1
|
He X, Cui J, Li H, Zhou Y, Wu X, Jiang C, Xu Z, Wang R, Xiong L. Antipyretic effects of Xiangqin Jiere granules on febrile young rats revealed by combining pharmacodynamics, metabolomics, network pharmacology, molecular biology experiments and molecular docking strategies. J Biomol Struct Dyn 2024:1-18. [PMID: 38197809 DOI: 10.1080/07391102.2024.2301761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 12/28/2023] [Indexed: 01/11/2024]
Abstract
Xiangqin Jiere granules (XQJRG) is a proprietary Chinese medicine treating children's colds and fevers, but its mechanism of action is unclear. The aim of this study was to explore the antipyretic mechanisms of XQJRG based on pharmacodynamics, non-targeted metabolomics, network pharmacology, molecular biology experiments, molecular docking, and molecular dynamics (MD) simulation. Firstly, the yeast-induced fever model was constructed in young rats to study antipyretic effect of XQJRG. Metabolomics and network pharmacology studies were performed to identify the key compounds, targets and pathways involved in the antipyretic of XQJRG. Subsequently, MetScape was used to jointly analyze targets from network pharmacology and metabolites from metabolomics. Finally, the key targets were validated by enzyme-linked immunosorbent assay (ELISA), and the affinity and stability of key ingredient and targets were evaluated by molecular docking and MD simulation. The animal experimental results showed that after XQJRG treatment, body temperature of febrile rats was significantly reduced, 13 metabolites were significantly modulated, and pathways of differential metabolite enrichment were mainly related to amino acid and lipid metabolism. Network pharmacology results indicated that quercetin and kaempferol were the key active components of XQJRG, TNF, AKT1, IL6, IL1B and PTGS2 were core targets. ELISA confirmed that XQJRG significantly reduced the plasma concentrations of IL-1β, IL-6, and TNF-α, and the hypothalamic concentrations of COX-2 and PGE2. Molecular docking demonstrated that the binding energies of kaempferol to the core targets were all below -5.0 kcal/mol. MD simulation results showed that the binding free energies of TNF-kaempferol, IL6-kaempferol, IL1B-kaempferol and PTGS2-kaempferol were -87.86 kcal/mol, -70.41 kcal/mol, -69.95 kcal/mol and -106.67 kcal/mol, respectively. In conclusion, XQJRG has antipyretic effects on yeast-induced fever in young rats, and its antipyretic mechanisms may be related to the inhibition of peripheral pyrogenic cytokines release by constituents such as kaempferol, the reduction of hypothalamic fever mediator production, and the amelioration of disturbances in amino acid and lipid metabolism.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Xiying He
- The First School of Clinical Medicine, Yunnan University of Chinese Medicine, Kunming, China
- College of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming, China
| | - Jieqiong Cui
- The First School of Clinical Medicine, Yunnan University of Chinese Medicine, Kunming, China
| | - Huayan Li
- The First School of Clinical Medicine, Yunnan University of Chinese Medicine, Kunming, China
| | - Yang Zhou
- The First School of Clinical Medicine, Yunnan University of Chinese Medicine, Kunming, China
| | - Xinchen Wu
- The First School of Clinical Medicine, Yunnan University of Chinese Medicine, Kunming, China
| | - Chunrong Jiang
- The First School of Clinical Medicine, Yunnan University of Chinese Medicine, Kunming, China
| | - Zhichang Xu
- College of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming, China
| | - Ruirui Wang
- College of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming, China
| | - Lei Xiong
- The First School of Clinical Medicine, Yunnan University of Chinese Medicine, Kunming, China
| |
Collapse
|
2
|
Cunico D, Rossi A, Verdesca M, Principi N, Esposito S. Pain Management in Children Admitted to the Emergency Room: A Narrative Review. Pharmaceuticals (Basel) 2023; 16:1178. [PMID: 37631093 PMCID: PMC10459115 DOI: 10.3390/ph16081178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/11/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023] Open
Abstract
Pain is a biopsychosocial experience characterized by sensory, physiological, cognitive, affective, and behavioral components. Both acute and chronic pain can have short and long-term negative effects. Unfortunately, pain treatment is often inadequate. Guidelines and recommendations for a rational approach to pediatric pain frequently differ, and this may be one of the most important reasons for the poor attention frequently paid to pain treatment in children. This narrative review discusses the present knowledge in this regard. A literature review conducted on papers produced over the last 8 years showed that although in recent years, compared to the past, much progress has been made in the treatment of pain in the context of the pediatric emergency room, there is still a lot to do. There is a need to create guidelines that outline standardized and easy-to-follow pathways for pain recognition and management, which are also flexible enough to take into account differences in different contexts both in terms of drug availability and education of staff as well as of the different complexities of patients. It is essential to guarantee an approach to pain that is as uniform as possible among the pediatric population that limits, as much as possible, the inequalities related to ethnicity and language barriers.
Collapse
Affiliation(s)
- Daniela Cunico
- Pediatric Clinic, Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (D.C.); (A.R.); (M.V.)
| | - Arianna Rossi
- Pediatric Clinic, Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (D.C.); (A.R.); (M.V.)
| | - Matteo Verdesca
- Pediatric Clinic, Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (D.C.); (A.R.); (M.V.)
| | | | - Susanna Esposito
- Pediatric Clinic, Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (D.C.); (A.R.); (M.V.)
| |
Collapse
|