1
|
Chakrabarty N, Mahajan A, Basu S, D’Cruz AK. Imaging Recommendations for Diagnosis and Management of Primary Parathyroid Pathologies: A Comprehensive Review. Cancers (Basel) 2024; 16:2593. [PMID: 39061231 PMCID: PMC11274996 DOI: 10.3390/cancers16142593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/06/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
Parathyroid pathologies are suspected based on the biochemical alterations and clinical manifestations, and the predominant roles of imaging in primary hyperparathyroidism are localisation of tumour within parathyroid glands, surgical planning, and to look for any ectopic parathyroid tissue in the setting of recurrent disease. This article provides a comprehensive review of embryology and anatomical variations of parathyroid glands and their clinical relevance, surgical anatomy of parathyroid glands, differentiation between multiglandular parathyroid disease, solitary adenoma, atypical parathyroid tumour, and parathyroid carcinoma. The roles, advantages and limitations of ultrasound, four-dimensional computed tomography (4DCT), radiolabelled technetium-99 (99mTc) sestamibi or dual tracer 99mTc pertechnetate and 99mTc-sestamibi with or without single photon emission computed tomography (SPECT) or SPECT/CT, dynamic enhanced magnetic resonance imaging (4DMRI), and fluoro-choline positron emission tomography (18F-FCH PET) or [11C] Methionine (11C -MET) PET in the management of parathyroid lesions have been extensively discussed in this article. The role of fluorodeoxyglucose PET (FDG-PET) has also been elucidated in this article. Management guidelines for parathyroid carcinoma proposed by the American Society of Clinical Oncology (ASCO) have also been described. An algorithm for management of parathyroid lesions has been provided at the end to serve as a quick reference guide for radiologists, clinicians and surgeons.
Collapse
Affiliation(s)
- Nivedita Chakrabarty
- Department of Radiodiagnosis, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Homi Bhabha National Institute (HBNI), Parel, Mumbai 400012, Maharashtra, India;
| | - Abhishek Mahajan
- Department of Imaging, The Clatterbridge Cancer Centre NHS Foundation Trust, 65 Pembroke Place, Liverpool L7 8YA, UK
- Faculty of Health and Life Sciences, University of Liverpool, Liverpool L69 3BX, UK
| | - Sandip Basu
- Radiation Medicine Centre, Bhabha Atomic Research Centre, Tata Memorial Hospital Annexe, Homi Bhabha National Institute (HBNI), Parel, Mumbai 400012, Maharashtra, India;
| | - Anil K. D’Cruz
- Apollo Hospitals, Navi Mumbai 400614, Maharashtra, India;
- Foundation of Head Neck Oncology, Mumbai 400012, Maharashtra, India
- Union International Cancer Control (UICC), 1202 Geneva, Switzerland
| |
Collapse
|
2
|
Mahajan A, Shukla S, Vaish R, Mair MD. Editorial: Editor's challenge: Abhishek Mahajan - how can precision oncology be advanced with validated imaging-based nomograms? Front Oncol 2024; 14:1362187. [PMID: 38361785 PMCID: PMC10867313 DOI: 10.3389/fonc.2024.1362187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 01/18/2024] [Indexed: 02/17/2024] Open
Affiliation(s)
- Abhishek Mahajan
- Department of Imaging, The Clatterbridge Cancer Centre National Health Service (NHS) Foundation Trust, Liverpool, United Kingdom
- Faculty of Health and Life Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Shreya Shukla
- Department of Radio Diagnosis, Tata Memorial Hospital, Varanasi, India
| | - Richa Vaish
- Department of Head and Neck Surgical Oncology, Tata Memorial Hospital, Mumbai, India
| | - Manish Devendra Mair
- Department of Maxillofacial Surgery, University Hospitals of Leicester National Health Service (NHS) Trust, Leicester, United Kingdom
| |
Collapse
|
3
|
Mahajan A, B G, Wadhwa S, Agarwal U, Baid U, Talbar S, Janu AK, Patil V, Noronha V, Mummudi N, Tibdewal A, Agarwal JP, Yadav S, Kumar Kaushal R, Puranik A, Purandare N, Prabhash K. Deep learning based automated epidermal growth factor receptor and anaplastic lymphoma kinase status prediction of brain metastasis in non-small cell lung cancer. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2023; 4:657-668. [PMID: 37745691 PMCID: PMC10511818 DOI: 10.37349/etat.2023.00158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 04/13/2023] [Indexed: 09/26/2023] Open
Abstract
Aim The aim of this study was to investigate the feasibility of developing a deep learning (DL) algorithm for classifying brain metastases from non-small cell lung cancer (NSCLC) into epidermal growth factor receptor (EGFR) mutation and anaplastic lymphoma kinase (ALK) rearrangement groups and to compare the accuracy with classification based on semantic features on imaging. Methods Data set of 117 patients was analysed from 2014 to 2018 out of which 33 patients were EGFR positive, 43 patients were ALK positive and 41 patients were negative for either mutation. Convolutional neural network (CNN) architecture efficient net was used to study the accuracy of classification using T1 weighted (T1W) magnetic resonance imaging (MRI) sequence, T2 weighted (T2W) MRI sequence, T1W post contrast (T1post) MRI sequence, fluid attenuated inversion recovery (FLAIR) MRI sequences. The dataset was divided into 80% training and 20% testing. The associations between mutation status and semantic features, specifically sex, smoking history, EGFR mutation and ALK rearrangement status, extracranial metastasis, performance status and imaging variables of brain metastasis were analysed using descriptive analysis [chi-square test (χ2)], univariate and multivariate logistic regression analysis assuming 95% confidence interval (CI). Results In this study of 117 patients, the analysis by semantic method showed 79.2% of the patients belonged to ALK positive were non-smokers as compared to double negative groups (P = 0.03). There was a 10-fold increase in ALK positivity as compared to EGFR positivity in ring enhancing lesions patients (P = 0.015) and there was also a 6.4-fold increase in ALK positivity as compared to double negative groups in meningeal involvement patients (P = 0.004). Using CNN Efficient Net DL model, the study achieved 76% accuracy in classifying ALK rearrangement and EGFR mutations without manual segmentation of metastatic lesions. Analysis of the manually segmented dataset resulted in improved accuracy of 89% through this model. Conclusions Both semantic features and DL model showed comparable accuracy in classifying EGFR mutation and ALK rearrangement. Both methods can be clinically used to predict mutation status while biopsy or genetic testing is undertaken.
Collapse
Affiliation(s)
- Abhishek Mahajan
- Clatterbridge Centre for Oncology NHS Foundation Trust, L7 8YA Liverpool, UK
- Department of Radiodiagnosis, Tata Memorial Hospital, Parel, Mumbai 400012, Maharashtra, India
| | - Gurukrishna B
- Department of Radiodiagnosis, Tata Memorial Hospital, Parel, Mumbai 400012, Maharashtra, India
| | - Shweta Wadhwa
- Department of Radiodiagnosis, Tata Memorial Hospital, Parel, Mumbai 400012, Maharashtra, India
| | - Ujjwal Agarwal
- Department of Radiodiagnosis, Tata Memorial Hospital, Parel, Mumbai 400012, Maharashtra, India
| | - Ujjwal Baid
- Department of Electronics and Telecommunication Engineering, SGGS Institute of Engineering and Technology, Nanded 431606, Maharashtra, India
| | - Sanjay Talbar
- Department of Electronics and Telecommunication Engineering, SGGS Institute of Engineering and Technology, Nanded 431606, Maharashtra, India
| | - Amit Kumar Janu
- Department of Radiodiagnosis, Tata Memorial Hospital, Parel, Mumbai 400012, Maharashtra, India
| | - Vijay Patil
- Department of Medical Oncology, Tata Memorial Hospital, Parel, Mumbai 400012, Maharashtra, India
| | - Vanita Noronha
- Department of Medical Oncology, Tata Memorial Hospital, Parel, Mumbai 400012, Maharashtra, India
| | - Naveen Mummudi
- Department of Radiation Oncology, Tata Memorial Hospital, Parel, Mumbai 400012, Maharashtra, India
| | - Anil Tibdewal
- Department of Radiation Oncology, Tata Memorial Hospital, Parel, Mumbai 400012, Maharashtra, India
| | - JP Agarwal
- Department of Radiation Oncology, Tata Memorial Hospital, Parel, Mumbai 400012, Maharashtra, India
| | - Subash Yadav
- Department of Pathology, Tata Memorial Hospital, Parel, Mumbai 400012, Maharashtra, India
| | - Rajiv Kumar Kaushal
- Department of Pathology, Tata Memorial Hospital, Parel, Mumbai 400012, Maharashtra, India
| | - Ameya Puranik
- Department of Nuclear Medicine, Tata Memorial Hospital, Parel, Mumbai 400012, Maharashtra, India
| | - Nilendu Purandare
- Department of Nuclear Medicine, Tata Memorial Hospital, Parel, Mumbai 400012, Maharashtra, India
| | - Kumar Prabhash
- Department of Medical Oncology, Tata Memorial Hospital, Parel, Mumbai 400012, Maharashtra, India
| |
Collapse
|
4
|
Bhattacharya K, Mahajan A, Vaish R, Rane S, Shukla S, D'Cruz AK. Imaging of Neck Nodes in Head and Neck Cancers - a Comprehensive Update. Clin Oncol (R Coll Radiol) 2023; 35:429-445. [PMID: 37061456 DOI: 10.1016/j.clon.2023.03.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 02/08/2023] [Accepted: 03/22/2023] [Indexed: 03/29/2023]
Abstract
Cervical lymph node metastases from head and neck squamous cell cancers significantly reduce disease-free survival and worsen overall prognosis and, hence, deserve more aggressive management and follow-up. As per the eighth edition of the American Joint Committee on Cancer staging manual, extranodal extension, especially in human papillomavirus-negative cancers, has been incorporated in staging as it is important in deciding management and significantly impacts the outcome of head and neck squamous cell cancer. Lymph node imaging with various radiological modalities, including ultrasound, computed tomography and magnetic resonance imaging, has been widely used, not only to demonstrate nodal involvement but also for guided histopathological evaluation and therapeutic intervention. Computed tomography and magnetic resonance imaging, together with positron emission tomography, are used widely for the follow-up of treated patients. Finally, there is an emerging role for artificial intelligence in neck node imaging that has shown promising results, increasing the accuracy of detection of nodal involvement, especially normal-appearing nodes. The aim of this review is to provide a comprehensive overview of the diagnosis and management of involved neck nodes with a focus on sentinel node anatomy, pathogenesis, imaging correlates (including radiogenomics and artificial intelligence) and the role of image-guided interventions.
Collapse
Affiliation(s)
- K Bhattacharya
- Tata Memorial Centre, Homi Bhabha National Institute, Mumbai, Maharashtra, India
| | - A Mahajan
- The Clatterbridge Cancer Centre, NHS Foundation Trust, Liverpool, UK.
| | - R Vaish
- Tata Memorial Centre, Homi Bhabha National Institute, Mumbai, Maharashtra, India
| | - S Rane
- Tata Memorial Centre, Homi Bhabha National Institute, Mumbai, Maharashtra, India
| | - S Shukla
- Homi Bhabha Cancer Hospital, Varanasi, Uttar Pradesh, India
| | - A K D'Cruz
- Apollo Hospitals, India; Union International Cancer Control (UICC), Geneva, Switzerland; Foundation of Head Neck Oncology, India
| |
Collapse
|
5
|
Chakrabarty N, Mahajan A, Patil V, Noronha V, Prabhash K. Imaging of brain metastasis in non-small-cell lung cancer: indications, protocols, diagnosis, post-therapy imaging, and implications regarding management. Clin Radiol 2023; 78:175-186. [PMID: 36503631 DOI: 10.1016/j.crad.2022.09.134] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 09/09/2022] [Accepted: 09/29/2022] [Indexed: 12/14/2022]
Abstract
Increased survival (due to the use of targeted therapies based on genomic profiling) has resulted in the increased incidence of brain metastasis during the course of disease, and thus, made it essential to have proper imaging guidelines in place for brain metastasis from non-small-cell lung cancer (NSCLC). Brain parenchymal metastases can have varied imaging appearances, and it is pertinent to be aware of the various molecular risk factors for brain metastasis from NSCLC along with their suggestive imaging appearances, so as to identify them early. Leptomeningeal metastasis requires additional imaging of the spine and an early cerebrospinal fluid (CSF) analysis. Differentiation of post-therapy change from recurrence on imaging has a bearing on the management, hence the need for its awareness. This article will provide in-depth literature review of the epidemiology, aetiopathogenesis, screening, detection, diagnosis, post-therapy imaging, and implications regarding the management of brain metastasis from NSCLC. In addition, we will also briefly highlight the role of artificial intelligence (AI) in brain metastasis screening.
Collapse
Affiliation(s)
- N Chakrabarty
- Department of Radiodiagnosis, Tata Memorial Hospital, Tata Memorial Centre, Homi Bhabha National Institute (HBNI), Mumbai, 400 012, Maharashtra, India
| | - A Mahajan
- Department of Radiodiagnosis, Tata Memorial Hospital, Tata Memorial Centre, Homi Bhabha National Institute (HBNI), Mumbai, 400 012, Maharashtra, India.
| | - V Patil
- Department of Medical Oncology, Tata Memorial Hospital, Tata Memorial Centre, Homi Bhabha National Institute (HBNI), Mumbai, 400 012, Maharashtra, India
| | - V Noronha
- Department of Medical Oncology, Tata Memorial Hospital, Tata Memorial Centre, Homi Bhabha National Institute (HBNI), Mumbai, 400 012, Maharashtra, India
| | - K Prabhash
- Department of Medical Oncology, Tata Memorial Hospital, Tata Memorial Centre, Homi Bhabha National Institute (HBNI), Mumbai, 400 012, Maharashtra, India
| |
Collapse
|
6
|
Bai JW, Qiu SQ, Zhang GJ. Molecular and functional imaging in cancer-targeted therapy: current applications and future directions. Signal Transduct Target Ther 2023; 8:89. [PMID: 36849435 PMCID: PMC9971190 DOI: 10.1038/s41392-023-01366-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 01/19/2023] [Accepted: 02/14/2023] [Indexed: 03/01/2023] Open
Abstract
Targeted anticancer drugs block cancer cell growth by interfering with specific signaling pathways vital to carcinogenesis and tumor growth rather than harming all rapidly dividing cells as in cytotoxic chemotherapy. The Response Evaluation Criteria in Solid Tumor (RECIST) system has been used to assess tumor response to therapy via changes in the size of target lesions as measured by calipers, conventional anatomically based imaging modalities such as computed tomography (CT), and magnetic resonance imaging (MRI), and other imaging methods. However, RECIST is sometimes inaccurate in assessing the efficacy of targeted therapy drugs because of the poor correlation between tumor size and treatment-induced tumor necrosis or shrinkage. This approach might also result in delayed identification of response when the therapy does confer a reduction in tumor size. Innovative molecular imaging techniques have rapidly gained importance in the dawning era of targeted therapy as they can visualize, characterize, and quantify biological processes at the cellular, subcellular, or even molecular level rather than at the anatomical level. This review summarizes different targeted cell signaling pathways, various molecular imaging techniques, and developed probes. Moreover, the application of molecular imaging for evaluating treatment response and related clinical outcome is also systematically outlined. In the future, more attention should be paid to promoting the clinical translation of molecular imaging in evaluating the sensitivity to targeted therapy with biocompatible probes. In particular, multimodal imaging technologies incorporating advanced artificial intelligence should be developed to comprehensively and accurately assess cancer-targeted therapy, in addition to RECIST-based methods.
Collapse
Affiliation(s)
- Jing-Wen Bai
- Fujian Key Laboratory of Precision Diagnosis and Treatment in Breast Cancer, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, 361100, Xiamen, China
- Xiamen Key Laboratory of Endocrine-Related Cancer Precision Medicine, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, 361100, Xiamen, China
- Xiamen Research Center of Clinical Medicine in Breast and Thyroid Cancers, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, 361100, Xiamen, China
- Department of Breast-Thyroid-Surgery and Cancer Center, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, 361100, Xiamen, China
- Department of Medical Oncology, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, 361100, Xiamen, China
- Cancer Research Center of Xiamen University, School of Medicine, Xiamen University, 361100, Xiamen, China
| | - Si-Qi Qiu
- Diagnosis and Treatment Center of Breast Diseases, Clinical Research Center, Shantou Central Hospital, 515041, Shantou, China
- Guangdong Provincial Key Laboratory for Breast Cancer Diagnosis and Treatment, Shantou University Medical College, 515041, Shantou, China
| | - Guo-Jun Zhang
- Fujian Key Laboratory of Precision Diagnosis and Treatment in Breast Cancer, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, 361100, Xiamen, China.
- Xiamen Key Laboratory of Endocrine-Related Cancer Precision Medicine, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, 361100, Xiamen, China.
- Xiamen Research Center of Clinical Medicine in Breast and Thyroid Cancers, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, 361100, Xiamen, China.
- Department of Breast-Thyroid-Surgery and Cancer Center, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, 361100, Xiamen, China.
- Cancer Research Center of Xiamen University, School of Medicine, Xiamen University, 361100, Xiamen, China.
| |
Collapse
|
7
|
Mahajan A, Chakrabarty N, Majithia J, Ahuja A, Agarwal U, Suryavanshi S, Biradar M, Sharma P, Raghavan B, Arafath R, Shukla S. Multisystem Imaging Recommendations/Guidelines: In the Pursuit of Precision Oncology. Indian J Med Paediatr Oncol 2023. [DOI: 10.1055/s-0043-1761266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023] Open
Abstract
AbstractWith an increasing rate of cancers in almost all age groups and advanced screening techniques leading to an early diagnosis and longer longevity of patients with cancers, it is of utmost importance that radiologists assigned with cancer imaging should be prepared to deal with specific expected and unexpected circumstances that may arise during the lifetime of these patients. Tailored integration of preventive and curative interventions with current health plans and global escalation of efforts for timely diagnosis of cancers will pave the path for a cancer-free world. The commonly encountered circumstances in the current era, complicating cancer imaging, include coronavirus disease 2019 infection, pregnancy and lactation, immunocompromised states, bone marrow transplant, and screening of cancers in the relevant population. In this article, we discuss the imaging recommendations pertaining to cancer screening and diagnosis in the aforementioned clinical circumstances.
Collapse
Affiliation(s)
- Abhishek Mahajan
- Department of Radiology, The Clatterbridge Cancer Centre NHS Foundation Trust, Liverpool, United Kingdom
| | - Nivedita Chakrabarty
- Radiodiagnosis, Tata Memorial Hospital, Mumbai, India
- Homi Bhabha National Institute, Mumbai, India
| | - Jinita Majithia
- Department of Radiodiagnosis, Tata Memorial Hospital, Mumbai, Maharashtra, India
| | | | - Ujjwal Agarwal
- Radiodiagnosis, Tata Memorial Hospital, Mumbai, India
- Homi Bhabha National Institute, Mumbai, India
| | - Shubham Suryavanshi
- Radiodiagnosis, Tata Memorial Hospital, Mumbai, India
- Homi Bhabha National Institute, Mumbai, India
| | - Mahesh Biradar
- Radiodiagnosis, Tata Memorial Hospital, Mumbai, India
- Homi Bhabha National Institute, Mumbai, India
| | - Prerit Sharma
- Radiodiagnosis, Sharma Diagnostic Centre, Wardha, India
| | | | | | - Shreya Shukla
- Radiodiagnosis, Tata Memorial Hospital, Mumbai, India
- Homi Bhabha National Institute, Mumbai, India
| |
Collapse
|
8
|
Freidel L, Li S, Choffart A, Kuebler L, Martins AF. Imaging Techniques in Pharmacological Precision Medicine. Handb Exp Pharmacol 2023; 280:213-235. [PMID: 36907970 DOI: 10.1007/164_2023_641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
Abstract
Biomedical imaging is a powerful tool for medical diagnostics and personalized medicines. Examples of commonly used imaging modalities include Positron Emission Tomography (PET), Ultrasound (US), Single Photon Emission Computed Tomography (SPECT), and hybrid imaging. By combining these modalities, scientists can gain a comprehensive view and better understand physiology and pathology at the preclinical, clinical, and multiscale levels. This can aid in the accuracy of medical diagnoses and treatment decisions. Moreover, biomedical imaging allows for evaluating the metabolic, functional, and structural details of living tissues. This can be particularly useful for the early diagnosis of diseases such as cancer and for the application of personalized medicines. In the case of hybrid imaging, two or more modalities are combined to produce a high-resolution image with enhanced sensitivity and specificity. This can significantly improve the accuracy of diagnosis and offer more detailed treatment plans. In this book chapter, we showcase how continued advancements in biomedical imaging technology can potentially revolutionize medical diagnostics and personalized medicine.
Collapse
Affiliation(s)
- Lucas Freidel
- Department of Preclinical Imaging and Radiopharmacy, Werner Siemens Imaging Center, University of Tübingen, Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies," University of Tübingen, Tübingen, Germany
| | - Sixing Li
- Department of Preclinical Imaging and Radiopharmacy, Werner Siemens Imaging Center, University of Tübingen, Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies," University of Tübingen, Tübingen, Germany
| | - Anais Choffart
- Department of Preclinical Imaging and Radiopharmacy, Werner Siemens Imaging Center, University of Tübingen, Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies," University of Tübingen, Tübingen, Germany
| | - Laura Kuebler
- Department of Preclinical Imaging and Radiopharmacy, Werner Siemens Imaging Center, University of Tübingen, Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies," University of Tübingen, Tübingen, Germany
- German Cancer Consortium (DKTK), Partner Site Tübingen, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - André F Martins
- Department of Preclinical Imaging and Radiopharmacy, Werner Siemens Imaging Center, University of Tübingen, Tübingen, Germany.
- Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies," University of Tübingen, Tübingen, Germany.
- German Cancer Consortium (DKTK), Partner Site Tübingen, German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
9
|
Radiomic Features Associated with Extent of Resection in Glioma Surgery. ACTA NEUROCHIRURGICA. SUPPLEMENT 2021; 134:341-347. [PMID: 34862558 DOI: 10.1007/978-3-030-85292-4_38] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Radiomics defines a set of techniques for extraction and quantification of digital medical data in an automated and reproducible way. Its goal is to detect features potentially related to a clinical task, like classification, diagnosis, prognosis, and response to treatment, going beyond the intrinsic limits of operator-dependency and qualitative description of conventional radiological evaluation on a mesoscopic scale. In the field of neuro-oncology, researchers have tried to create prognostic models for a better tumor diagnosis, histological and biomolecular classification, prediction of response to treatment, and identification of disease relapse. Concerning glioma surgery, the most significant aid that radiomics can give to surgery is to improve tumor extension detection and identify areas that are more prone to recurrence to increase the extent of tumor resection, thereby ameliorating the patients' prognosis. This chapter aims to review the fundamentals of radiomics models' creation, the latest advance of radiomics in neuro-oncology, and possible radiomic features associated with the extent of resection in the brain gliomas.
Collapse
|
10
|
Fusco R, Granata V, Petrillo A. Introduction to Special Issue of Radiology and Imaging of Cancer. Cancers (Basel) 2020; 12:E2665. [PMID: 32961946 PMCID: PMC7565136 DOI: 10.3390/cancers12092665] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 09/15/2020] [Indexed: 12/12/2022] Open
Abstract
The increase in knowledge in oncology and the possibility of creating personalized medicine by selecting a more appropriate therapy related to the different tumor subtypes, as well as the management of patients with cancer within a multidisciplinary team has improved the clinical outcomes [...].
Collapse
Affiliation(s)
| | - Vincenza Granata
- Radiology Division, Istituto Nazionale Tumori—IRCCS—Fondazione G. Pascale, Via Mariano Semmola, 80131 Naples, Italy; (R.F.); (A.P.)
| | | |
Collapse
|
11
|
Baid U, Rane SU, Talbar S, Gupta S, Thakur MH, Moiyadi A, Mahajan A. Overall Survival Prediction in Glioblastoma With Radiomic Features Using Machine Learning. Front Comput Neurosci 2020; 14:61. [PMID: 32848682 PMCID: PMC7417437 DOI: 10.3389/fncom.2020.00061] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 05/27/2020] [Indexed: 02/05/2023] Open
Abstract
Glioblastoma is a WHO grade IV brain tumor, which leads to poor overall survival (OS) of patients. For precise surgical and treatment planning, OS prediction of glioblastoma (GBM) patients is highly desired by clinicians and oncologists. Radiomic research attempts at predicting disease prognosis, thus providing beneficial information for personalized treatment from a variety of imaging features extracted from multiple MR images. In this study, first-order, intensity-based volume and shape-based and textural radiomic features are extracted from fluid-attenuated inversion recovery (FLAIR) and T1ce MRI data. The region of interest is further decomposed with stationary wavelet transform with low-pass and high-pass filtering. Further, radiomic features are extracted on these decomposed images, which helped in acquiring the directional information. The efficiency of the proposed algorithm is evaluated on Brain Tumor Segmentation (BraTS) challenge training, validation, and test datasets. The proposed approach achieved 0.695, 0.571, and 0.558 on BraTS training, validation, and test datasets. The proposed approach secured the third position in BraTS 2018 challenge for the OS prediction task.
Collapse
Affiliation(s)
- Ujjwal Baid
- Department of Electronics and Telecommunication Engineering, Shri Guru Gobind Singhji Institute of Engineering and Technology, Nanded, India
| | - Swapnil U Rane
- Department of Pathology, Tata Memorial Centre, ACTREC, HBNI, Navi-Mumbai, India
| | - Sanjay Talbar
- Department of Electronics and Telecommunication Engineering, Shri Guru Gobind Singhji Institute of Engineering and Technology, Nanded, India
| | - Sudeep Gupta
- Department of Medical Oncology, Tata Memorial Centre, ACTREC, HBNI, Navi-Mumbai, India
| | - Meenakshi H Thakur
- Department of Radiodiagnosis and Imaging, Tata Memorial Centre, Tata Memorial Hospital, HBNI, Mumbai, India
| | - Aliasgar Moiyadi
- Department of Neurosurgery Services, Tata Memorial Centre, Tata Memorial Hospital, HBNI, Mumbai, India
| | - Abhishek Mahajan
- Department of Radiodiagnosis and Imaging, Tata Memorial Centre, Tata Memorial Hospital, HBNI, Mumbai, India
| |
Collapse
|
12
|
Baid U, Talbar S, Rane S, Gupta S, Thakur MH, Moiyadi A, Sable N, Akolkar M, Mahajan A. A Novel Approach for Fully Automatic Intra-Tumor Segmentation With 3D U-Net Architecture for Gliomas. Front Comput Neurosci 2020; 14:10. [PMID: 32132913 PMCID: PMC7041417 DOI: 10.3389/fncom.2020.00010] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Accepted: 01/27/2020] [Indexed: 02/05/2023] Open
Abstract
Purpose: Gliomas are the most common primary brain malignancies, with varying degrees of aggressiveness and prognosis. Understanding of tumor biology and intra-tumor heterogeneity is necessary for planning personalized therapy and predicting response to therapy. Accurate tumoral and intra-tumoral segmentation on MRI is the first step toward understanding the tumor biology through computational methods. The purpose of this study was to design a segmentation algorithm and evaluate its performance on pre-treatment brain MRIs obtained from patients with gliomas. Materials and Methods: In this study, we have designed a novel 3D U-Net architecture that segments various radiologically identifiable sub-regions like edema, enhancing tumor, and necrosis. Weighted patch extraction scheme from the tumor border regions is proposed to address the problem of class imbalance between tumor and non-tumorous patches. The architecture consists of a contracting path to capture context and the symmetric expanding path that enables precise localization. The Deep Convolutional Neural Network (DCNN) based architecture is trained on 285 patients, validated on 66 patients and tested on 191 patients with Glioma from Brain Tumor Segmentation (BraTS) 2018 challenge dataset. Three dimensional patches are extracted from multi-channel BraTS training dataset to train 3D U-Net architecture. The efficacy of the proposed approach is also tested on an independent dataset of 40 patients with High Grade Glioma from our tertiary cancer center. Segmentation results are assessed in terms of Dice Score, Sensitivity, Specificity, and Hausdorff 95 distance (ITCN intra-tumoral classification network). Result: Our proposed architecture achieved Dice scores of 0.88, 0.83, and 0.75 for the whole tumor, tumor core and enhancing tumor, respectively, on BraTS validation dataset and 0.85, 0.77, 0.67 on test dataset. The results were similar on the independent patients' dataset from our hospital, achieving Dice scores of 0.92, 0.90, and 0.81 for the whole tumor, tumor core and enhancing tumor, respectively. Conclusion: The results of this study show the potential of patch-based 3D U-Net for the accurate intra-tumor segmentation. From experiments, it is observed that the weighted patch-based segmentation approach gives comparable performance with the pixel-based approach when there is a thin boundary between tumor subparts.
Collapse
Affiliation(s)
- Ujjwal Baid
- Department of Electronics and Telecommunication Engineering, Shri Guru Gobind Singhji Institute of Engineering and Technology, Nanded, India
| | - Sanjay Talbar
- Department of Electronics and Telecommunication Engineering, Shri Guru Gobind Singhji Institute of Engineering and Technology, Nanded, India
| | - Swapnil Rane
- Department of Pathology, Tata Memorial Centre, Tata Memorial Hospital, Mumbai, India
| | - Sudeep Gupta
- Department of Medical Oncology, Tata Memorial Centre, Tata Memorial Hospital, Mumbai, India
| | - Meenakshi H. Thakur
- Department of Radiodiagnosis and Imaging, Tata Memorial Centre, Tata Memorial Hospital, Mumbai, India
| | - Aliasgar Moiyadi
- Department of Neurosurgery Services, Tata Memorial Centre, Tata Memorial Hospital, Mumbai, India
| | - Nilesh Sable
- Department of Radiodiagnosis and Imaging, Tata Memorial Centre, Tata Memorial Hospital, Mumbai, India
| | - Mayuresh Akolkar
- Department of Radiodiagnosis and Imaging, Tata Memorial Centre, Tata Memorial Hospital, Mumbai, India
| | - Abhishek Mahajan
- Department of Radiodiagnosis and Imaging, Tata Memorial Centre, Tata Memorial Hospital, Mumbai, India
| |
Collapse
|