiety, postpartum depression, and major depressive disorder. Endogenous 3α-reduced steroids such as allopregnanolone are potent positive allosteric modulators of GABAA receptors and have been known for decades. Current industry developments and first approvals by the U.S. food and drug administration (FDA) for the treatment of postpartum depression with exogenous analogues of these steroids represent a major step forward in the field. 3α-reduced steroids target both synaptic and extrasynaptic GABAA receptors, unlike benzodiazepines, which bind to synaptic receptors. The first FDA-approved 3α-reduced steroid for postpartum depression is brexanolone, an intravenous formulation of allopregnanolone. It has been shown to provide rapid relief of depressive symptoms. An orally available 3α-reduced steroid is zuranolone, which also received FDA approval in 2023 for the treatment of postpartum depression. Although a number of studies have been conducted, the efficacy data were not sufficient to achieve approval of zuranolone in major depressive disorder by the FDA in 2023. The most prominent side effects of these 3α-reduced steroids are somnolence, dizziness and headache. In addition to the issue of efficacy, it should be noted that current data limit the use of these compounds to two weeks. An alternative to exogenous 3α-reduced steroids may be the use of substances that induce endogenous neurosteroidogenesis, such as the translocator protein 18 kDa (TSPO) ligand etifoxine. TSPO has been extensively studied for its role in steroidogenesis, in addition to other functions such as anti-inflammatory and neuroregenerative properties. Currently, etifoxine is the only clinically available TSPO ligand in France for the treatment of anxiety disorders. Studies are underway to evaluate its antidepressant potential. Hopefully, neurosteroid research will lead to the development of fast-acting antidepressants.
Collapse
Affiliation(s)
- Marco Riebel
- Department of Psychiatry and Psychotherapy, University Regensburg, Universitätsstrasse 84, 93053, Regensburg, Germany.
| | - Lisa-Marie Brunner
- Department of Psychiatry and Psychotherapy, University Regensburg, Universitätsstrasse 84, 93053, Regensburg, Germany
| | - Caroline Nothdurfter
- Department of Psychiatry and Psychotherapy, University Regensburg, Universitätsstrasse 84, 93053, Regensburg, Germany
| | - Simon Wein
- Department of Psychiatry and Psychotherapy, University Regensburg, Universitätsstrasse 84, 93053, Regensburg, Germany
| | - Jens Schwarzbach
- Department of Psychiatry and Psychotherapy, University Regensburg, Universitätsstrasse 84, 93053, Regensburg, Germany
| | - Philippe Liere
- U1195 Inserm and University Paris-Saclay, Le Kremlin-Bicêtre, Paris, 94276, France
| | - Michael Schumacher
- U1195 Inserm and University Paris-Saclay, Le Kremlin-Bicêtre, Paris, 94276, France
| | - Rainer Rupprecht
- Department of Psychiatry and Psychotherapy, University Regensburg, Universitätsstrasse 84, 93053, Regensburg, Germany
| |
Collapse
|
8
|
Fayoud AM, Orebi HA, Elshnoudy IA, Elsebaie MAT, Elewidi MMM, Sabra HK. The efficacy and safety of Zuranolone for treatment of depression: A systematic review and meta-analysis. Psychopharmacology (Berl) 2024; 241:1299-1317. [PMID: 38802705 PMCID: PMC11199213 DOI: 10.1007/s00213-024-06611-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 05/09/2024] [Indexed: 05/29/2024]
Abstract
RATIONALE Zuranolone, a newly FDA-approved synthetic neurosteroid, shows promise in treating depression. OBJECTIVES Our aim is to evaluate Zuranolone's efficacy and safety in treating depression. METHODS Five databases were searched until September 2023 for relevant randomized clinical trials evaluating the efficacy and safety of zuranolone. The potential risk of bias in the included trials was evaluated by the Cochrane Risk of Bias II guideline Data were extracted and pooled using Review Manager Software (RevMan 5.3). RESULTS An analysis of eight studies highlights Zuranolone's efficacy in treating depression compared to placebo across most of the outcomes. Notably, the 30mg and 50mg doses demonstrated significant improvements in reducing HAM-D scores by over 50% within a 15-day follow-up (RR) of 1.46 (95% CI [1.27, 1.68], p < 0.0001) and 1.14 (95% CI [1.01, 1.3], p = 0.04). Additionally, the HAM-D ≤ 7% score analysis revealed significant enhancements with the 30mg dose over both 15-day (RR = 1.82, 95% CI [1.44, 2.31], p < 0.0001) and 45-day (RR = 1.43, 95% CI [1.16, 1.77], p = 0.0008) durations. Adverse Events Drug Discontinuation demonstrated no overall significant difference (OR = 1.33, 95% CI: [0.79, 2.23], p = 0.282). Further, specific adverse events, such as headache, showed no significant overall difference between Zuranolone and placebo (OR = 1.11, 95% CI: [0.84, 1.47], p = 0.47), with dose-dependent analysis revealing less headache in the 30 mg group. CONCLUSION Zuranolone demonstrates favorable tolerability and safety, particularly at 30mg and 50mg doses after 15 days, suggesting its potential and effective treatment for depression.
Collapse
Affiliation(s)
- Aya M Fayoud
- Faculty of Pharmacy, Kafr El-Sheikh University, Kafr El-Sheikh, Egypt.
- Medical Research Platform (MRP), Cairo, Egypt.
| | - Hisham Ahmed Orebi
- Medical Research Platform (MRP), Cairo, Egypt
- Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Iman Abdelhady Elshnoudy
- Medical Research Platform (MRP), Cairo, Egypt
- Faculty of Medicine, Tanta University, Tanta, Egypt
| | | | | | - Hamdy Khaled Sabra
- Medical Research Platform (MRP), Cairo, Egypt
- Faculty of Medicine, Tanta University, Tanta, Egypt
| |
Collapse
|
9
|
Cardaci V, Carminati M, Tondello M, Pecorino B, Serretti A, Zanardi R. Understanding and treating postpartum depression: a narrative review. Int Clin Psychopharmacol 2024:00004850-990000000-00143. [PMID: 38941162 DOI: 10.1097/yic.0000000000000560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/30/2024]
Abstract
Postpartum depression (PPD) is an increasingly prevalent but still poorly characterized disorder. Causal and modulating factors include hormones fluctuations, such as estrogen, progesterone, and allopregnolone, pathways imbalances, such as oxytocin and kynurenine, chronobiological factors, and brain imaging alterations. Treatment may differ from the traditional major depression management, while selective serotonin reuptake inhibitors such as sertraline are commonly used and suggested by guidelines, neurosteroids such as brexanolone and the more convenient zuranolone have been recently approved. Newer neurosteroids such as ganaxolone, valaxanolone, and lysaxanolone are currently under development, but also esketamine and psychedelics are promising potential treatments. Other somatic treatments including brain stimulation techniques and light therapy also showed benefit. PPD is therefore increasingly understood as, at least partially, independent from major depressive disorder. Specific and individualized treatments including pharmacological and non-pharmacological therapies are progressively being introduced in the routine clinical practice.
Collapse
Affiliation(s)
- Vincenzo Cardaci
- Department of Clinical Neurosciences, Vita-Salute San Raffaele University, Milan
| | - Matteo Carminati
- Department of Clinical Neurosciences, Vita-Salute San Raffaele University, Milan
| | - Mattia Tondello
- Department of Clinical Neurosciences, Vita-Salute San Raffaele University, Milan
| | - Basilio Pecorino
- Department of Medicine and Surgery, Kore University of Enna, Enna
| | | | - Raffaella Zanardi
- Department of Clinical Neurosciences, Vita-Salute San Raffaele University, Milan
- Department of Psychiatry, Mood Disorder Unit, IRCCS San Raffaele Hospital, Milan, Italy
| |
Collapse
|
10
|
Kayki-Mutlu G, Aksoyalp ZS, Wojnowski L, Michel MC. A year in pharmacology: new drugs approved by the US Food and Drug Administration in 2023. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:2949-2970. [PMID: 38530400 PMCID: PMC11074039 DOI: 10.1007/s00210-024-03063-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 03/19/2024] [Indexed: 03/28/2024]
Abstract
With 54 new drugs and seven cellular and gene therapy products, the approvals by the US Food and Drug Administration (FDA) recovered 2023 from the 2022 dent back to the levels of 2020-2021. As in previous years of this annual review, we assign these new drugs to one of three levels of innovation: first drug against a condition ("first-in-indication"), first drug using a novel molecular mechanism ("first-in-class"), and "next-in-class," i.e., a drug using an already exploited molecular mechanism. We identify four (7%) "first-in-indication," 22 (36%) "first-in-class," and 35 (57%) "next-in-class" drugs. By treatment area, rare diseases (54%) and cancer drugs (23%) were once again the most prevalent (and partly overlapping) therapeutic areas. Other continuing trends were the use of accelerated regulatory approval pathways and the reliance on biopharmaceuticals (biologics). 2023 marks the approval of a first therapy based on CRISPR/Cas9 gene editing.
Collapse
Affiliation(s)
- Gizem Kayki-Mutlu
- Department of Pharmacology, Faculty of Pharmacy, Ankara University, Ankara, Türkiye
| | - Zinnet Sevval Aksoyalp
- Department of Pharmacology, Faculty of Pharmacy, Izmir Katip Celebi University, Izmir, Türkiye
| | - Leszek Wojnowski
- Department of Pharmacology, University Medical Center, Johannes Gutenberg University, Langenbeckstr. 1, 55118, Mainz, Germany
| | - Martin C Michel
- Department of Pharmacology, University Medical Center, Johannes Gutenberg University, Langenbeckstr. 1, 55118, Mainz, Germany.
| |
Collapse
|