1
|
Girard R, Li Y, Stadnik A, Shenkar R, Hobson N, Romanos S, Srinath A, Moore T, Lightle R, Shkoukani A, Akers A, Carroll T, Christoforidis GA, Koenig JI, Lee C, Piedad K, Greenberg SM, Kim H, Flemming KD, Ji Y, Awad IA. A Roadmap for Developing Plasma Diagnostic and Prognostic Biomarkers of Cerebral Cavernous Angioma With Symptomatic Hemorrhage (CASH). Neurosurgery 2021; 88:686-697. [PMID: 33469662 DOI: 10.1093/neuros/nyaa478] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 08/16/2020] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Cerebral cavernous angioma (CA) is a capillary microangiopathy predisposing more than a million Americans to premature risk of brain hemorrhage. CA with recent symptomatic hemorrhage (SH), most likely to re-bleed with serious clinical sequelae, is the primary focus of therapeutic development. Signaling aberrations in CA include proliferative dysangiogenesis, blood-brain barrier hyperpermeability, inflammatory/immune processes, and anticoagulant vascular domain. Plasma levels of molecules reflecting these mechanisms and measures of vascular permeability and iron deposition on magnetic resonance imaging are biomarkers that have been correlated with CA hemorrhage. OBJECTIVE To optimize these biomarkers to accurately diagnose cavernous angioma with symptomatic hemorrhage (CASH), prognosticate the risk of future SH, and monitor cases after a bleed and in response to therapy. METHODS Additional candidate biomarkers, emerging from ongoing mechanistic and differential transcriptome studies, would further enhance the sensitivity and specificity of diagnosis and prediction of CASH. Integrative combinations of levels of plasma proteins and characteristic micro-ribonucleic acids may further strengthen biomarker associations. We will deploy advanced statistical and machine learning approaches for the integration of novel candidate biomarkers, rejecting noncorrelated candidates, and determining the best clustering and weighing of combined biomarker contributions. EXPECTED OUTCOMES With the expertise of leading CA researchers, this project anticipates the development of future blood tests for the diagnosis and prediction of CASH to clinically advance towards precision medicine. DISCUSSION The project tests a novel integrational approach of biomarker development in a mechanistically defined cerebrovascular disease with a relevant context of use, with an approach applicable to other neurological diseases with similar pathobiologic features.
Collapse
Affiliation(s)
- Romuald Girard
- Neurovascular Surgery Program, Department of Surgery, Section of Neurosurgery, University of Chicago Medicine and Biological Sciences, Chicago, Illinois
| | - Yan Li
- Neurovascular Surgery Program, Department of Surgery, Section of Neurosurgery, University of Chicago Medicine and Biological Sciences, Chicago, Illinois.,Bioinformatics core, Center for Research Informatics, University of Chicago, Chicago, Illinois
| | - Agnieszka Stadnik
- Neurovascular Surgery Program, Department of Surgery, Section of Neurosurgery, University of Chicago Medicine and Biological Sciences, Chicago, Illinois
| | - Robert Shenkar
- Neurovascular Surgery Program, Department of Surgery, Section of Neurosurgery, University of Chicago Medicine and Biological Sciences, Chicago, Illinois
| | - Nicholas Hobson
- Neurovascular Surgery Program, Department of Surgery, Section of Neurosurgery, University of Chicago Medicine and Biological Sciences, Chicago, Illinois
| | - Sharbel Romanos
- Neurovascular Surgery Program, Department of Surgery, Section of Neurosurgery, University of Chicago Medicine and Biological Sciences, Chicago, Illinois
| | - Abhinav Srinath
- Neurovascular Surgery Program, Department of Surgery, Section of Neurosurgery, University of Chicago Medicine and Biological Sciences, Chicago, Illinois
| | - Thomas Moore
- Neurovascular Surgery Program, Department of Surgery, Section of Neurosurgery, University of Chicago Medicine and Biological Sciences, Chicago, Illinois
| | - Rhonda Lightle
- Neurovascular Surgery Program, Department of Surgery, Section of Neurosurgery, University of Chicago Medicine and Biological Sciences, Chicago, Illinois
| | - Abdallah Shkoukani
- Neurovascular Surgery Program, Department of Surgery, Section of Neurosurgery, University of Chicago Medicine and Biological Sciences, Chicago, Illinois
| | | | - Timothy Carroll
- Department of Diagnostic Radiology, The University of Chicago Medicine and Biological Sciences, Chicago, Illinois
| | - Gregory A Christoforidis
- Department of Diagnostic Radiology, The University of Chicago Medicine and Biological Sciences, Chicago, Illinois
| | - James I Koenig
- National Institute of Neurological Disorders and Stroke, Bethesda, Maryland
| | | | - Kristina Piedad
- Neurovascular Surgery Program, Department of Surgery, Section of Neurosurgery, University of Chicago Medicine and Biological Sciences, Chicago, Illinois
| | - Steven M Greenberg
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Helen Kim
- Department of Anesthesia & Perioperative Care, University of California at San Francisco, San Francisco, California
| | | | - Yuan Ji
- Department of Public Health Sciences, University of Chicago, Chicago, Illinois
| | - Issam A Awad
- Neurovascular Surgery Program, Department of Surgery, Section of Neurosurgery, University of Chicago Medicine and Biological Sciences, Chicago, Illinois
| |
Collapse
|
2
|
Ong MS, Cai W, Yuan Y, Leong HC, Tan TZ, Mohammad A, You ML, Arfuso F, Goh BC, Warrier S, Sethi G, Tolwinski NS, Lobie PE, Yap CT, Hooi SC, Huang RY, Kumar AP. 'Lnc'-ing Wnt in female reproductive cancers: therapeutic potential of long non-coding RNAs in Wnt signalling. Br J Pharmacol 2017; 174:4684-4700. [PMID: 28736855 PMCID: PMC5727316 DOI: 10.1111/bph.13958] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 06/30/2017] [Accepted: 07/17/2017] [Indexed: 02/06/2023] Open
Abstract
Recent discoveries in the non-coding genome have challenged the original central dogma of molecular biology, as non-coding RNAs and related processes have been found to be important in regulating gene expression. MicroRNAs and long non-coding RNAs (lncRNAs) are among those that have gained attention recently in human diseases, including cancer, with the involvement of many more non-coding RNAs (ncRNAs) waiting to be discovered. ncRNAs are a group of ribonucleic acids transcribed from regions of the human genome, which do not become translated into proteins, despite having essential roles in cellular physiology. Deregulation of ncRNA expression and function has been observed in cancer pathogenesis. Recently, the roles of a group of ncRNA known as lncRNA have gained attention in cancer, with increasing reports of their oncogenic involvement. Female reproductive cancers remain a leading cause of death in the female population, accounting for almost a third of all female cancer deaths in 2016. The Wnt signalling pathway is one of the most important oncogenic signalling pathways which is hyperactivated in cancers, including female reproductive cancers. The extension of ncRNA research into their mechanistic roles in human cancers has also led to novel reported roles of ncRNAs in the Wnt pathway and Wnt-mediated oncogenesis. This review aims to provide a critical summary of the respective roles and cellular functions of Wnt-associated lncRNAs in female reproductive cancers and explores the potential of circulating cell-free lncRNAs as diagnostic markers and lncRNAs as therapeutic targets. LINKED ARTICLES This article is part of a themed section on WNT Signalling: Mechanisms and Therapeutic Opportunities. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v174.24/issuetoc.
Collapse
Affiliation(s)
- Mei S Ong
- Departments of Physiology, Yong Loo Lin School of MedicineNational University of SingaporeSingapore
| | - Wanpei Cai
- Departments of Pharmacology, Yong Loo Lin School of MedicineNational University of SingaporeSingapore
- Cancer Science Institute of SingaporeNational University of SingaporeSingapore
| | - Yi Yuan
- Cancer Science Institute of SingaporeNational University of SingaporeSingapore
| | - Hin C Leong
- Departments of Pharmacology, Yong Loo Lin School of MedicineNational University of SingaporeSingapore
- Cancer Science Institute of SingaporeNational University of SingaporeSingapore
| | - Tuan Z Tan
- Cancer Science Institute of SingaporeNational University of SingaporeSingapore
| | - Asad Mohammad
- Cancer Science Institute of SingaporeNational University of SingaporeSingapore
| | - Ming L You
- Cancer Science Institute of SingaporeNational University of SingaporeSingapore
| | - Frank Arfuso
- Stem Cell and Cancer Biology Laboratory, School of Biomedical Sciences, Curtin Health Innovation Research InstituteCurtin UniversityPerthWAAustralia
| | - Boon C Goh
- Departments of Pharmacology, Yong Loo Lin School of MedicineNational University of SingaporeSingapore
- Cancer Science Institute of SingaporeNational University of SingaporeSingapore
- National University Cancer InstituteNational University Health SystemSingapore
- Department of Haematology‐OncologyNational University Health SystemSingapore
| | - Sudha Warrier
- Division of Cancer Stem Cells and Cardiovascular Regeneration, Manipal Institute of Regenerative MedicineManipal UniversityBangaloreIndia
- School of Biomedical Sciences, Curtin Health Innovation Research InstituteCurtin UniversityPerthWAAustralia
| | - Gautam Sethi
- Departments of Pharmacology, Yong Loo Lin School of MedicineNational University of SingaporeSingapore
- School of Biomedical Sciences, Curtin Health Innovation Research InstituteCurtin UniversityPerthWAAustralia
| | - Nicholas S Tolwinski
- Division of ScienceYale‐NUS CollegeSingapore
- Department of Biological ScienceNational University of SingaporeSingapore
| | - Peter E Lobie
- Departments of Pharmacology, Yong Loo Lin School of MedicineNational University of SingaporeSingapore
- Departments of Anatomy, Yong Loo Lin School of MedicineNational University of SingaporeSingapore
- Tsinghua Berkeley Shenzhen Institute and Division of Life Science and HealthTsinghua University Graduate SchoolShenzhenChina
| | - Celestial T Yap
- Departments of Physiology, Yong Loo Lin School of MedicineNational University of SingaporeSingapore
- National University Cancer InstituteNational University Health SystemSingapore
| | - Shing C Hooi
- Departments of Physiology, Yong Loo Lin School of MedicineNational University of SingaporeSingapore
| | - Ruby Y Huang
- Departments of Anatomy, Yong Loo Lin School of MedicineNational University of SingaporeSingapore
- Cancer Science Institute of SingaporeNational University of SingaporeSingapore
- National University Cancer InstituteNational University Health SystemSingapore
- Department of Obstetrics and GynaecologyNational University HospitalSingapore
| | - Alan P Kumar
- Departments of Pharmacology, Yong Loo Lin School of MedicineNational University of SingaporeSingapore
- Cancer Science Institute of SingaporeNational University of SingaporeSingapore
- National University Cancer InstituteNational University Health SystemSingapore
- Division of Cancer Stem Cells and Cardiovascular Regeneration, Manipal Institute of Regenerative MedicineManipal UniversityBangaloreIndia
- Curtin Medical School, Faculty of Health ScienceCurtin UniversityPerthWAAustralia
- Department of Biological SciencesUniversity of North TexasDentonTXUSA
| |
Collapse
|