1
|
Guo S, Wang E, Wang B, Xue Y, Kuang Y, Liu H. Comprehensive Multiomics Analyses Establish the Optimal Prognostic Model for Resectable Gastric Cancer : Prognosis Prediction for Resectable GC. Ann Surg Oncol 2024; 31:2078-2089. [PMID: 37996637 DOI: 10.1245/s10434-023-14249-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 08/14/2023] [Indexed: 11/25/2023]
Abstract
BACKGROUND Prognostic models based on multiomics data may provide better predictive capability than those established at the single-omics level. Here we aimed to establish a prognostic model for resectable gastric cancer (GC) with multiomics information involving mutational, copy number, transcriptional, methylation, and clinicopathological alterations. PATIENTS AND METHODS The mutational, copy number, transcriptional, methylation data of 268, 265, 226, and 252 patients with stages I-III GC were downloaded from the TCGA database, respectively. Alterations from all omics were characterized, and prognostic models were established at the individual omics level and optimized at the multiomics level. All models were validated with a cohort of 99 patients with stages I-III GC. RESULTS TTN, TP53, and MUC16 were among the genes with the highest mutational frequency, while UBR5, ZFHX4, PREX2, and ARID1A exhibited the most prominent copy number variations (CNVs). Upregulated COL10A1, CST1, and HOXC10 and downregulated GAST represented the biggest transcriptional alterations. Aberrant methylation of some well-known genes was revealed, including CLDN18, NDRG4, and SDC2. Many alterations were found to predict the patient prognosis by univariate analysis, while four mutant genes, two CNVs, five transcriptionally altered genes, and seven aberrantly methylated genes were identified as independent risk factors in multivariate analysis. Prognostic models at the single-omics level were established with these alterations, and optimized combination of selected alterations with clinicopathological factors was used to establish a final multiomics model. All single-omics models and the final multiomics model were validated by an independent cohort. The optimal area under the curve (AUC) was 0.73, 0.71, 0.71, and 0.85 for mutational, CNV, transcriptional, and methylation models, respectively. The final multiomics model significantly increased the AUC to 0.92 (P < 0.05). CONCLUSIONS Multiomics model exhibited significantly better capability in predicting the prognosis of resectable GC than single-omics models.
Collapse
Affiliation(s)
- Shaohua Guo
- Department of General Surgery, The Eighth Medical Center, Chinese PLA General Hospital, Beijing, People's Republic of China
- Department of General Surgery, The First Medical Center, Chinese PLA General Hospital, Beijing, People's Republic of China
| | - Erpeng Wang
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong Province, People's Republic of China
| | - Baishi Wang
- Department of General Surgery, The First Medical Center, Chinese PLA General Hospital, Beijing, People's Republic of China
| | - Yonggan Xue
- Department of General Surgery, The First Medical Center, Chinese PLA General Hospital, Beijing, People's Republic of China
| | - Yanshen Kuang
- Department of General Surgery, The First Medical Center, Chinese PLA General Hospital, Beijing, People's Republic of China
| | - Hongyi Liu
- Department of General Surgery, The First Medical Center, Chinese PLA General Hospital, Beijing, People's Republic of China.
| |
Collapse
|
2
|
Sondka Z, Dhir NB, Carvalho-Silva D, Jupe S, Madhumita, McLaren K, Starkey M, Ward S, Wilding J, Ahmed M, Argasinska J, Beare D, Chawla MS, Duke S, Fasanella I, Neogi AG, Haller S, Hetenyi B, Hodges L, Holmes A, Lyne R, Maurel T, Nair S, Pedro H, Sangrador-Vegas A, Schuilenburg H, Sheard Z, Yong S, Teague J. COSMIC: a curated database of somatic variants and clinical data for cancer. Nucleic Acids Res 2024; 52:D1210-D1217. [PMID: 38183204 PMCID: PMC10767972 DOI: 10.1093/nar/gkad986] [Citation(s) in RCA: 34] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/13/2023] [Accepted: 10/16/2023] [Indexed: 01/07/2024] Open
Abstract
The Catalogue Of Somatic Mutations In Cancer (COSMIC), https://cancer.sanger.ac.uk/cosmic, is an expert-curated knowledgebase providing data on somatic variants in cancer, supported by a comprehensive suite of tools for interpreting genomic data, discerning the impact of somatic alterations on disease, and facilitating translational research. The catalogue is accessed and used by thousands of cancer researchers and clinicians daily, allowing them to quickly access information from an immense pool of data curated from over 29 thousand scientific publications and large studies. Within the last 4 years, COSMIC has substantially expanded its utility by adding new resources: the Mutational Signatures catalogue, the Cancer Mutation Census, and Actionability. To improve data accessibility and interoperability, somatic variants have received stable genomic identifiers that are associated with their genomic coordinates in GRCh37 and GRCh38, and new export files with reduced data redundancy have been made available for download.
Collapse
Affiliation(s)
- Zbyslaw Sondka
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Nidhi Bindal Dhir
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | | | - Steven Jupe
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Madhumita
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Karen McLaren
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Mike Starkey
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Sari Ward
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Jennifer Wilding
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Madiha Ahmed
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Joanna Argasinska
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - David Beare
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | | | - Stephen Duke
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Ilaria Fasanella
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Avirup Guha Neogi
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Susan Haller
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Balazs Hetenyi
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Leonie Hodges
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Alex Holmes
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Rachel Lyne
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Thomas Maurel
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Sumodh Nair
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Helder Pedro
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | | | - Helen Schuilenburg
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Zoe Sheard
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Siew Yit Yong
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Jon Teague
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| |
Collapse
|
3
|
Chakraborty P, Kurkalang S, Ghatak S, Das S, Palodhi A, Sarkar S, Dhar R, Chenkual S, Pachuau L, Zohmingthanga J, Pautu JL, Zomuana T, Lalruatfela ST, Zothanzama J, Kumar NS, Maitra A. Deep sequencing reveals recurrent somatic mutations and distinct molecular subgroups in gastric cancer in Mizo population, North East India. Genomics 2023; 115:110741. [PMID: 37967684 DOI: 10.1016/j.ygeno.2023.110741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 11/06/2023] [Accepted: 11/12/2023] [Indexed: 11/17/2023]
Abstract
In India, Mizoram has the highest incidence of gastric cancer (GC) which might be associated with environmental factors such as diet, Helicobacter pylori (H.pylori) and Epstein-Barr virus (EBV) infections, and somatic genomic alterations. We performed PCR cum sequencing and fragment analysis for detection of H. pylori/EBV infection and microsatellite Instability (MSI) in GC patients (N = 68). Somatic mutations were identified by targeted and exome sequencing. We found 87% of GC patients infected with H. pylori and or EBV. Pathogenic infections were mostly mutually exclusive with only 16% of coinfection. TP53, MUC6, and ARID1A were significantly mutated. Two molecular subgroups with distinctive mutational profiles were identified: (1) patients harboring mutations in TP53 and (2) patients harboring mutations in RTK/RAS/PI3-K signaling pathway and chromatin-remodeling genes. Therefore, EBV and H. pylori infections and somatic mutations in the genes involved in RTK/RAS/PI3K signaling pathway, chromatin-remodeling, and TP53 might drive GC development and progression in Mizo patients.
Collapse
Affiliation(s)
- Payel Chakraborty
- Department of Biotechnology, Mizoram University, Aizawl, Mizoram, PIN: 796009, India.
| | - Sillarine Kurkalang
- National Institute of Biomedical Genomics, Kalyani, West Bengal, PIN: 741251, India.
| | - Souvik Ghatak
- Department of Biotechnology, Mizoram University, Aizawl, Mizoram, PIN: 796009, India.
| | - Subrata Das
- National Institute of Biomedical Genomics, Kalyani, West Bengal, PIN: 741251, India.
| | - Arindam Palodhi
- National Institute of Biomedical Genomics, Kalyani, West Bengal, PIN: 741251, India.
| | - Sumanta Sarkar
- National Institute of Biomedical Genomics, Kalyani, West Bengal, PIN: 741251, India.
| | - Ranjan Dhar
- National Institute of Biomedical Genomics, Kalyani, West Bengal, PIN: 741251, India.
| | - Saia Chenkual
- Zoram Medical College, Falkawn, Mizoram, PIN: 796005, India.
| | - Lalawmpuii Pachuau
- Department of Pathology, Civil Hospital, Aizawl, Mizoram, PIN: -796001, India.
| | | | - Jeremy L Pautu
- Department of Medical Oncology, Mizoram State Cancer Institute, Zemabawk, Aizawl, Mizoram, PIN: 796017, India.
| | - Thomas Zomuana
- Department of Surgery, Civil Hospital, Aizawl, Mizoram, PIN: -796001, India.
| | | | - John Zothanzama
- Department of Biotechnology, Mizoram University, Aizawl, Mizoram, PIN: 796009, India.
| | | | - Arindam Maitra
- National Institute of Biomedical Genomics, Kalyani, West Bengal, PIN: 741251, India.
| |
Collapse
|
4
|
Imamura T, Ashida R, Ohshima K, Uesaka K, Sugiura T, Okamura Y, Ohgi K, Ohnami S, Nagashima T, Yamaguchi K. Genomic landscape of pancreatic cancer in the Japanese version of the Cancer Genome Atlas. Ann Gastroenterol Surg 2023; 7:491-502. [PMID: 37152777 PMCID: PMC10154893 DOI: 10.1002/ags3.12636] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 10/26/2022] [Indexed: 11/29/2022] Open
Abstract
Background Pancreatic cancer (PC) is one of the most aggressive cancers worldwide. Although many studies have investigated genomic alterations, the genomic landscape of Japanese PC patients has not been fully elucidated. Methods We used whole-exome sequencing, cancer gene panel deep-sequencing, and microarray gene expression profiling data derived from the Japanese version of the Cancer Genome Atlas (JCGA) in 93 PC cases. Results Somatic driver mutations were identified in 65.6% of samples in 19 genes. The median tumor mutation burden (TMB) value was 0.24 Muts/Mb (interquartile range, 0.15-0.64 Muts/Mb). The commonly mutated genes were KRAS (58%), TP53 (40%), CDKN2A (10%), SMAD4 (10%), FGFR2 (9%), and PKHD1 (9%). Frequent germline variation genes were BRCA1 (8%), CDH1 (5%), MET (5%), MSH6 (5%), and TEK (5%). Frequent chromosomal arm alterations included copy number gains in 2q (42%), 7q (24%), and 3q (24%), and copy number losses in 19p (62%), 19q (47%), 12q (34%), and 7q (30%). A prognostic analysis according to the presence of driver mutations showed that overall survival (OS) in the driver mutation-positive group was significantly worse in comparison to that of the driver mutation-negative group (median, 23.1 vs 46.7 mo; P = .010). A Cox proportional hazards analysis for OS identified driver mutation (hazard ratio [HR], 1.89; P = .025) and lymph node metastasis (HR, 3.27; P = .002) as independent prognostic factors. Conclusion The present results from the JCGA dataset constitute a fundamental resource for genomic medicine for PC patients, especially in Japan.
Collapse
Affiliation(s)
- Taisuke Imamura
- Division of Hepato‐Biliary‐Pancreatic SurgeryShizuoka Cancer CenterShizuokaJapan
| | - Ryo Ashida
- Division of Hepato‐Biliary‐Pancreatic SurgeryShizuoka Cancer CenterShizuokaJapan
| | - Keiichi Ohshima
- Medical Genetics DivisionShizuoka Cancer Center Research InstituteShizuokaJapan
| | - Katsuhiko Uesaka
- Division of Hepato‐Biliary‐Pancreatic SurgeryShizuoka Cancer CenterShizuokaJapan
| | - Teiichi Sugiura
- Division of Hepato‐Biliary‐Pancreatic SurgeryShizuoka Cancer CenterShizuokaJapan
| | - Yukiyasu Okamura
- Division of Hepato‐Biliary‐Pancreatic SurgeryShizuoka Cancer CenterShizuokaJapan
| | - Katsuhisa Ohgi
- Division of Hepato‐Biliary‐Pancreatic SurgeryShizuoka Cancer CenterShizuokaJapan
| | - Sumiko Ohnami
- Cancer Diagnostics Research DivisionShizuoka Cancer Center Research InstituteShizuokaJapan
| | - Takeshi Nagashima
- Cancer Diagnostics Research DivisionShizuoka Cancer Center Research InstituteShizuokaJapan
- SRL, Inc.TokyoJapan
| | - Ken Yamaguchi
- Shizuoka Cancer Center Hospital and Research InstituteShizuokaJapan
| |
Collapse
|
5
|
Cerrato-Izaguirre D, Chirino YI, Prada D, Quezada-Maldonado EM, Herrera LA, Hernández-Guerrero A, Alonso-Larraga JO, Herrera-Goepfert R, Oñate-Ocaña LF, Cantú-de-León D, Meneses-García A, Basurto-Lozada P, Robles-Espinoza CD, Camacho J, García-Cuellar CM, Sánchez-Pérez Y. Somatic Mutational Landscape in Mexican Patients: CDH1 Mutations and chr20q13.33 Amplifications Are Associated with Diffuse-Type Gastric Adenocarcinoma. Int J Mol Sci 2022; 23:11116. [PMID: 36232418 PMCID: PMC9570354 DOI: 10.3390/ijms231911116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/15/2022] [Accepted: 09/19/2022] [Indexed: 12/04/2022] Open
Abstract
The Hispanic population, compared with other ethnic groups, presents a more aggressive gastric cancer phenotype with higher frequency of diffuse-type gastric adenocarcinoma (GA); this could be related to the mutational landscape of GA in these patients. Using whole-exome sequencing, we sought to present the mutational landscape of GA from 50 Mexican patients who were treated at The Instituto Nacional de Cancerología from 2019 to 2020. We performed a comprehensive statistical analysis to explore the relationship of the genomic variants and clinical data such as tumor histology and presence of signet-ring cell, H. pylori, and EBV. We describe a potentially different mutational landscape between diffuse and intestinal GA in Mexican patients. Patients with intestinal-type GA tended to present a higher frequency of NOTCH1 mutations, copy number gains in cytobands 13.14, 10q23.33, and 12q25.1, and copy number losses in cytobands 7p12, 14q24.2, and 11q13.1; whereas patients with diffuse-type GA tended to present a high frequency of CDH1 mutations and CNV gains in cytobands 20q13.33 and 22q11.21. This is the first description of a mutational landscape of GA in Mexican patients to better understand tumorigenesis in Hispanic patients and lay the groundwork for discovering potential biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Dennis Cerrato-Izaguirre
- Departamento de Farmacología, Centro de Investigación y de Estudios Avanzados del I.P.N. (CINVESTAV), Avenida Instituto Politécnico Nacional No. 2508, Ciudad de México CP. 07360, Mexico
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología (INCan), San Fernando No. 22, Tlalpan, Ciudad de México CP. 14080, Mexico
| | - Yolanda I. Chirino
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Los Reyes Iztacala, Tlalnepantla de Baz, Estado de México CP. 54090, Mexico
| | - Diddier Prada
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología (INCan), San Fernando No. 22, Tlalpan, Ciudad de México CP. 14080, Mexico
| | - Ericka Marel Quezada-Maldonado
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología (INCan), San Fernando No. 22, Tlalpan, Ciudad de México CP. 14080, Mexico
| | - Luis A Herrera
- Instituto Nacional de Medicina Genómica (INMEGEN), Periférico Sur No. 4809, Arenal Tepepan, Tlalpan, Ciudad de México CP. 14610, Mexico
| | - Angélica Hernández-Guerrero
- Servicio de Endoscopía, Instituto Nacional de Cancerología (INCan), San Fernando No. 22, Tlalpan, Ciudad de México CP. 14080, Mexico
| | - Juan Octavio Alonso-Larraga
- Servicio de Endoscopía, Instituto Nacional de Cancerología (INCan), San Fernando No. 22, Tlalpan, Ciudad de México CP. 14080, Mexico
| | - Roberto Herrera-Goepfert
- Departamento de Patología, Instituto Nacional de Cancerología (INCan), San Fernando No. 22, Tlalpan, Ciudad de México CP. 14080, Mexico
| | - Luis F. Oñate-Ocaña
- Subdirección de Investigación Clínica, Instituto Nacional de Cancerología (INCan), San Fernando No. 22, Tlalpan, Ciudad de México CP. 14080, Mexico
| | - David Cantú-de-León
- Dirección de Investigación, Instituto Nacional de Cancerología (INCan), San Fernando No. 22, Tlalpan, Ciudad de México CP. 14080, Mexico
| | - Abelardo Meneses-García
- Dirección General, Instituto Nacional de Cancerología (INCan), San Fernando No. 22, Tlalpan, Ciudad de México CP. 14080, Mexico
| | - Patricia Basurto-Lozada
- Laboratorio Internacional de Investigación Sobre el Genoma Humano, Universidad Nacional Autónoma de México, Santiago de Querétaro CP. 76010, Mexico
| | - Carla Daniela Robles-Espinoza
- Laboratorio Internacional de Investigación Sobre el Genoma Humano, Universidad Nacional Autónoma de México, Santiago de Querétaro CP. 76010, Mexico
- Wellcome Sanger Institute, Hinxton, Cambridgeshire CB10 1SA, UK
| | - Javier Camacho
- Departamento de Farmacología, Centro de Investigación y de Estudios Avanzados del I.P.N. (CINVESTAV), Avenida Instituto Politécnico Nacional No. 2508, Ciudad de México CP. 07360, Mexico
| | - Claudia M. García-Cuellar
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología (INCan), San Fernando No. 22, Tlalpan, Ciudad de México CP. 14080, Mexico
| | - Yesennia Sánchez-Pérez
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología (INCan), San Fernando No. 22, Tlalpan, Ciudad de México CP. 14080, Mexico
| |
Collapse
|
6
|
Yicheng F, Xin L, Tian Y, Huilin L. Association of FLG mutation with tumor mutation load and clinical outcomes in patients with gastric cancer. Front Genet 2022; 13:808542. [PMID: 36046250 PMCID: PMC9421250 DOI: 10.3389/fgene.2022.808542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 07/04/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Stomach adenocarcinoma (STAD) is one of the most frequently diagnosed cancers in the world with a poor prognosis due to genetic heterogeneity. The present study aimed to explore potential prognostic predictors and therapeutic targets that can be used for STAD treatment.Methods: We collected relevant data of STAD patients from the Cancer Genome Atlas (TCGA), including somatic mutation, transcriptome, and survival data. We performed a series of analyses such as tumor mutational burden (TMB), immune infiltration, and copy number variation (CNV) analysis to evaluate the potential mechanism of filaggrin (FLG) mutation in gastric cancer. Gene ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis, and gene set enrichment analysis (GSEA) were performed for annotation of differentially expressed genes (DEGs). The STRING online database was used to construct the protein–protein interaction (PPI) and ceRNA network and hub genes were identified. Univariate and multivariate Cox regression analyses were used to determine the effect of selected DEGs on tumor prognosis.Results: The FLG-mutant group (FLG-MT) showed a higher mutation load and immunogenicity in gastric cancer. GO and KEGG analyses identified and ranked unique biologic processes and immune-related pathway maps that correlated with the FLG-mutant target. GSEA analysis showed that several tumorigenesis and metastasis-related pathways were indeed enriched in FLG-mutant tumor tissue. Both cell cycle–related pathways and the DNA damage and repair associated pathways were also enriched in the FLG-MT group. The FLG mutations resulted in increased gastric cancer sensitivity to 24 chemotherapeutic drugs. The ceRNA network was established using Cytoscape and the PPI network was established in the STRING database. The results of the prognostic information further demonstrated that the OS and DFS were significantly higher in FLG mutation carriers, and the FLG gene mutation might be a protective factor.Conclusion: The multiple molecular mechanisms of the FLG gene in STAD are worthy of further investigation and may reveal novel therapeutic targets and biomarkers for STAD treatment.
Collapse
Affiliation(s)
- Fu Yicheng
- Department of Geriatrics, Peking University Third Hospital, Beijing, China
| | - Liu Xin
- Department of Gastroenterology, Peking University Third Hospital, Beijing, China
| | - Yu Tian
- Graduate School, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Liu Huilin
- Department of Geriatrics, Peking University Third Hospital, Beijing, China
- *Correspondence: Liu Huilin,
| |
Collapse
|
7
|
Delineating Molecular Subtypes through Gene Set Variation Analysis Confers Therapeutic and Prognostic Capability in Gastric Cancer. Can J Gastroenterol Hepatol 2022; 2022:5415758. [PMID: 35875363 PMCID: PMC9307400 DOI: 10.1155/2022/5415758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 06/12/2022] [Accepted: 06/14/2022] [Indexed: 11/17/2022] Open
Abstract
To claim the features of nontumor tissue in gastric cancer patients, especially in those who have undergone gastrectomy, and to identify the molecular subtypes, we collected the immunogenic and hallmark gene sets from gene set enrichment analysis. The activity changes of these gene sets between tumor (375) and nontumor (32) tissues acquired from the Cancer Genome Atlas (TCGA-STAD) were calculated, and the novel molecular subtypes were delineated. Subsequently, prognostic gene sets were determined using least absolute shrinkage and selection operator (lasso) regression prognostic method. In addition, functional analysis was conducted. Totally, three subtypes were constructed in the present study, and there were differences in survival among three groups. Functional analysis showed genes from normal gene set were related to cell adhesion, and genes from tumor gene set were associated with focal adhesion, PI3K-Akt signaling pathway, regulation of actin cytoskeleton, and VEGF signaling pathway. Our study created lasting value beyond molecular subtypes and underscored the significance of normal tissues in gastric cancer development, which drawn a novel prognostic model for gastric treatment.
Collapse
|
8
|
Wang Z, Zhang T, Wu W, Wu L, Li J, Huang B, Liang Y, Li Y, Li P, Li K, Wang W, Guo R, Wang Q. Detection and Localization of Solid Tumors Utilizing the Cancer-Type-Specific Mutational Signatures. Front Bioeng Biotechnol 2022; 10:883791. [PMID: 35547159 PMCID: PMC9081532 DOI: 10.3389/fbioe.2022.883791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 04/07/2022] [Indexed: 11/17/2022] Open
Abstract
Accurate detection and location of tumor lesions are essential for improving the diagnosis and personalized cancer therapy. However, the diagnosis of lesions with fuzzy histology is mainly dependent on experiences and with low accuracy and efficiency. Here, we developed a logistic regression model based on mutational signatures (MS) for each cancer type to trace the tumor origin. We observed MS could distinguish cancer from inflammation and healthy individuals. By collecting extensive datasets of samples from ten tumor types in the training cohort (5,001 samples) and independent testing cohort (2,580 samples), cancer-type-specific MS patterns (CTS-MS) were identified and had a robust performance in distinguishing different types of primary and metastatic solid tumors (AUC:0.76 ∼ 0.93). Moreover, we validated our model in an Asian population and found that the AUC of our model in predicting the tumor origin of the Asian population was higher than 0.7. The metastatic tumor lesions inherited the MS pattern of the primary tumor, suggesting the capability of MS in identifying the tissue-of-origin for metastatic cancers. Furthermore, we distinguished breast cancer and prostate cancer with 90% accuracy by combining somatic mutations and CTS-MS from cfDNA, indicating that the CTS-MS could improve the accuracy of cancer-type prediction by cfDNA. In summary, our study demonstrated that MS was a novel reliable biomarker for diagnosing solid tumors and provided new insights into predicting tissue-of-origin.
Collapse
Affiliation(s)
- Ziyu Wang
- Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
- Department of Bioinformatics, Nanjing Medical University, Nanjing, China
- Institute for Brain Tumors, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Tingting Zhang
- Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
- Department of Bioinformatics, Nanjing Medical University, Nanjing, China
- Institute for Brain Tumors, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Wei Wu
- Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
- Department of Bioinformatics, Nanjing Medical University, Nanjing, China
- Institute for Brain Tumors, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Lingxiang Wu
- Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
- Department of Bioinformatics, Nanjing Medical University, Nanjing, China
- Institute for Brain Tumors, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Jie Li
- Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
- Department of Bioinformatics, Nanjing Medical University, Nanjing, China
- Institute for Brain Tumors, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Bin Huang
- Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
- Department of Bioinformatics, Nanjing Medical University, Nanjing, China
- Institute for Brain Tumors, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Yuan Liang
- Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
- Department of Bioinformatics, Nanjing Medical University, Nanjing, China
- Institute for Brain Tumors, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Yan Li
- Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
- Department of Bioinformatics, Nanjing Medical University, Nanjing, China
- Institute for Brain Tumors, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Pengping Li
- Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
- Department of Bioinformatics, Nanjing Medical University, Nanjing, China
- Institute for Brain Tumors, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Kening Li
- Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
- Department of Bioinformatics, Nanjing Medical University, Nanjing, China
- Institute for Brain Tumors, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
- *Correspondence: Kening Li, ; Wei Wang, ; Renhua Guo, ; Qianghu Wang,
| | - Wei Wang
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- *Correspondence: Kening Li, ; Wei Wang, ; Renhua Guo, ; Qianghu Wang,
| | - Renhua Guo
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- *Correspondence: Kening Li, ; Wei Wang, ; Renhua Guo, ; Qianghu Wang,
| | - Qianghu Wang
- Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
- Department of Bioinformatics, Nanjing Medical University, Nanjing, China
- Institute for Brain Tumors, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
- *Correspondence: Kening Li, ; Wei Wang, ; Renhua Guo, ; Qianghu Wang,
| |
Collapse
|
9
|
Treese C, Hartl K, Pötzsch M, Dahlmann M, von Winterfeld M, Berg E, Hummel M, Timm L, Rau B, Walther W, Daum S, Kobelt D, Stein U. S100A4 Is a Strong Negative Prognostic Marker and Potential Therapeutic Target in Adenocarcinoma of the Stomach and Esophagus. Cells 2022; 11:cells11061056. [PMID: 35326507 PMCID: PMC8947340 DOI: 10.3390/cells11061056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/10/2022] [Accepted: 03/16/2022] [Indexed: 11/26/2022] Open
Abstract
Deregulated Wnt-signaling is a key mechanism driving metastasis in adenocarcinoma of the gastroesophageal junction and stomach (AGE/S). The oncogene S100A4 was identified as a Wnt-signaling target gene and is known to promote metastasis. In this project, we illuminate the role of S100A4 for metastases development and disease prognosis of AGE/S. Five gastric cancer cell lines were assessed for S100A4 expression. Two cell lines with endogenous high S100A4 expression were used for functional phenotyping including analysis of proliferation and migration after stable S100A4 knock-down. The prognostic value of S100A4 was evaluated by analyzing the S100A4 expression of tissue microarrays with samples of 277 patients with AGE/S. S100A4 knock-down induced lower migration in FLO1 and NCI-N87 cells. Treatment with niclosamide in these cells led to partial inhibition of S100A4 and to reduced migration. Patients with high S100A4 expression showed lower 5-year overall and disease-specific survival. In addition, a larger share of patients in the S100A4 high expressing group suffered from metachronous metastasis. This study identifies S100A4 as a negative prognostic marker for patients with AGE/S. The strong correlation between S100A4 expression, metastases development and patient survival might open opportunities to use S100A4 to improve the prognosis of these patients and as a therapeutic target for intervention in this tumor entity.
Collapse
Affiliation(s)
- Christoph Treese
- Experimental and Clinical Research Center, Charité-Universitätsmedizin and Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, 10115 Berlin, Germany; (C.T.); or (K.H.); (M.D.); (W.W.); (D.K.)
- Department of Gastroenterology, Infectious Diseases and Rheumatology, Campus Benjamin Franklin, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10115 Berlin, Germany; (M.P.); (L.T.); (S.D.)
- Berlin Institute of Health (BIH), 10115 Berlin, Germany
| | - Kimberly Hartl
- Experimental and Clinical Research Center, Charité-Universitätsmedizin and Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, 10115 Berlin, Germany; (C.T.); or (K.H.); (M.D.); (W.W.); (D.K.)
- Medical Department, Division of Gastroenterology and Hepatology, Campus Virchow-Klinikum, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10115 Berlin, Germany
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, 10115 Berlin, Germany
| | - Michelle Pötzsch
- Department of Gastroenterology, Infectious Diseases and Rheumatology, Campus Benjamin Franklin, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10115 Berlin, Germany; (M.P.); (L.T.); (S.D.)
| | - Matthias Dahlmann
- Experimental and Clinical Research Center, Charité-Universitätsmedizin and Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, 10115 Berlin, Germany; (C.T.); or (K.H.); (M.D.); (W.W.); (D.K.)
| | - Moritz von Winterfeld
- Institute of Pathology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10115 Berlin, Germany; (M.v.W.); (E.B.); (M.H.)
| | - Erika Berg
- Institute of Pathology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10115 Berlin, Germany; (M.v.W.); (E.B.); (M.H.)
| | - Michael Hummel
- Institute of Pathology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10115 Berlin, Germany; (M.v.W.); (E.B.); (M.H.)
| | - Lena Timm
- Department of Gastroenterology, Infectious Diseases and Rheumatology, Campus Benjamin Franklin, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10115 Berlin, Germany; (M.P.); (L.T.); (S.D.)
| | - Beate Rau
- Department of Surgery, Campus Virchow-Klinikum and Campus Mitte, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10115 Berlin, Germany;
| | - Wolfgang Walther
- Experimental and Clinical Research Center, Charité-Universitätsmedizin and Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, 10115 Berlin, Germany; (C.T.); or (K.H.); (M.D.); (W.W.); (D.K.)
| | - Severin Daum
- Department of Gastroenterology, Infectious Diseases and Rheumatology, Campus Benjamin Franklin, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10115 Berlin, Germany; (M.P.); (L.T.); (S.D.)
| | - Dennis Kobelt
- Experimental and Clinical Research Center, Charité-Universitätsmedizin and Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, 10115 Berlin, Germany; (C.T.); or (K.H.); (M.D.); (W.W.); (D.K.)
- German Cancer Consortium (DKTK), 69126 Heidelberg, Germany
| | - Ulrike Stein
- Experimental and Clinical Research Center, Charité-Universitätsmedizin and Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, 10115 Berlin, Germany; (C.T.); or (K.H.); (M.D.); (W.W.); (D.K.)
- German Cancer Consortium (DKTK), 69126 Heidelberg, Germany
- Correspondence:
| |
Collapse
|
10
|
Zhang Z, Liu Z, Chen Z. Comparison of Treatment Efficacy and Survival Outcomes Between Asian and Western Patients With Unresectable Gastric or Gastro-Esophageal Adenocarcinoma: A Systematic Review and Meta-Analysis. Front Oncol 2022; 12:831207. [PMID: 35321436 PMCID: PMC8936077 DOI: 10.3389/fonc.2022.831207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 02/15/2022] [Indexed: 12/02/2022] Open
Abstract
Background Gastric cancer and gastro-esophageal adenocarcinoma are geographically heterogeneous diseases. Previous studies suggested that Asian and Western patients with late-stage gastric or gastro-esophageal adenocarcinoma possess distinct survival outcomes. However, the interregional differences of multiple systemic therapies in unresectable diseases have not been comprehensively described. Materials and Methods We searched PubMed-MEDLINE, Embase, Web of Science and Cochrane Library from inception to 31 October 2021 and reviewed major conference abstracts for controlled trials of systemic therapies in unresectable gastric or gastro-esophageal adenocarcinoma that reported hazard ratios stratified by geographical region. The primary measurements were overall survival and progression-free survival. The pooled hazard ratios and 95% confidence intervals for overall survival and progression-free survival in Asian and Western populations were calculated using a random effect model. A linear regression model was adopted to compare the overall survival and progression-free survival between Asian and Western patients. Results A total of 9033 patients from 20 studies were included for analysis. Immunotherapy was associated with an improvement in the overall survival for both Asian (hazard ratio, 0.80; 95% confidence interval, 0.65–0.98) and Western (hazard ratio, 0.90; 95% confidence interval, 0.81–1.00) patients, with no significant difference between the two groups (P = 0.32). Trends of survival benefit with anti-HER2 therapy and anti-angiogenic therapy versus control were observed in both Asian and Western patients, although statistical significance was not denoted. Subgroup analyses yielded a statistically superior overall survival of Asian versus Western patients in trials that investigated first-line immunotherapy (P = 0.04). Due to the linear regression analyses with scatter plot graphs, Asian patients showed a higher overall survival, but not progression-free survival, than Western patients irrespective of treatment type. Conclusion Asian and Western patients with unresectable gastric or gastro-esophageal adenocarcinoma show similar responses to systemic therapies with limited interregional differences. Exceptionally, first-line immunotherapy could elicit superior survival among Asian populations. In addition, Asian patients with gastric or gastro-esophageal adenocarcinoma display a superior OS compared with Western counterparts.
Collapse
Affiliation(s)
- Zhening Zhang
- Department of General Surgery, Peking University First Hospital, Beijing, China
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research, Peking University Cancer Hospital and Institute, Beijing, China
| | - Zining Liu
- Department of General Surgery, Peking University First Hospital, Beijing, China
- Department of Gastrointestinal Cancer Center, Key Laboratory of Carcinogenesis and Translational Research, Peking University Cancer Hospital and Institute, Beijing, China
| | - Zeyang Chen
- Department of General Surgery, Peking University First Hospital, Beijing, China
- *Correspondence: Zeyang Chen,
| |
Collapse
|
11
|
Huang H, Wang Z, Li Y, Zhao Q, Niu Z. Amplification of the human epidermal growth factor receptor 2 ( HER2) gene is associated with a microsatellite stable status in Chinese gastric cancer patients. J Gastrointest Oncol 2021; 12:377-387. [PMID: 34012633 PMCID: PMC8107625 DOI: 10.21037/jgo-21-47] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 04/04/2021] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Gastric cancer (GC) is one of the most common cancers worldwide. However, little is known about the combination of HER2 amplification and microsatellite instability (MSI) status in GC. This study aimed to analyze the correlation of HER2 amplification with microsatellite instability (MSI) status, clinical characteristics, and the tumor mutational burden (TMB) of patients. METHODS A total of 192 gastric cancer (GC) patients were enrolled in this cohort. To analyze genomic alterations (GAs), deep sequencing was performed on 450 target cancer genes. TMB was measured by an in-house algorithm. MSI status was inferred based on the MANTIS (Microsatellite Analysis for Normal-Tumor InStability) score. RESULTS The most frequently amplified genes in the GC patients included cyclin E1 (CCNE1), human epidermal growth factor receptor 2 (HER2), fibroblast growth factor receptor 2 (FGFR2), cyclin D1 (CCND1), fibroblast growth factor 19 (FGF19), fibroblast growth factor 3 (FGF3), and fibroblast growth factor 4 (FGF4). The frequency of HER2 amplification was 9.38% (18/192). HER2 amplification was higher in females than in males (14.52% vs. 6.92%, respectively, P=0.091), however, MSI was higher in males compared to females (7.69% vs. 4.84%, respectively, P=0.46). HER2 amplification was higher in metastatic loci compared to primary lesions (23.08% vs. 8.38%, respectively, P=0.079) and was lower in patients with high TMB (TMB-H) compared to those with low TMB (TMB-L) (4.0% vs. 11.35%, respectively, P=0.12). While the frequency of MSI in metastatic foci was higher than that in primary lesions (15.38% vs. 6.15%, respectively, P=0.48), MSI status was highly associated with TMB-H (20% vs. 0%, respectively, P=3.66×10-7). Furthermore, HER2 amplification was negatively correlated with MSI status in Chinese GC patients. CONCLUSIONS HER2 amplification was negatively correlated with TMB-H and MSI status, and MSI status was significantly associated with TMB-H in Chinese GC patients. These data suggested that HER2 amplification might be a negative indicator for GC immunotherapy.
Collapse
Affiliation(s)
- He Huang
- Department of Gastrointestinal Surgery, The First Hospital of Shanxi Medical University, Shanxi, China
| | - Zhengkun Wang
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yi Li
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Qun Zhao
- Department of Gastrosurgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Zhaojian Niu
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
12
|
Freedman JA, Al Abo M, Allen TA, Piwarski SA, Wegermann K, Patierno SR. Biological Aspects of Cancer Health Disparities. Annu Rev Med 2021; 72:229-241. [PMID: 33502900 DOI: 10.1146/annurev-med-070119-120305] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Racial and ethnic disparities span the continuum of cancer care and are driven by a complex interplay among social, psychosocial, lifestyle, environmental, health system, and biological determinants of health. Research is needed to identify these determinants of cancer health disparities and to develop interventions to achieve cancer health equity. Herein, we focus on the overall burden of ancestry-related molecular alterations, the functional significance of the alterations in hallmarks of cancer, and the implications of the alterations for precision oncology and immuno-oncology. In conclusion, we reflect on the importance of estimating ancestry, improving diverse racial and ethnic participation in cancer clinical trials, and examining the intersection among determinants of cancer health disparities.
Collapse
Affiliation(s)
- Jennifer A Freedman
- Duke Cancer Institute, Duke University School of Medicine, Durham, North Carolina 27710, USA;
- Division of Medical Oncology, Department of Medicine, Duke University School of Medicine, Durham, North Carolina 27710, USA
| | - Muthana Al Abo
- Duke Cancer Institute, Duke University School of Medicine, Durham, North Carolina 27710, USA;
| | - Tyler A Allen
- Duke Cancer Institute, Duke University School of Medicine, Durham, North Carolina 27710, USA;
| | - Sean A Piwarski
- Division of Medical Oncology, Department of Medicine, Duke University School of Medicine, Durham, North Carolina 27710, USA
| | - Kara Wegermann
- Division of Gastroenterology, Duke University Health System, Durham, North Carolina 27710, USA
| | - Steven R Patierno
- Duke Cancer Institute, Duke University School of Medicine, Durham, North Carolina 27710, USA;
- Division of Medical Oncology, Department of Medicine, Duke University School of Medicine, Durham, North Carolina 27710, USA
| |
Collapse
|
13
|
Identification of Core Prognosis-Related Candidate Genes in Chinese Gastric Cancer Population Based on Integrated Bioinformatics. BIOMED RESEARCH INTERNATIONAL 2020; 2020:8859826. [PMID: 33381592 PMCID: PMC7748906 DOI: 10.1155/2020/8859826] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 11/18/2020] [Accepted: 11/24/2020] [Indexed: 12/29/2022]
Abstract
Background Gastric cancer (GC) is one of the leading causes of cancer-related mortality worldwide. There are great geographical differences in the incidence of GC, and somatic mutation rates of driver genes are also different. The present study is aimed at screening core prognosis-related candidate genes in Chinese gastric cancer population based on integrated bioinformatics for the early diagnosis and prognosis of GC. Methods In the present study, the differentially expressed genes (DEGs) in GC were identified using four microarray datasets from the Gene Expression Omnibus (GEO) database. The samples of these datasets were all from China. Functional enrichment analysis of DEGs was conducted to evaluate the underlying molecular mechanisms involved in GC. Protein-protein interaction (PPI) network and cytoHubba were performed to determine hub genes associated with GC. Gene Expression Profiling Interactive Analysis (GEPIA) and Human Protein Atlas (HPA) were performed to validate the hub genes. Results A total of 240 DEGs were obtained through the RRA method, including 80 upregulated genes and 160 downregulated genes. Upregulated genes were mainly enriched in extracellular matrix organization, extracellular matrix, and extracellular matrix structural constituent. The downregulated genes were mainly enriched in digestion, extracellular space, and oxidoreductase activity. The KEGG pathway enrichment analysis showed that the upregulated genes were mainly associated with ECM-receptor interaction, focal adhesion, and PI3K-Akt signaling pathway. And downregulated genes were mainly associated with the metabolism of xenobiotics by cytochrome P450, metabolic pathways, and gastric acid secretion. The transcriptional and translational expression levels of the genes including COL1A1, COL5A2, COL12A1, and VCAN were higher in GC tissues than normal tissues. Conclusion A total of four genes including COL1A1, COL5A2, COL12A1, and VCAN were considered potential GC biomarkers in the Chinese population. And ECM-receptor interaction, focal adhesion, and PI3K-Akt signaling pathway were revealed to be important mechanisms of GC. Our findings provide novel insights into the occurrence and progression of GC in the Chinese population.
Collapse
|
14
|
Nemtsova MV, Mikhaylenko DS, Kuznetsova EB, Bykov II, Zamyatnin AA. Inactivation of Epigenetic Regulators due to Mutations in Solid Tumors. BIOCHEMISTRY (MOSCOW) 2020; 85:735-748. [PMID: 33040718 DOI: 10.1134/s0006297920070020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Main factors involved in carcinogenesis are associated with somatic mutations in oncogenes and tumor suppressor genes representing changes in the DNA nucleotide sequence. Epigenetic changes, such as aberrant DNA methylation, modifications of histone proteins, and chromatin remodeling, are equally important in the development of human neoplasms. From this perspective, mutations in the genes encoding key participants of epigenetic regulation are of particular interest including enzymes that methylate/demethylate DNA, enzymes that covalently attach or remove regulatory signals from histones, components of nucleosome remodeling multiprotein complexes, auxiliary proteins and cofactors of the above-mentioned molecules. This review describes both germline and somatic mutations in the key epigenetic regulators with emphasis on the latter ones in the solid human tumors, as well as considers functional consequences of these mutations on the cellular level. In addition, clinical associations of the somatic mutations in epigenetic regulators are presented, as well as DNA diagnostics of hereditary cancer syndromes due to germline mutations in the SMARC proteins and chemotherapy drugs directly affecting the altered epigenetic mechanisms for treatment of patients with solid neoplasms. The review is intended for a wide range of molecular biologists, geneticists, oncologists, and associated specialists.
Collapse
Affiliation(s)
- M V Nemtsova
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University (Sechenov University), Moscow, 119991, Russia.,Research Centre for Medical Genetics, Moscow, 115478, Russia
| | - D S Mikhaylenko
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University (Sechenov University), Moscow, 119991, Russia. .,Research Centre for Medical Genetics, Moscow, 115478, Russia
| | - E B Kuznetsova
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University (Sechenov University), Moscow, 119991, Russia
| | - I I Bykov
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University (Sechenov University), Moscow, 119991, Russia
| | - A A Zamyatnin
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University (Sechenov University), Moscow, 119991, Russia.,Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| |
Collapse
|
15
|
Targeting the histone demethylase PHF8-mediated PKCα-Src-PTEN axis in HER2-negative gastric cancer. Proc Natl Acad Sci U S A 2020; 117:24859-24866. [PMID: 32958674 PMCID: PMC7547212 DOI: 10.1073/pnas.1919766117] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Targeted treatments for advanced gastric cancer (GC) are needed, particularly for HER2-negative GC, which represents the majority of cases (80 to 88%). In this study, in silico analyses of the lysine histone demethylases (KDMs) involved in diverse biological processes and diseases revealed that PHD finger protein 8 (PHF8, KDM7B) was significantly associated with poor clinical outcome in HER2-negative GC. The depletion of PHF8 significantly reduced cancer progression in GC cells and in mouse xenografts. PHF8 regulated genes involved in cell migration/motility based on a microarray analysis. Of note, PHF8 interacted with c-Jun on the promoter of PRKCA which encodes PKCα. The depletion of PHF8 or PKCα greatly up-regulated PTEN expression, which could be rescued by ectopic expression of a PKCα expression vector or an active Src. These suggest that PTEN destabilization occurs mainly via the PKCα-Src axis. GC cells treated with midostaurin or bosutinib significantly suppressed migration in vitro and in zebrafish models. Immunohistochemical analyses of PHF8, PKCα, and PTEN showed a positive correlation between PHF8 and PKCα but negative correlations between PHF8 and PTEN and between PKCα and PTEN. Moreover, high PHF8-PKCα expression was significantly correlated with worse prognosis. Together, our results suggest that the PKCα-Src-PTEN pathway regulated by PHF8/c-Jun is a potential prognostic/therapeutic target in HER2-negative advanced GC.
Collapse
|
16
|
5-Fluorouracil Conversion Pathway Mutations in Gastric Cancer. BIOLOGY 2020; 9:biology9090265. [PMID: 32887417 PMCID: PMC7563957 DOI: 10.3390/biology9090265] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 08/27/2020] [Accepted: 09/01/2020] [Indexed: 02/08/2023]
Abstract
To date, 5-Fluorouracil (5FU) is a major component of several chemotherapy regimens, thus its study is of fundamental importance to better understand all the causes that may lead to chemoresistance and treatment failure. Given the evident differences between prognosis in Asian and Caucasian populations, triggered by clear genetic discordances and given the extreme genetic heterogeneity of gastric cancer (GC), the evaluation of the most frequent mutations in every single member of the 5FU conversion and activation pathway might reveal several important results. Here, we exploited the cBioPortal analysis software to query a large databank of clinical and wide-genome studies to evaluate the components of the three major 5FU transformation pathways. We demonstrated that mutations in such ways were associated with a poor prognosis and reduced overall survival, often caused by a deletion in the TYMP gene and amplification in TYMS. The use of prodrugs and dihydropyrimidine dehydrogenase (DPD) inhibitors, which normally catabolizes 5FU into inactive metabolites, improved such chemotherapies, but several steps forward still need to be taken to select better therapies to target the chemoresistant pools of cells with high anaplastic features and genomic instability.
Collapse
|
17
|
Feng Z, Qiao R, Ren Z, Hou X, Feng J, He X, Chen D. Could CTSK and COL4A2 be specific biomarkers of poor prognosis for patients with gastric cancer in Asia?-a microarray analysis based on regional population. J Gastrointest Oncol 2020; 11:386-401. [PMID: 32399279 DOI: 10.21037/jgo.2020.03.01] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Background In the purpose of identifying reliable biomarkers for evaluating prognosis, monitoring recurrence and exploring new therapeutic targets, it is quite necessary to screen for the genetic changes and potential molecular mechanisms of the occurrence and development of gastric cancer (GC) from the aspects of race and region. Methods Target datasets were retrieved from Gene Expression Omnibus (GEO) database with "gastric cancer" as the key word, and corresponding data was downloaded. The differentially expressed genes (DEGs) were obtained by using limma R package, and the Gene Ontology (GO) annotation and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway for DEGs were analyzed in Enirchr database. Protein-protein interaction (PPI) network and molecular module were also constructed through STRING database and Cytoscape software. Survival analyses were completed for DEGs in GEO and Kaplan-Meier plotter database via cross validation. Finally, the correlation between gene expression and the infiltration cell levels in tumor microenvironment (TME) was explored based on the tumor immune estimation resource (TIMER) database. Results Five GC-related microarray datasets were selected and used for differential analysis, and 222 DEGs were identified. GO analyses of DEGs were mainly involved in cell metabolism and the formation of extracellular matrix (ECM). The top enriched pathways of DEGs were protein digestion and absorption, ECM-receptor interaction, focal adhesion (FA), PI3K-Akt signaling pathway. Survival analyses of DEGs revealed that the expression levels of CTSK and COL4A2 were significantly associated with poor prognosis of GC patients in Asian. Specifically, the high expression of CTSK had a closely related to the infiltration level of inflammatory cell in TME. Conclusions CTSK and COL4A2 could play a critical role in the pathogenesis of GC and act as the promising prognostic biomarkers. CTSK could induce the formation of immunosuppressive TME and promote the immune escape of GC cells.
Collapse
Affiliation(s)
- Zhijun Feng
- Department of General Surgery, The Second Clinical Medical College, Lanzhou University, Lanzhou 730030, China
| | - Ruili Qiao
- Department of VIP Internal Medicine, Lanzhou University First Hospital, Lanzhou 730000, China
| | - Zhijian Ren
- Department of General Surgery, The Second Clinical Medical College, Lanzhou University, Lanzhou 730030, China
| | - Xiaofeng Hou
- Department of General Surgery, The Second Clinical Medical College, Lanzhou University, Lanzhou 730030, China
| | - Jie Feng
- Department of General Surgery, The Second Clinical Medical College, Lanzhou University, Lanzhou 730030, China
| | - Xiaodong He
- Department of General Surgery, The Second Clinical Medical College, Lanzhou University, Lanzhou 730030, China
| | - Dongdong Chen
- Department of The First General Surgery, Gansu Provincial Hospital, Lanzhou 730000, China
| |
Collapse
|
18
|
Abstract
Gastric cancer is an active topic of clinical and basic research due to high morbidity and mortality. To date, gastrectomy and chemotherapy are the only therapeutic options for gastric cancer patients, but drug resistance, either acquired or primary, is the main cause for treatment failure. Differences in development and response to cancer treatments have been observed among ethnically diverse GC patient populations. In spite of major incidence, GC Asian patients have a significantly better prognosis and response to treatments than Caucasian ones due to genetic discordances between the two populations. Gene therapy could be an alternative strategy to overcome such issues and especially CRISPR/Cas9 represents one of the most intriguing gene-editing system. Thus, in this review article, we want to provide an update on the currently used therapies for the treatment of advanced GC. Graphical abstract.
Collapse
|
19
|
Nagashima T, Yamaguchi K, Urakami K, Shimoda Y, Ohnami S, Ohshima K, Tanabe T, Naruoka A, Kamada F, Serizawa M, Hatakeyama K, Matsumura K, Ohnami S, Maruyama K, Mochizuki T, Kusuhara M, Shiomi A, Ohde Y, Terashima M, Uesaka K, Onitsuka T, Nishimura S, Hirashima Y, Hayashi N, Kiyohara Y, Tsubosa Y, Katagiri H, Niwakawa M, Takahashi K, Kashiwagi H, Nakagawa M, Ishida Y, Sugino T, Takahashi M, Akiyama Y. Japanese version of The Cancer Genome Atlas, JCGA, established using fresh frozen tumors obtained from 5143 cancer patients. Cancer Sci 2020; 111:687-699. [PMID: 31863614 PMCID: PMC7004528 DOI: 10.1111/cas.14290] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 12/01/2019] [Accepted: 12/10/2019] [Indexed: 12/21/2022] Open
Abstract
This study aimed to establish the Japanese Cancer Genome Atlas (JCGA) using data from fresh frozen tumor tissues obtained from 5143 Japanese cancer patients, including those with colorectal cancer (31.6%), lung cancer (16.5%), gastric cancer (10.8%) and other cancers (41.1%). The results are part of a single-center study called "High-tech Omics-based Patient Evaluation" or "Project HOPE" conducted at the Shizuoka Cancer Center, Japan. All DNA samples and most RNA samples were analyzed using whole-exome sequencing, cancer gene panel sequencing, fusion gene panel sequencing and microarray gene expression profiling, and the results were annotated using an analysis pipeline termed "Shizuoka Multi-omics Analysis Protocol" developed in-house. Somatic driver alterations were identified in 72.2% of samples in 362 genes (average, 2.3 driver events per sample). Actionable information on drugs that is applicable in the current clinical setting was associated with 11.3% of samples. When including those drugs that are used for investigative purposes, actionable information was assigned to 55.0% of samples. Germline analysis revealed pathogenic mutations in hereditary cancer genes in 9.2% of samples, among which 12.2% were confirmed as pathogenic mutations by confirmatory test. Pathogenic mutations associated with non-cancerous hereditary diseases were detected in 0.4% of samples. Tumor mutation burden (TMB) analysis revealed 5.4% of samples as having the hypermutator phenotype (TMB ≥ 20). Clonal hematopoiesis was observed in 8.4% of samples. Thus, the JCGA dataset and the analytical procedures constitute a fundamental resource for genomic medicine for Japanese cancer patients.
Collapse
Affiliation(s)
- Takeshi Nagashima
- Cancer Diagnostics Research DivisionShizuoka Cancer Center Research InstituteShizuokaJapan
- SRLTokyoJapan
| | | | - Kenichi Urakami
- Cancer Diagnostics Research DivisionShizuoka Cancer Center Research InstituteShizuokaJapan
| | - Yuji Shimoda
- Cancer Diagnostics Research DivisionShizuoka Cancer Center Research InstituteShizuokaJapan
- SRLTokyoJapan
| | - Sumiko Ohnami
- Cancer Diagnostics Research DivisionShizuoka Cancer Center Research InstituteShizuokaJapan
| | - Keiichi Ohshima
- Medical Genetics DivisionShizuoka Cancer Center Research InstituteShizuokaJapan
| | - Tomoe Tanabe
- Cancer Diagnostics Research DivisionShizuoka Cancer Center Research InstituteShizuokaJapan
- SRLTokyoJapan
| | - Akane Naruoka
- Drug Discovery and Development DivisionShizuoka Cancer Center Research InstituteShizuokaJapan
| | - Fukumi Kamada
- Cancer Diagnostics Research DivisionShizuoka Cancer Center Research InstituteShizuokaJapan
| | - Masakuni Serizawa
- Drug Discovery and Development DivisionShizuoka Cancer Center Research InstituteShizuokaJapan
| | - Keiichi Hatakeyama
- Medical Genetics DivisionShizuoka Cancer Center Research InstituteShizuokaJapan
| | - Kenya Matsumura
- Cancer Diagnostics Research DivisionShizuoka Cancer Center Research InstituteShizuokaJapan
| | - Shumpei Ohnami
- Cancer Diagnostics Research DivisionShizuoka Cancer Center Research InstituteShizuokaJapan
| | - Koji Maruyama
- Experimental Animal FacilityShizuoka Cancer Center Research InstituteShizuokaJapan
| | - Tohru Mochizuki
- Medical Genetics DivisionShizuoka Cancer Center Research InstituteShizuokaJapan
| | - Masatoshi Kusuhara
- Drug Discovery and Development DivisionShizuoka Cancer Center Research InstituteShizuokaJapan
- Regional Resources DivisionShizuoka Cancer Center Research InstituteShizuokaJapan
| | - Akio Shiomi
- Division of Colon and Rectal SurgeryShizuoka Cancer Center HospitalShizuokaJapan
| | - Yasuhisa Ohde
- Division of Thoracic SurgeryShizuoka Cancer Center HospitalShizuokaJapan
| | | | - Katsuhiko Uesaka
- Division of Hepato‐Biliary‐Pancreatic SurgeryShizuoka Cancer Center HospitalShizuokaJapan
| | - Tetsuro Onitsuka
- Division of Head and Neck SurgeryShizuoka Cancer Center HospitalShizuokaJapan
| | | | | | - Nakamasa Hayashi
- Division of NeurosurgeryShizuoka Cancer Center HospitalShizuokaJapan
| | - Yoshio Kiyohara
- Division of DermatologyShizuoka Cancer Center HospitalShizuokaJapan
| | - Yasuhiro Tsubosa
- Division of Esophageal SurgeryShizuoka Cancer Center HospitalShizuokaJapan
| | - Hirohisa Katagiri
- Division of Orthopedic OncologyShizuoka Cancer Center HospitalShizuokaJapan
| | | | - Kaoru Takahashi
- Division of Breast Oncology CenterShizuoka Cancer Center HospitalShizuokaJapan
| | - Hiroya Kashiwagi
- Division of OphthalmologyShizuoka Cancer Center HospitalShizuokaJapan
| | - Masahiro Nakagawa
- Division of Plastic and Reconstructive SurgeryShizuoka Cancer Center HospitalShizuokaJapan
| | - Yuji Ishida
- Division of PediatricsShizuoka Cancer Center HospitalShizuokaJapan
| | - Takashi Sugino
- Division of PathologyShizuoka Cancer Center HospitalShizuokaJapan
| | | | - Yasuto Akiyama
- Immunotherapy DivisionShizuoka Cancer Center Research InstituteShizuokaJapan
| |
Collapse
|
20
|
Nemtsova MV, Kalinkin AI, Kuznetsova EB, Bure IV, Alekseeva EA, Bykov II, Khorobrykh TV, Mikhaylenko DS, Tanas AS, Kutsev SI, Zaletaev DV, Strelnikov VV. Clinical relevance of somatic mutations in main driver genes detected in gastric cancer patients by next-generation DNA sequencing. Sci Rep 2020; 10:504. [PMID: 31949278 PMCID: PMC6965114 DOI: 10.1038/s41598-020-57544-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 12/31/2019] [Indexed: 12/14/2022] Open
Abstract
Somatic mutation profiling in gastric cancer (GC) enables main driver mutations to be identified and their clinical and prognostic value to be evaluated. We investigated 77 tumour samples of GC by next-generation sequencing (NGS) with the Ion AmpliSeq Hotspot Panel v2 and a custom panel covering six hereditary gastric cancer predisposition genes (BMPR1A, SMAD4, CDH1, TP53, STK11 and PTEN). Overall, 47 somatic mutations in 14 genes were detected; 22 of these mutations were novel. Mutations were detected most frequently in the CDH1 (13/47) and TP53 (12/47) genes. As expected, somatic CDH1 mutations were positively correlated with distant metastases (p = 0.019) and tumours with signet ring cells (p = 0.043). These findings confirm the association of the CDH1 mutations with diffuse GC type. TP53 mutations were found to be significantly associated with a decrease in overall survival in patients with Lauren diffuse-type tumours (p = 0.0085), T3-T4 tumours (p = 0.037), and stage III-IV tumours (p = 0.013). Our results confirm that the detection of mutations in the main driver genes may have a significant prognostic value for GC patients and provide an independent GC-related set of clinical and molecular genetic data.
Collapse
Affiliation(s)
- Marina V Nemtsova
- Medical Genetics Laboratory, I.M. Sechenov First Moscow State Medical University, Moscow, 119991, Russian Federation.,Epigenetics Laboratory, Research Centre for Medical Genetics, Moscow, 115522, Russian Federation
| | - Alexey I Kalinkin
- Epigenetics Laboratory, Research Centre for Medical Genetics, Moscow, 115522, Russian Federation
| | - Ekaterina B Kuznetsova
- Medical Genetics Laboratory, I.M. Sechenov First Moscow State Medical University, Moscow, 119991, Russian Federation.,Epigenetics Laboratory, Research Centre for Medical Genetics, Moscow, 115522, Russian Federation
| | - Irina V Bure
- Medical Genetics Laboratory, I.M. Sechenov First Moscow State Medical University, Moscow, 119991, Russian Federation
| | - Ekaterina A Alekseeva
- Medical Genetics Laboratory, I.M. Sechenov First Moscow State Medical University, Moscow, 119991, Russian Federation.,Epigenetics Laboratory, Research Centre for Medical Genetics, Moscow, 115522, Russian Federation
| | - Igor I Bykov
- Department No. 1, Medical Faculty, Faculty Surgery, I.M. Sechenov First Moscow State Medical University, Moscow, 119991, Russian Federation
| | - Tatiana V Khorobrykh
- Department No. 1, Medical Faculty, Faculty Surgery, I.M. Sechenov First Moscow State Medical University, Moscow, 119991, Russian Federation
| | - Dmitry S Mikhaylenko
- Medical Genetics Laboratory, I.M. Sechenov First Moscow State Medical University, Moscow, 119991, Russian Federation.,Epigenetics Laboratory, Research Centre for Medical Genetics, Moscow, 115522, Russian Federation.,N.A. Lopatkin Research Institute of Urology and Interventional Radiology - branch of the National Medical Research Radiologiсal Center, Moscow, 105425, Russian Federation
| | - Alexander S Tanas
- Epigenetics Laboratory, Research Centre for Medical Genetics, Moscow, 115522, Russian Federation
| | - Sergey I Kutsev
- Epigenetics Laboratory, Research Centre for Medical Genetics, Moscow, 115522, Russian Federation
| | - Dmitry V Zaletaev
- Medical Genetics Laboratory, I.M. Sechenov First Moscow State Medical University, Moscow, 119991, Russian Federation.,Epigenetics Laboratory, Research Centre for Medical Genetics, Moscow, 115522, Russian Federation
| | - Vladimir V Strelnikov
- Epigenetics Laboratory, Research Centre for Medical Genetics, Moscow, 115522, Russian Federation.
| |
Collapse
|
21
|
Maron SB, Chase LM, Lomnicki S, Kochanny S, Moore KL, Joshi SS, Landron S, Johnson J, Kiedrowski LA, Nagy RJ, Lanman RB, Kim ST, Lee J, Catenacci DVT. Circulating Tumor DNA Sequencing Analysis of Gastroesophageal Adenocarcinoma. Clin Cancer Res 2019; 25:7098-7112. [PMID: 31427281 DOI: 10.1158/1078-0432.ccr-19-1704] [Citation(s) in RCA: 137] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 07/01/2019] [Accepted: 08/14/2019] [Indexed: 12/20/2022]
Abstract
PURPOSE Gastroesophageal adenocarcinoma (GEA) has a poor prognosis and few therapeutic options. Utilizing a 73-gene plasma-based next-generation sequencing (NGS) cell-free circulating tumor DNA (ctDNA-NGS) test, we sought to evaluate the role of ctDNA-NGS in guiding clinical decision-making in GEA. EXPERIMENTAL DESIGN We evaluated a large cohort (n = 2,140 tests; 1,630 patients) of ctDNA-NGS results (including 369 clinically annotated patients). Patients were assessed for genomic alteration (GA) distribution and correlation with clinicopathologic characteristics and outcomes. RESULTS Treatment history, tumor site, and disease burden dictated tumor-DNA shedding and consequent ctDNA-NGS maximum somatic variant allele frequency. Patients with locally advanced disease having detectable ctDNA postoperatively experienced inferior median disease-free survival (P = 0.03). The genomic landscape was similar but not identical to tissue-NGS, reflecting temporospatial molecular heterogeneity, with some targetable GAs identified at higher frequency via ctDNA-NGS compared with previous primary tumor-NGS cohorts. Patients with known microsatellite instability-high (MSI-High) tumors were robustly detected with ctDNA-NGS. Predictive biomarker assessment was optimized by incorporating tissue-NGS and ctDNA-NGS assessment in a complementary manner. HER2 inhibition demonstrated a profound survival benefit in HER2-amplified patients by ctDNA-NGS and/or tissue-NGS (median overall survival, 26.3 vs. 7.4 months; P = 0.002), as did EGFR inhibition in EGFR-amplified patients (median overall survival, 21.1 vs. 14.4 months; P = 0.01). CONCLUSIONS ctDNA-NGS characterized GEA molecular heterogeneity and rendered important prognostic and predictive information, complementary to tissue-NGS.See related commentary by Frankell and Smyth, p. 6893.
Collapse
Affiliation(s)
- Steven B Maron
- Memorial Sloan Kettering Cancer Center, New York, New York
| | - Leah M Chase
- The University of Chicago Medical Center, Chicago, Illinois
| | | | - Sara Kochanny
- The University of Chicago Medical Center, Chicago, Illinois
| | - Kelly L Moore
- The University of Chicago Medical Center, Chicago, Illinois
| | - Smita S Joshi
- The University of Chicago Medical Center, Chicago, Illinois
| | - Stacie Landron
- The University of Chicago Medical Center, Chicago, Illinois
| | - Julie Johnson
- The University of Chicago Medical Center, Chicago, Illinois
| | - Lesli A Kiedrowski
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Rebecca J Nagy
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Richard B Lanman
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | | | | | | |
Collapse
|
22
|
Althubiti MA. Mutation Frequencies in Endometrial Cancer Patients of Different Ethnicities and Tumor Grades: An Analytical Study. SAUDI JOURNAL OF MEDICINE & MEDICAL SCIENCES 2018; 7:16-21. [PMID: 30787852 PMCID: PMC6381847 DOI: 10.4103/sjmms.sjmms_154_18] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Background: Endometrial carcinoma is a predominant health problem for women worldwide. However, there is a lack of data on genetic mutation frequencies in endometrial cancer patients of different ethnicities and tumor grades. Objective: The objective of this study is to provide data regarding mutation frequencies in endometrial cancer patients of different ethnic groups and tumor grades by analyzing large-scale cancer genomic datasets of a database. Materials and Methods: The following databases of cBioPortal were explored for possible mutation frequency variations in endometrial cancer patients: the Uterine Corpus Endometrial Carcinoma (TCGA, PanCancer Atlas) database for ethnicity-based studies; the Uterine Corpus Endometrial Carcinoma (TCGA, Nature 2013) database for tumor grade-based study; and GDC Data Portal database for calculating survival rates using the Kaplan–Meier method. Results: PTEN mutation frequency was almost identical in all ethnic groups studied (White, Black/African American, Asian, Native Hawaiian or other Pacific Islander, and American Indian or Asian Native). PIK3CA and ARID1A mutation frequencies were higher in White and Asian patients compared with other ethnicities; TP53 and FAT1 mutation frequencies were higher in Black/African Americans; and CTNNB1 and RYR2 mutation frequencies were higher Native Hawaiians or Asian Natives. TTN mutation frequency was lower in Asian patients. With regards to mutation frequencies at different tumor stages, in all genes, >50% of the mutations occurred during the first stage, except in TP53 and POLQ. In terms of prognosis in endometrial cancer considering the 10 most frequently mutated genes, PIK3CA and ARID1A mutations were correlated with good prognosis, whereas TP53 and PIK3R1 mutations were correlated with poor prognosis; mutations in all other genes did not show significant differences. Conclusion: This study revealed a new mutation frequency profile for different ethnicities and tumor grades in endometrial cancer patients. However, because this is a retrospective study, future prospective studies should be conducted including large sample sizes and more controlled measurements.
Collapse
Affiliation(s)
- Mohammad A Althubiti
- Department of Biochemistry, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| |
Collapse
|
23
|
Zu LD, Peng XC, Zeng Z, Wang JL, Meng LL, Shen WW, Hu CT, Yang Y, Fu GH. Gastrin inhibits gastric cancer progression through activating the ERK-P65-miR23a/27a/24 axis. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2018; 37:115. [PMID: 29866191 PMCID: PMC5987590 DOI: 10.1186/s13046-018-0782-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 05/01/2018] [Indexed: 02/06/2023]
Abstract
BACKGROUND To test the hypothesis that activated extracellular signal-regulated kinase (ERK) regulates P65-miR23a/27a/24 axis in gastric cancer (GC) and the ERK-P65-miR23a/27a/24 axis plays an important role in the development of GC, and to evaluate the role of gastrin in GC progression and ERK-P65-miR23a/27a/24 axis. METHODS The component levels of the ERK-P65-miR23a/27a/24 axis in four fresh GC tissues, 101 paraffin-embedded GC tissues and four GC cell lines were determined by Western blotting, immunohistochemistry (IHC) or qRT-PCR. The effects of gastrin on GC were first evaluated by measuring gastrin serum levels in 30 healthy and 70 GC patients and performing a correlation analysis between gastrin levels and survival time in 27 GC patients after eight years of follow-up, then evaluated on GC cell lines, GC cell xenograft models, and patient-derived xenografts (PDX) mouse models. The roles of ERK-P65-miR23a/27a/24 axis in GC progression and in the effects of gastrin on GC were examined. RESULTS ERK- P65-miR23a/27a/24 axis was proved to be present in GC cells. The levels of components of ERK-P65-miR23a/27a/24 axis were decreased in GC tissue samples and PGC cells. The decreased levels of components of ERK-P65-miR23a/27a/24 axis were associated with poor prognosis of GC, and ERK-P65-miR23a/27a/24 axis played a suppressive role in GC progression. Low blood gastrin was correlated with poor prognosis of the GC patients and decreased expression of p-ERK and p-P65 in GC tissues. Gastrin inhibited proliferation of poorly-differentiated GC (PGC) cells through activating the ERK-P65-miR23a/27a/24 axis. Gastrin inhibited GC growth and enhanced the suppression of GC by cisplatin in mice or PGC cell culture models through activating the ERK-P65-miR23a/27a/24 axis or its components. CONCLUSIONS ERK-P65-miR23a/27a/24 axis is down-regulated, leading to excess GC growth and poor prognosis of GC. Low gastrin promoted excess GC growth and contributed to the poor prognosis of the GC patients by down-regulating ERK-P65-miR23a/27a/24 axis. Gastrin inhibits gastric cancer growth through activating the ERK-P65-miR23a/27a/24 axis.
Collapse
Affiliation(s)
- Li-Dong Zu
- Pathology Center, Shanghai General Hospital/Faculty of Basic Medicine, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Institutes of Medical Sciences, Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xing-Chun Peng
- Pathology Center, Shanghai General Hospital/Faculty of Basic Medicine, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Institutes of Medical Sciences, Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhi Zeng
- Department of Pathology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jing-Long Wang
- Pathology Center, Shanghai General Hospital/Faculty of Basic Medicine, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Institutes of Medical Sciences, Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Li-Li Meng
- Pathology Center, Shanghai General Hospital/Faculty of Basic Medicine, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Institutes of Medical Sciences, Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wei-Wei Shen
- Pathology Center, Shanghai General Hospital/Faculty of Basic Medicine, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Institutes of Medical Sciences, Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chun-Ting Hu
- Pathology Center, Shanghai General Hospital/Faculty of Basic Medicine, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Institutes of Medical Sciences, Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ye Yang
- Department of Digestive Medicine, Ningbo No. 2 Hospital, Ningbo, 315010, China
| | - Guo-Hui Fu
- Pathology Center, Shanghai General Hospital/Faculty of Basic Medicine, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Institutes of Medical Sciences, Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China. .,Pathology Center, Shanghai General Hospital/Faculty of Basic Medicine, Shanghai Jiao Tong University School of Medicine, No. 280, South Chong-Qing Road, Shanghai, 200025, People's Republic of China.
| |
Collapse
|