1
|
Dhureja M, Chaturvedi P, Choudhary A, Kumar P, Munshi A. Molecular Insights of Drug Resistance in Epilepsy: Multi-omics Unveil. Mol Neurobiol 2025; 62:1-17. [PMID: 38753128 DOI: 10.1007/s12035-024-04220-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 05/03/2024] [Indexed: 06/12/2024]
Abstract
Epilepsy is a devastating neurological disorder mainly associated with impaired synchronic discharge that leads to sensory, motor, and psychomotor impairments. Till now, about 30 anti-seizure medications (ASMs) have been approved for the management of epilepsy, yet one-third of individuals still have uncontrollable epilepsy and develop resistance. Drug resistance epilepsy (DRE) is defined as the condition where two ASMs fail to control the seizure in epileptic patients. The leading cause of the resistance was the extended use of ASMs. According to various studies, alterations in some genes and their expressions, along with specific metabolic impairments, are suggested to be associated with ASMs resistance and DRE pathophysiology. Several factors aid in the pathophysiology of DRE, such as alterations in protein-encoding genes such as neurotransmitter receptors, drug transporters, ion channels, and drug targets. Furthermore, the altered metabolite levels of metabolites implicated in neurotransmitter signaling, energetic pathways, oxidative stress, and neuroinflammatory signaling differentiate the epileptic patient from the DRE patient. Various DRE biomarkers can be identified using the "integrated omics approach," which includes the study of genomics, transcriptomics, and metabolomics. The current review has been compiled to understand the pathophysiological mechanisms of DRE by focusing on genomics, transcriptomics, and metabolomics. An effort has also been made to identify the therapeutic targets based on identifying significant markers by a multi-omics approach. This has the potential to develop novel therapeutic interventions in the future.
Collapse
Affiliation(s)
- Maanvi Dhureja
- Department of Pharmacology, Central University of Punjab, Bathinda, India
| | - Pragya Chaturvedi
- Department of Human Genetics and Molecular Medicines, Central University of Punjab, Bathinda, India
| | - Anita Choudhary
- Department of Human Genetics and Molecular Medicines, Central University of Punjab, Bathinda, India
| | - Puneet Kumar
- Department of Pharmacology, Central University of Punjab, Bathinda, India.
| | - Anjana Munshi
- Department of Human Genetics and Molecular Medicines, Central University of Punjab, Bathinda, India.
| |
Collapse
|
2
|
Hosseinzadeh Anvar L, Moosavi SE, Charsouei S, Zeinalzadeh N, Nikanfar M, Ahmadalipour A. Association Between the Endocannabinoid System-Related Gene Variants and Epilepsy. Mol Neurobiol 2024; 61:8967-8974. [PMID: 38578355 DOI: 10.1007/s12035-024-04132-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 03/18/2024] [Indexed: 04/06/2024]
Abstract
The endocannabinoid system (ECS) is an intricate network consisting of receptors, enzymes, and endogenous ligands that play a pivotal role in various neurological processes. It has been implicated in the pathophysiology of several neurological disorders, including epilepsy. Extensive research has demonstrated the involvement of genetic factors in influencing the susceptibility to and progression of epilepsy. In this study, we focused on investigating the connection between genetic variations in genes related to the ECS and the occurrence of epilepsy. Some ECS-related gene variants were selected and genotyping was performed using the polymerase chain reaction and restriction fragment length polymorphism (PCR-RFLP) technique. Interestingly, CNR1 rs12720071 genotype (OR 16.33, 95% CI 1.8-149; p = 0.001) showed an association with generalized epilepsy and MGLL rs604300 genotype (OR 2, 95% CI 1.1-3.4; p = 0.013) demonstrated a relationship with females diagnosed with focal epilepsy. So, studying CNR1, MGLL, and their genetic variations provides insights into the role of the endocannabinoid system in health and diseases. Moreover, they hold the potential to pave the way for the development of novel therapeutic approaches specifically targeting them.
Collapse
Affiliation(s)
- Leila Hosseinzadeh Anvar
- Research Center of Psychiatry and Behavioral Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Seyyed Ebrahim Moosavi
- Department of Neurology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Saeid Charsouei
- Department of Neurology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Narges Zeinalzadeh
- Department of Animal Sciences, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Masoud Nikanfar
- Department of Neurology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Ahmadalipour
- Research Center of Psychiatry and Behavioral Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
- Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
3
|
Tantsura LM, Pylypets OY, Tretiakov DV, Tantsura YO. VARIANTS OF THE FORMATION AND COURSE OF DRUG-RESISTANT EPILEPSY IN CHILDREN WITH GENETIC POLYMORPHISMS OF CYP2C9, CYP2C19, CYP3A4. WIADOMOSCI LEKARSKIE (WARSAW, POLAND : 1960) 2023; 76:1007-1013. [PMID: 37326083 DOI: 10.36740/wlek202305118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
OBJECTIVE The aim: To clarify the frequency with which various variants of the formation and course of drug-resistant epilepsy occur in children with genetic polymor¬phisms of cytochromes CYP2C9, CYP2C19, CYP3A4. PATIENTS AND METHODS Materials and methods: The genotyping of CYP2C9*2, CYP2C9*3, CYP2C19*2, CYP3A4*1B by the allele-specific polymerase chain reaction was performed in 116 children with drug-resistant epilepsy aged from 2 to 17 years. Thirty cases (boys-15; girls-15) with a follow-up period of more than 5 years were analyzed in detail. RESULTS Results: Of 30 cases analyzed, polymorphisms were not detected in 8 (26.67%) children, and 22 (73.33%) had polymorphisms of the CYP2C9, CYP2C19 and CYP3A4 genes associated with a slow metabolism of AED. In children with polymorphisms of the CYP450 genes, the wave-like course of the disease with the periods of remission and its failures was characteristic, while for children with a presumably normal metabolism there was the initial resistance to the treatment with AED. CONCLUSION Conclusions: Individual changes in the AED metabolism affect the course of drug-resistant epilepsies. For patients with a slow metabolism of AED the wave-like course of the disease and the "slipping off" phenomenon were more characteristic.
Collapse
Affiliation(s)
- Liudmyla M Tantsura
- SI "INSTITUTE OF NEUROLOGY, PSYCHIATRY AND NARCOLOGY, NAMS OF UKRAINE", KHARKIV, UKRAINE
| | - Olena Yu Pylypets
- SI "INSTITUTE OF NEUROLOGY, PSYCHIATRY AND NARCOLOGY, NAMS OF UKRAINE", KHARKIV, UKRAINE
| | - Dmytro V Tretiakov
- SI "INSTITUTE OF NEUROLOGY, PSYCHIATRY AND NARCOLOGY, NAMS OF UKRAINE", KHARKIV, UKRAINE
| | | |
Collapse
|
4
|
Elsaid AM, Zahran RF, Elmetwaly SM, Wahba Y, Megahed H, Elshazli RM. The potential impact of CYP2D6 (*2/*4/*10) gene variants among Egyptian epileptic children: A preliminary study. Gene 2022; 832:146585. [PMID: 35597526 DOI: 10.1016/j.gene.2022.146585] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 04/18/2022] [Accepted: 05/16/2022] [Indexed: 12/28/2022]
Abstract
BACKGROUND The cytochrome P450 (CYP) isoenzymes have an indispensable role in the metabolic phase of different medications during the treatment of multiple neuropsychiatric disorders. The foremost goal of this study is to evaluate the correlation of the allelic variants within CYP2D6 (*2/*4/*10) gene with the susceptibility for epileptic syndrome as well as the assessment the degree of resistance towards antiepileptic drugs (AEDs). METHODS This work was designed based on the involvement of 200 participants [100 unrelated healthy controls, 50 AEDs responsive, and 50 AEDs resistant]. Genomic DNA for the CYP2D6 variants was genotyped utilizing the T-ARMS-PCR technique. RESULTS The distributions of the CYP2D6*2 (rs16947; c.886C > T) and CYP2D6*4 (rs3892097; c.506-1G > A) variants were significantly correlated with elevated risk among epileptic patients compared to healthy controls (P-value < 0.05). Furthermore, the CYP2D6*2 variant was statistically associated with disease risk among AEDs responsive patients, while the CYP2D6*4 variant was statistically correlated with disease risk among AEDs resistant patients (P-value < 0.05). Interestingly, the allelic variants of the CYP2D6*4 (A allele) and CYP2D6*10 (T allele) were associated with elevated risk among AEDs resistant compared to AEDs responsive patients (P-value = 0.008 and 0.040, respectively). CONCLUSIONS The CYP2D6*2 and CYP2D6*4 variants were recognized as independent risk factors among epileptic patients, but not the CYP2D6*10 variant.
Collapse
Affiliation(s)
- Afaf M Elsaid
- Genetics Unit, Children Hospital, Mansoura University, Mansoura, Egypt
| | - Rasha F Zahran
- Department of Chemistry, Biochemistry Division, Faculty of Science, Damietta University, New Damietta, Egypt
| | - Samar M Elmetwaly
- Department of Chemistry, Biochemistry Division, Faculty of Science, Damietta University, New Damietta, Egypt
| | - Yahya Wahba
- Department of Pediatrics, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Hisham Megahed
- Clinical Genetics Department, National Research Centre, Cairo, Egypt
| | - Rami M Elshazli
- Biochemistry and Molecular Genetics Unit, Department of Basic Sciences, Faculty of Physical Therapy, Horus University - Egypt, New Damietta, Egypt.
| |
Collapse
|
5
|
Eltalal S, El Ayouty M, El-Said A, Wahba Y. CYP2C9 (*2&*3) and CYP2C19 (*2&*3) polymorphisms among children with nonlesional epilepsy: a single-center study. Acta Neurol Belg 2021; 121:1623-1631. [PMID: 32683556 DOI: 10.1007/s13760-020-01442-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 07/07/2020] [Indexed: 12/14/2022]
Abstract
Cytochrome (CYP) P450 enzymes are responsible for metabolism of antiepileptic drugs (AEDs), and encoded by highly polymorphic genes. A case-control study was conducted in Mansoura University Children's Hospital, Egypt including 100 children with nonlesional epilepsy (50 AEDs responders and 50 resistant cases) and 50 healthy controls. All participants were investigated for frequencies of CYP2C9 (*2&*3) and CYP2C19 (*2&*3) genotypes and alleles using polymerase chain reaction. The current study reported higher frequencies of CYP2C9*2 (CT) genotype and (T) allele among responsive and resistant groups than controls (P < 0.001). Frequency of (TT) genotype was higher in resistant than responsive group (P = 0.02, OR 12, 95% CI 1.2-122.3). No significant differences were detected between responsive and resistant groups regarding CYP2C9*2 alleles (P = 0.2). CYP2C9*3 (AC) genotype was more frequent in controls than other groups (P < 0.001). No significant differences were detected between responsive and resistant groups regarding neither CYP2C9*3 genotypes nor alleles (P = 0.11 and 0.2, respectively). CYP2C19*2&*3 (GA) genotypes and (A) alleles were more frequent in responsive and resistant groups than controls (P < 0.001). No significant differences were detected between responsive and resistant groups regarding neither CYP2C19*2&*3 genotypes nor alleles (P = 0.21 and 0.89 for CYP2C19*2; P = 1 and 0.77 for CYP2C19*3). The CYP2C9*2 (TT) genotype, earlier seizure onset and higher seizures frequency were associated with higher risks of refractory epilepsy. We concluded that heterozygous genotypes of CYP2C9*2 and CYP2C19 (*2&*3) and mutant alleles of studied variants were more frequent among children with nonlesional epilepsy. CYP2C9*2 (TT) genotype increased refractory epilepsy susceptibility.
Collapse
Affiliation(s)
- Samah Eltalal
- Department of Pediatrics, Faculty of Medicine, Mansoura University, Mansoura, 35516, Egypt
| | - Mostafa El Ayouty
- Department of Pediatrics, Faculty of Medicine, Mansoura University, Mansoura, 35516, Egypt
| | - Afaf El-Said
- Biochemistry Section, Mansoura University Children's Hospital, Mansoura, Egypt
| | - Yahya Wahba
- Department of Pediatrics, Faculty of Medicine, Mansoura University, Mansoura, 35516, Egypt.
| |
Collapse
|
6
|
Juvale IIA, Che Has AT. Possible interplay between the theories of pharmacoresistant epilepsy. Eur J Neurosci 2020; 53:1998-2026. [PMID: 33306252 DOI: 10.1111/ejn.15079] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 11/22/2020] [Accepted: 12/04/2020] [Indexed: 02/06/2023]
Abstract
Epilepsy is one of the oldest known neurological disorders and is characterized by recurrent seizure activity. It has a high incidence rate, affecting a broad demographic in both developed and developing countries. Comorbid conditions are frequent in patients with epilepsy and have detrimental effects on their quality of life. Current management options for epilepsy include the use of anti-epileptic drugs, surgery, or a ketogenic diet. However, more than 30% of patients diagnosed with epilepsy exhibit drug resistance to anti-epileptic drugs. Further, surgery and ketogenic diets do little to alleviate the symptoms of patients with pharmacoresistant epilepsy. Thus, there is an urgent need to understand the underlying mechanisms of pharmacoresistant epilepsy to design newer and more effective anti-epileptic drugs. Several theories of pharmacoresistant epilepsy have been suggested over the years, the most common being the gene variant hypothesis, network hypothesis, multidrug transporter hypothesis, and target hypothesis. In our review, we discuss the main theories of pharmacoresistant epilepsy and highlight a possible interconnection between their mechanisms that could lead to the development of novel therapies for pharmacoresistant epilepsy.
Collapse
Affiliation(s)
- Iman Imtiyaz Ahmed Juvale
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Malaysia
| | - Ahmad Tarmizi Che Has
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Malaysia
| |
Collapse
|
7
|
Makowska M, Smolarz B, Bryś M, Forma E, Romanowicz H. An association between the rs1799853 and rs1057910 polymorphisms of CYP2C9, the rs4244285 polymorphism of CYP2C19 and the prevalence rates of drug-resistant epilepsy in children. Int J Neurosci 2020; 131:1147-1154. [PMID: 32567426 DOI: 10.1080/00207454.2020.1781110] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Objective: Epilepsy is a neurologically based disease. Literature data indicate a certain association between the polymorphism of these genes, which participate in the metabolism of drugs (CYP), and drug-resistant epilepsy.Aim: The reports describe studies in which an association was evaluated between the rs1799853 (430C > T) and rs1057910 (1075A > C) polymorphisms of CYP2C9 gene and the rs4244285 (c.681G > A) polymorphism of CYP2C19 gene on one hand and the incidence of drug-resistant epilepsy in children on the other.Material and methods: The above-mentioned polymorphisms were assessed by the PCR-RFLP technique in a group of patients with drug-resistant (n = 106) and drug-responsive (n = 80) epilepsy, as well as in non-epileptic children (n = 97), all of them hospitalised at the Department of Neurology of the Institute-Polish Mother's Memorial Hospital in Lodz.Results: It was demonstrated that CT genotype of the rs1799853 polymorphism of CYP2C9 gene and GA genotype of the rs4244285 polymorphism of CYP2C19 gene caused an enhanced risk of epilepsy. It was also shown that the occurrence of C-G-A haplotype, when referred to the rs1799853 polymorphism of CYP2C9 gene and the rs4244285 polymorphism of CYP2C19 gene, could be associated with a decreased risk of epilepsy occurrence. In case of the rs1799853 polymorphism in CYP2C9 gene, the occurrence of T allele four times increases the risk of drug-resistance in patients with diagnosed epilepsy.Conclusion: The obtained results indicated that the rs1799853 and rs1057910 polymorphisms of CYP2C9 gene and the rs4244285 polymorphism of CYP2C19 gene could be associated with the occurrence of drug-resistant epilepsy in children.
Collapse
Affiliation(s)
| | - Beata Smolarz
- Laboratory of Cancer Genetics, Department of Pathology, Polish Mother's Memorial Hospital Research Institute, Lodz, Poland
| | - Magdalena Bryś
- Department of Cytobiochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Ewa Forma
- Department of Cytobiochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Hanna Romanowicz
- Laboratory of Cancer Genetics, Department of Pathology, Polish Mother's Memorial Hospital Research Institute, Lodz, Poland
| |
Collapse
|
8
|
Cárdenas-Rodríguez N, Carmona-Aparicio L, Pérez-Lozano DL, Ortega-Cuellar D, Gómez-Manzo S, Ignacio-Mejía I. Genetic variations associated with pharmacoresistant epilepsy (Review). Mol Med Rep 2020; 21:1685-1701. [PMID: 32319641 PMCID: PMC7057824 DOI: 10.3892/mmr.2020.10999] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 01/16/2020] [Indexed: 12/13/2022] Open
Abstract
Epilepsy is a common, serious neurological disorder worldwide. Although this disease can be successfully treated in most cases, not all patients respond favorably to medical treatments, which can lead to pharmacoresistant epilepsy. Drug-resistant epilepsy can be caused by a number of mechanisms that may involve environmental and genetic factors, as well as disease- and drug-related factors. In recent years, numerous studies have demonstrated that genetic variation is involved in the drug resistance of epilepsy, especially genetic variations found in drug resistance-related genes, including the voltage-dependent sodium and potassium channels genes, and the metabolizer of endogenous and xenobiotic substances genes. The present review aimed to highlight the genetic variants that are involved in the regulation of drug resistance in epilepsy; a comprehensive understanding of the role of genetic variation in drug resistance will help us develop improved strategies to regulate drug resistance efficiently and determine the pathophysiological processes that underlie this common human neurological disease.
Collapse
Affiliation(s)
- Noemí Cárdenas-Rodríguez
- Laboratory of Neuroscience, National Institute of Pediatrics, Ministry of Health, Coyoacán, Mexico City 04530, Mexico
| | - Liliana Carmona-Aparicio
- Laboratory of Neuroscience, National Institute of Pediatrics, Ministry of Health, Coyoacán, Mexico City 04530, Mexico
| | - Diana L Pérez-Lozano
- Laboratory of Neuroscience, National Institute of Pediatrics, Ministry of Health, Coyoacán, Mexico City 04530, Mexico
| | - Daniel Ortega-Cuellar
- Laboratory of Experimental Nutrition, National Institute of Pediatrics, Ministry of Health, Coyoacán, Mexico City 04530, Mexico
| | - Saúl Gómez-Manzo
- Laboratory of Genetic Biochemistry, National Institute of Pediatrics, Ministry of Health, Coyoacán, Mexico City 04530, Mexico
| | - Iván Ignacio-Mejía
- Laboratory of Translational Medicine, Military School of Health Graduates, Lomas de Sotelo, Militar, Mexico City 11200, Mexico
| |
Collapse
|
9
|
Gogou M, Pavlou E. Efficacy of antiepileptic drugs in the era of pharmacogenomics: A focus on childhood. Eur J Paediatr Neurol 2019; 23:674-684. [PMID: 31280948 DOI: 10.1016/j.ejpn.2019.06.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 05/23/2019] [Accepted: 06/24/2019] [Indexed: 01/11/2023]
Abstract
BACKGROUND In recent years advances in the field of pharmacogenomics have expanded the concept for more individualized treatments. Our aim is to provide literature data about the relationship between genetic polymorphisms and efficacy of antiepileptic drugs in children. METHODS Pubmed was used as the main medical database source. Only original research papers were considered. No year-of-publication restriction was placed. Quality of evidence was assessed according to American Academy of Neurology guidelines. RESULTS A total of 12 cross-sectional and case-control studies fulfilled our selection criteria. ABCB1 gene was associated with drug responsiveness in 2 out of 6 studies and ABCC2 gene in 1 out of 1 studies. SCN1A gene was also associated with seizure control in 4 out of 5 studies. Cytochrome P450 genes were found to significantly affect drug responsiveness in 2 out of 4 studies, while polymorphisms of uridinediphosphateglucuronosyltransferaseUGT2B7 gene predisposed to drug-resistance in 1 out of 2 studies. CONCLUSION Variability in genes coding for sodium channels, drug transporters and cytochrome P450 enzymes can have a significant impact on response to antiepileptic drugs. Larger prospective studies with better stratification of samples are needed to shed light on these associations.
Collapse
Affiliation(s)
- Maria Gogou
- 2nd Department of Pediatrics, University General Hospital AHEPA, Thessaloniki, Greece.
| | - Evangelos Pavlou
- 2nd Department of Pediatrics, University General Hospital AHEPA, Thessaloniki, Greece
| |
Collapse
|
10
|
Naimo GD, Guarnaccia M, Sprovieri T, Ungaro C, Conforti FL, Andò S, Cavallaro S. A Systems Biology Approach for Personalized Medicine in Refractory Epilepsy. Int J Mol Sci 2019; 20:E3717. [PMID: 31366017 PMCID: PMC6695675 DOI: 10.3390/ijms20153717] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 07/22/2019] [Accepted: 07/28/2019] [Indexed: 02/01/2023] Open
Abstract
Epilepsy refers to a common chronic neurological disorder that affects all age groups. Unfortunately, antiepileptic drugs are ineffective in about one-third of patients. The complex interindividual variability influences the response to drug treatment rendering the therapeutic failure one of the most relevant problems in clinical practice also for increased hospitalizations and healthcare costs. Recent advances in the genetics and neurobiology of epilepsies are laying the groundwork for a new personalized medicine, focused on the reversal or avoidance of the pathophysiological effects of specific gene mutations. This could lead to a significant improvement in the efficacy and safety of treatments for epilepsy, targeting the biological mechanisms responsible for epilepsy in each individual. In this review article, we focus on the mechanism of the epilepsy pharmacoresistance and highlight the use of a systems biology approach for personalized medicine in refractory epilepsy.
Collapse
Affiliation(s)
- Giuseppina Daniela Naimo
- Institute for Biomedical Research and Innovation, National Research Council, Contrada Burga, Piano Lago, 87050 Mangone (CS) and Via Paolo Gaifami 18, 95126 Catania, Italy
| | - Maria Guarnaccia
- Institute for Biomedical Research and Innovation, National Research Council, Contrada Burga, Piano Lago, 87050 Mangone (CS) and Via Paolo Gaifami 18, 95126 Catania, Italy
| | - Teresa Sprovieri
- Institute for Biomedical Research and Innovation, National Research Council, Contrada Burga, Piano Lago, 87050 Mangone (CS) and Via Paolo Gaifami 18, 95126 Catania, Italy
| | - Carmine Ungaro
- Institute for Biomedical Research and Innovation, National Research Council, Contrada Burga, Piano Lago, 87050 Mangone (CS) and Via Paolo Gaifami 18, 95126 Catania, Italy
| | - Francesca Luisa Conforti
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, 87036 Cosenza, Italy
| | - Sebastiano Andò
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, 87036 Cosenza, Italy
- Centro Sanitario, University of Calabria, Via Pietro Bucci, 87036 Arcavacata di Rende (CS), Italy
| | - Sebastiano Cavallaro
- Institute for Biomedical Research and Innovation, National Research Council, Contrada Burga, Piano Lago, 87050 Mangone (CS) and Via Paolo Gaifami 18, 95126 Catania, Italy.
| |
Collapse
|
11
|
Khalaj Z, Baratieh Z, Nikpour P, Khanahmad H, Mokarian F, Salehi R, Salehi M. Distribution of CYP2D6 polymorphism in the Middle Eastern region. JOURNAL OF RESEARCH IN MEDICAL SCIENCES 2019; 24:61. [PMID: 31523247 PMCID: PMC6670283 DOI: 10.4103/jrms.jrms_1076_18] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 03/04/2019] [Accepted: 04/10/2019] [Indexed: 12/12/2022]
Abstract
Cytochrome P450 2D6 (CYP2D6) is an important drug-metabolizing enzyme involved in the pharmacokinetic metabolism of drugs. CYP2D6 gene is highly polymorphic, and the combination of its different alleles yields different phenotypes including extensive metabolizer (EM), intermediate metabolizer (IM), poor metabolizer (PM), and ultrarapid metabolizer (UM). Genotyping of the important alleles for this gene in different ethnicities is of particular importance for assessing the efficacy of various drugs. In this study, we reviewed the CYP2D6 allele and phenotype frequencies predicted from the genotypes of CYP2D6 in the Middle East area. Regardless of different ethnicities, the CYP2D6*41 allele frequency was shown to be higher than that of other reduced functional alleles. In addition, CYP2D6*4 was the most frequent nonfunctional allele in all studied populations in the Middle East. Taken together, our findings illustrated that the frequencies of PM or IM alleles and different genotypes harboring these alleles are relatively high in the Middle Eastern countries. Therefore, the study of CYP2D6 alleles for each patient to detect those that are at risk is of great importance to prevent adverse drug reactions through individualization therapy.
Collapse
Affiliation(s)
- Zahra Khalaj
- Department of Genetics and Molecular Biology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Zohreh Baratieh
- Department of Genetics and Molecular Biology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Parvaneh Nikpour
- Department of Genetics and Molecular Biology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.,Child Growth and Development Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hossein Khanahmad
- Department of Genetics and Molecular Biology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Fariborz Mokarian
- Cancer Prevention Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Rasoul Salehi
- Department of Genetics and Molecular Biology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.,Child Growth and Development Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mansoor Salehi
- Department of Genetics and Molecular Biology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.,Child Growth and Development Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran.,Cellular, Molecular and Genetics Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
12
|
Han L, Wang R, Wu B, Gu Y, Yuan Y. Effect of diammonium glycyrrhizinate on pharmacokinetics of omeprazole by regulating cytochrome P450 enzymes and plasma protein binding rate. Xenobiotica 2018; 49:975-980. [PMID: 30215539 DOI: 10.1080/00498254.2018.1523486] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Lu Han
- Department of Pharmacy, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Rong Wang
- Department of Pharmacy, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bin Wu
- Department of Pharmacy, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yanqiu Gu
- Department of Pharmacy, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yongfang Yuan
- Department of Pharmacy, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
13
|
Silvado CE, Terra VC, Twardowschy CA. CYP2C9 polymorphisms in epilepsy: influence on phenytoin treatment. PHARMACOGENOMICS & PERSONALIZED MEDICINE 2018; 11:51-58. [PMID: 29636628 PMCID: PMC5880189 DOI: 10.2147/pgpm.s108113] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Phenytoin (PHT) is an antiepileptic drug widely used in the treatment of focal epilepsy and status epilepticus, and effective in controlling focal seizures with and without tonic-clonic generalization and status epilepticus. The metabolization of PHT is carried out by two oxidative cytochrome P450 enzymes CYP2C9 and CYP2C19; 90% of this metabolization is done by CYP2C9 and the remaining 10% by CYP2C19. Genetic polymorphism of CYP2C9 may reduce the metabolism of PHT by 25-50% in patients with variants *2 and *3 compared to those with wild-type variant *1. The frequency distribution of CYP2C9 polymorphism alleles in patients with epilepsy around the world ranges from 4.5 to 13.6%, being less frequent in African-Americans and Asians. PHT has a narrow therapeutic range and a nonlinear pharmacokinetic profile; hence, its poor metabolization has significant clinical implications as it causes more frequent and more serious adverse effects requiring discontinuation of treatment, even if it had been effective. There is evidence that polymorphisms of CYP2C9 and the use of PHT are associated with an increase in the frequency of some side effects, such as cerebellar atrophy, gingival hypertrophy or acute cutaneous reactions. The presence of HLA-B*15:02 and CYP2C9 *2 or *3 in the same patient increases the risk of Stevens-Johnson syndrome and toxic epidermal necrolysis; hence, PHT should not be prescribed in these patients. In patients with CYP2C9 *1/*2 or *1/*3 alleles (intermediate metabolizers), the usual PHT maintenance dose (5-10 mg/kg/day) must be reduced by 25%, and in those with CYP2C9 *2/*2, *2/*3 or *3/*3 alleles (poor metabolizers), the dose must be reduced by 50%. It is controversial whether CYP2C9 genotyping should be done before starting PHT treatment. In this paper, we aim to review the influence of CYP2C9 polymorphism on the metabolization of PHT and the clinical implications of poor metabolization in the treatment of epilepsies.
Collapse
Affiliation(s)
- Carlos Eduardo Silvado
- Comprehensive Epilepsy Program, Hospital de Clinicas, Federal University of Parana (UFPR), Curitiba, Brazil
| | - Vera Cristina Terra
- Comprehensive Epilepsy Program, Hospital de Clinicas, Federal University of Parana (UFPR), Curitiba, Brazil
| | | |
Collapse
|
14
|
Barlas İÖ, Sezgin O, Dandara C, Türköz G, Yengel E, Cindi Z, Ankaralı H, Şardaş S. Harnessing Knowledge on Very Important Pharmacogenes CYP2C9 and CYP2C19 Variation for Precision Medicine in Resource-Limited Global Conflict Zones. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2017; 20:604-609. [PMID: 27726640 DOI: 10.1089/omi.2016.0133] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Pharmacogenomics harnesses the utility of a patient's genome (n = 1) in decisions on which therapeutic drugs and in what amounts should be administered. Often, patients with shared ancestry present with comparable genetic profiles that predict drug response. However, populations are not static, thus, often, population mobility through migration, especially enmasse as is seen for refugees, changes the pharmacogenetic profiles of resultant populations and therefore observed responses to commonly used therapeutic drugs. For example, in the aftermath of the Syrian civil war since 2011, millions have fled their homes to neighboring countries in the Middle East. The growing permanence of refugees and mass migrations is a call to shift our focus in the life sciences community from old models of pharmaceutical innovation. These seismic social changes demand faster decisions for "population-to-population bridging," whereby novel drugs developed in or for particular regions/countries can meet with rational regulatory decisions/approval in world regions impacted by migrant/refugee populations whose profiles are dynamic, such as in the Eastern Mediterranean region at present. Thus, it is important to characterize and report on the prevalence of pharmacogenes that affect commonly used medications and predict if population changes may call for attention to particular differences that may impact health of patients. Thus, we report here on four single-nucleotide polymorphism (SNP) variations in CYP2C9 and CYP2C19 genes among Mersin-Turkish healthy volunteers in the Mersin Province in the Eastern Mediterranean region that is currently hosting a vast number of migrant populations from Syria. Both CYP2C9 and CYP2C19 are very important pharmacogene molecular targets. We compare and report here on the observed SNP genetic variation in our sample with data on 12 world populations from dbSNP and discuss the feasibility of forecasting the pharmacokinetics of drugs utilized by migrant communities in Mersin and the Eastern Mediterranean region. This study can serve as a catalyst to invest in research in Syrian populations currently living in the Eastern Mediterranean. The findings have salience for rapid and rational regulatory decision-making for worldwide precision medicine and, specifically, "pharmacogenovigilance-guided bridging of pharmacokinetics" across world populations in the current era of planetary scale migration.
Collapse
Affiliation(s)
- İbrahim Ömer Barlas
- 1 Department of Medical Biology and Genetics, Faculty of Medicine, Mersin University , Mersin, Turkey
| | - Orhan Sezgin
- 2 Department of Gastroenterology, Medical Faculty of Mersin University , Mersin, Turkey
| | - Collet Dandara
- 3 Division of Human Genetics, Department of Pathology, Faculty of Health Sciences, Institute for infectious Disease and Molecular Medicine, University of Cape Town , Cape Town, South Africa
| | - Gözde Türköz
- 1 Department of Medical Biology and Genetics, Faculty of Medicine, Mersin University , Mersin, Turkey
| | - Emre Yengel
- 2 Department of Gastroenterology, Medical Faculty of Mersin University , Mersin, Turkey
| | - Zinhle Cindi
- 3 Division of Human Genetics, Department of Pathology, Faculty of Health Sciences, Institute for infectious Disease and Molecular Medicine, University of Cape Town , Cape Town, South Africa
| | - Handan Ankaralı
- 4 Department of Biostatistics and Medical Informatics, Düzce University 81620, Düzce, Turkey
| | - Semra Şardaş
- 5 Pharmacogenetics and Drug Safety Unit, Department of Toxicology, Faculty of Pharmacy, Marmara University , Istanbul, Turkey
| |
Collapse
|
15
|
Dagenais R, Wilby KJ, Elewa H, Ensom MHH. Impact of Genetic Polymorphisms on Phenytoin Pharmacokinetics and Clinical Outcomes in the Middle East and North Africa Region. Drugs R D 2017; 17:341-361. [PMID: 28748348 PMCID: PMC5629135 DOI: 10.1007/s40268-017-0195-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Genetic polymorphisms are known to influence outcomes with phenytoin yet effects in the Middle East and North Africa region are poorly understood. OBJECTIVES The objective of this systematic review was to evaluate the impact of genetic polymorphisms on phenytoin pharmacokinetics and clinical outcomes in populations originating from the Middle East and North Africa region, and to characterize genotypic and allelic frequencies within the region for genetic polymorphisms assessed. METHODS MEDLINE (1946-3 May, 2017), EMBASE (1974-3 May, 2017), Pharmacogenomics Knowledge Base, and Public Health Genomics Knowledge Base online databases were searched. Studies were included if genotyping and analyses of phenytoin pharmacokinetics were performed in patients of the Middle East and North Africa region. Study quality was assessed using a National Institutes of Health assessment tool. A secondary search identified studies reporting genotypic and allelic frequencies of assessed genetic polymorphisms within the Middle East and North Africa region. RESULTS Five studies met the inclusion criteria. CYP2C9, CYP2C19, and multidrug resistance protein 1 C3435T variants were evaluated. While CYP2C9*2 and *3 variants significantly reduced phenytoin metabolism, the impacts of CYP2C19*2 and *3 variants were unclear. The multidrug resistance protein 1 CC genotype was associated with drug-resistant epilepsy, but reported impacts on phenytoin pharmacokinetics were conflicting. Appreciable variability in minor allele frequencies existed both between and within countries of the Middle East and North Africa region. CONCLUSIONS CYP2C9 decrease-of-function alleles altered phenytoin pharmacokinetics in patients originating from the Middle East and North Africa region. The impacts of CYP2C19 and multidrug resistance protein 1 C3435T variants on phenytoin pharmacokinetic and clinical outcomes are unclear and require further investigation. Future research should focus on the clinical outcomes associated with phenytoin therapy. PROSPERO 2017: CRD42017057850.
Collapse
Affiliation(s)
- Renée Dagenais
- Faculty of Pharmaceutical Sciences, Pharmaceutical Sciences Building, University of British Columbia, Vancouver, BC, Canada
| | - Kyle John Wilby
- College of Pharmacy, Qatar University, PO Box 2713, Doha, Qatar.
| | - Hazem Elewa
- College of Pharmacy, Qatar University, PO Box 2713, Doha, Qatar
| | - Mary H H Ensom
- Faculty of Pharmaceutical Sciences, Pharmaceutical Sciences Building, University of British Columbia, Vancouver, BC, Canada
- Department of Pharmacy, Children's and Women's Health Centre of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
16
|
Chouchi M, Kaabachi W, Klaa H, Tizaoui K, Turki IBY, Hila L. Relationship between ABCB1 3435TT genotype and antiepileptic drugs resistance in Epilepsy: updated systematic review and meta-analysis. BMC Neurol 2017; 17:32. [PMID: 28202008 PMCID: PMC5311838 DOI: 10.1186/s12883-017-0801-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 01/19/2017] [Indexed: 12/28/2022] Open
Abstract
Background Antiepileptic drugs (AEDs) are effective medications available for epilepsy. However, many patients do not respond to this treatment and become resistant. Genetic polymorphisms may be involved in the variation of AEDs response. Therefore, we conducted an updated systematic review and a meta-analysis to investigate the contribution of the genetic profile on epilepsy drug resistance. Methods We proceeded to the selection of eligible studies related to the associations of polymorphisms with resistance to AEDs therapy in epilepsy, published from January 1980 until November 2016, using Pubmed and Cochrane Library databases. The association analysis was based on pooled odds ratios (ORs) and 95% confidence intervals (CIs). Results From 640 articles, we retained 13 articles to evaluate the relationship between ATP-binding cassette sub-family C member 1 (ABCB1) C3435T polymorphism and AEDs responsiveness in a total of 454 epileptic AEDs-resistant cases and 282 AEDs-responsive cases. We found a significant association with an OR of 1.877, 95% CI 1.213–2.905. Subanalysis by genotype model showed a more significant association between the recessive model of ABCB1 C3435T polymorphism (TT vs. CC) and the risk of AEDs resistance with an OR of 2.375, 95% CI 1.775–3.178 than in the dominant one (CC vs. TT) with an OR of 1.686, 95% CI 0.877–3.242. Conclusion Our results indicate that ABCB1 C3435T polymorphism, especially TT genotype, plays an important role in refractory epilepsy. As genetic screening of this genotype may be useful to predict AEDs response before starting the treatment, further investigations should validate the association.
Collapse
Affiliation(s)
- Malek Chouchi
- Department of Genetic, Tunis El Manar University, Faculty of Medicine of Tunis, 15 Jebel Lakhdhar street, La Rabta, 1007, Tunis, Tunisia. .,Department of Child Neurology, National Institute Mongi Ben Hmida of Neurology, UR12SP24 Abnormal Movements of Neurologic Diseases, Jebel Lakhdhar street, La Rabta, 1007, Tunis, Tunisia.
| | - Wajih Kaabachi
- Division of Histology and Immunology Division, Department of Basic Sciences, Faculty of Medicine of Tunis, 15 Jebel Lakhdhar street, La Rabta, 1007, Tunis, Tunisia
| | - Hedia Klaa
- Department of Child Neurology, National Institute Mongi Ben Hmida of Neurology, UR12SP24 Abnormal Movements of Neurologic Diseases, Jebel Lakhdhar street, La Rabta, 1007, Tunis, Tunisia
| | - Kalthoum Tizaoui
- Division of Histology and Immunology Division, Department of Basic Sciences, Faculty of Medicine of Tunis, 15 Jebel Lakhdhar street, La Rabta, 1007, Tunis, Tunisia
| | - Ilhem Ben-Youssef Turki
- Department of Child Neurology, National Institute Mongi Ben Hmida of Neurology, UR12SP24 Abnormal Movements of Neurologic Diseases, Jebel Lakhdhar street, La Rabta, 1007, Tunis, Tunisia
| | - Lamia Hila
- Department of Genetic, Faculty of Medicine of Tunis, 15 Jebel Lakhdhar street, La Rabta, 1007, Tunis, Tunisia
| |
Collapse
|
17
|
Arici M, Özhan G. CYP2C9, CYPC19 and CYP2D6 gene profiles and gene susceptibility to drug response and toxicity in Turkish population. Saudi Pharm J 2016; 25:376-380. [PMID: 28344492 PMCID: PMC5357098 DOI: 10.1016/j.jsps.2016.09.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2016] [Accepted: 09/09/2016] [Indexed: 01/15/2023] Open
Abstract
Pharmacogenetics is a vast field covering drug discovery research, the genetic basis of pharmacokinetics and dynamics, genetic testing and clinical management in diseases. Pharmacogenetic approach usually focuses on variations of drug transporters, drug targets, drug metabolizing enzymes and other biomarker genes. Cytochrome P450 (CYP) enzymes, an essential source of variability in drug-response, play role in not only phase I-dependent metabolism of xenobiotics but also metabolism of endogenous compounds such as steroids, vitamins and fatty acids. CYP2C9, CYP2C19 and CYP2D6 enzymes being highly polymorphic are responsible for metabolism of a variety of drug groups. In the study, it was determined the genotype and allele frequency of CYP2C9∗2, CYP2C19∗3, CYP2C19∗2, CYP2C19∗3, CYP2C19∗17, CYP2D6∗9 and CYP2D6∗41, very common and functional single-nucleotide polymorphisms (SNPs), in healthy volunteers. The genotype distributions were consistent with the Hardy-Weinberg equilibrium in the population (p > 0.05). It is believed that the determination of polymorphisms in the enzymes may be beneficial in order to prevention or reduction in adverse effects and death. The recessive allele frequencies of CYP2C9∗2, CYP2C19∗3, CYP2C19∗2, CYP2C19∗3, CYP2C19∗17, CYP2D6∗9 and CYP2D6∗41 were 11, 13, 12, 13, 25, 4 and 15%, respectively. According to the obtained results, the carriers of CYP2D6∗9 variant allele should be received higher doses of the drugs metabolizing with this enzyme in Turkish population, while the carriers of other variant alleles do not generally have any requirement of dose regimen.
Collapse
Affiliation(s)
| | - Gül Özhan
- Corresponding author. Fax: +90 2124400252.
| |
Collapse
|
18
|
Flores-Gutiérrez S, Rodríguez-Larralde Á, Vívenes de Lugo M, Castro de Guerra D. Distribution of polymorphisms in the CYP2C9 gene and CYP2C19/CYP2C9 haplotypes among Venezuelan populations. Ann Hum Biol 2016; 44:191-198. [PMID: 27230833 DOI: 10.1080/03014460.2016.1192218] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
BACKGROUND Polymorphisms with decreased enzyme activity of their gene products have been reported in region CYP2C with population variations in haplotype structure. AIM To estimate the allelic and genotypic frequencies of variants CYP2C9*2 and CYP2C9*3 and of CYP2C9/CYP2C19 haplotypes in Venezuelan populations. SUBJECTS AND METHODS Six hundred and thirty-four individuals from nine admixed populations (AP) and the Warao indigenous group were studied. Allelic frequencies, linkage disequilibrium and genetic distances for haplotypes were calculated and compared within Venezuela and with data available in the literature. RESULTS Heterogeneity in the distribution of CYP2C9 alleles and CYP2C9/CYP2C19 haplotypes among the AP and the Warao was observed. The joint frequency of haplotypes, with at least one non-functional variant, shows values in AP between 21-41%, while in Warao it reaches 5%. The haplotype that includes the Asian and rare Latin America CYP2C19*3 allele was detected in most AP and in Warao. Pairwise Fst values showed that the Warao was an outlier compared with the AP, while these are closer to European-derived populations. No significant correlation was found between haplotype frequencies and admixture. CONCLUSIONS These results support the need to understand the distribution of genomic biomarkers related to the metabolism of drugs, for planning national public health strategies.
Collapse
Affiliation(s)
- Sara Flores-Gutiérrez
- a Laboratorio de Genética Humana, Centro de Medicina Experimental , Instituto Venezolano de Investigaciones Científicas , Caracas , Venezuela
| | - Álvaro Rodríguez-Larralde
- a Laboratorio de Genética Humana, Centro de Medicina Experimental , Instituto Venezolano de Investigaciones Científicas , Caracas , Venezuela
| | | | - Dinorah Castro de Guerra
- a Laboratorio de Genética Humana, Centro de Medicina Experimental , Instituto Venezolano de Investigaciones Científicas , Caracas , Venezuela
| |
Collapse
|
19
|
Tao H, Si L, Zhou X, Liu Z, Ma Z, Zhou H, Zhong W, Cui L, Zhang S, Li Y, Ma G, Zhao J, Huang W, Yao L, Xu Z, Zhao B, Li K. Role of glyoxalase I gene polymorphisms in late-onset epilepsy and drug-resistant epilepsy. J Neurol Sci 2016; 363:200-6. [PMID: 27000251 DOI: 10.1016/j.jns.2016.01.052] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Revised: 01/16/2016] [Accepted: 01/25/2016] [Indexed: 12/19/2022]
Abstract
BACKGROUND Recent studies indicate that increased expression of glyoxalase I (GLO1) could result in epileptic seizures; thus, this study further explored the association of GLO1 with epilepsy from the perspective of molecular genetics. MATERIAL AND METHODS GLO1 single nucleotide polymorphisms (SNPs; rs1130534, rs4746 and rs1049346) were investigated in cohort I (the initial samples: 249 cases and 289 controls). A replication study designed to confirm the positive findings in cohort I was performed in cohorts II (the additional samples: 130 cases and 191 controls) and I+II. RESULTS In cohorts I, II and I+II, the CC genotype at rs1049346 T>C exerts a protective effect against both late-onset epilepsy (odds ratio [OR]=2.437, p=0.013; OR=2.844, p=0.008; OR=2.645, p=0.000, q=0.003, respectively) and drug-resistant epilepsy (DRE) (OR=2.985, p=0.020; OR=2.943, p=0.014; OR=3.049, p=0.001, q=0.006, respectively). Further analyses in cohort I+II indicate that the presence of the TAC/AAT haplotypes (rs1130534-rs4746-rs1049346) may be used as a marker of predisposition to/protection against DRE (p=0.002, q=0.010; p=0.000, q=0.002, respectively). CONCLUSIONS This study is the first to demonstrate that the GLO1 SNPs are significantly associated with epilepsy. In particular, the rs1049346 T>C SNPs are potentially useful for risk assessment of late-onset epilepsy and DRE.
Collapse
Affiliation(s)
- Hua Tao
- Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, China
| | - Ligang Si
- Department of Pediatrics, the First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, China
| | - Xu Zhou
- Clinical Research Center, Guangdong Medical University, Zhanjiang, Guangdong 524001, China
| | - Zhou Liu
- Institute of Neurology, Guangdong Medical University, Zhanjiang, Guangdong 524001, China
| | - Zhonghua Ma
- Department of Neurology, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China
| | - Haihong Zhou
- Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, China
| | - Wangtao Zhong
- Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, China
| | - Lili Cui
- Institute of Neurology, Guangdong Medical University, Zhanjiang, Guangdong 524001, China
| | - Shuyan Zhang
- Department of Neurology, the First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, China
| | - You Li
- Institute of Neurology, Guangdong Medical University, Zhanjiang, Guangdong 524001, China
| | - Guoda Ma
- Institute of Neurology, Guangdong Medical University, Zhanjiang, Guangdong 524001, China
| | - Jianghao Zhao
- Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, China
| | - Wenhui Huang
- Institute of Neurology, Guangdong Medical University, Zhanjiang, Guangdong 524001, China
| | - Lifen Yao
- Department of Pediatrics, the First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, China
| | - Zhien Xu
- Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, China
| | - Bin Zhao
- Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, China; Institute of Neurology, Guangdong Medical University, Zhanjiang, Guangdong 524001, China.
| | - Keshen Li
- Institute of Neurology, Guangdong Medical University, Zhanjiang, Guangdong 524001, China.
| |
Collapse
|