1
|
Jayaraj R, Polpaya K, Kunale M, Kodiveri Muthukaliannan G, Shetty S, Baxi S, Mani RR, Paranjothy C, Purushothaman V, Kayarohanam S, Janakiraman AK, Balaraman AK. Clinical Investigation of Chemotherapeutic Resistance and miRNA Expressions in Head and Neck Cancers: A Thorough PRISMA Compliant Systematic Review and Comprehensive Meta-Analysis. Genes (Basel) 2022; 13:genes13122325. [PMID: 36553594 PMCID: PMC9777665 DOI: 10.3390/genes13122325] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/21/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022] Open
Abstract
Background: Chemoresistance is a significant barrier to combating head and neck cancer, and decoding this resistance can widen the therapeutic application of such chemotherapeutic drugs. This systematic review and meta-analysis explores the influence of microRNA (miRNA) expressions on chemoresistance in head and neck cancers (HNC). The objective is to evaluate the theragnostic effects of microRNA expressions on chemoresistance in HNC patients and investigate the utility of miRNAs as biomarkers and avenues for new therapeutic targets. Methods: We performed a comprehensive bibliographic search that included the SCOPUS, PubMed, and Science Direct bibliographic databases. These searches conformed to a predefined set of search strategies. Following the PRISMA guidelines, inclusion and exclusion criteria were framed upon completing the literature search. The data items extracted were tabulated and collated in MS Excel. This spreadsheet was used to determine the effect size estimation for the theragnostic effects of miRNA expressions on chemoresistance in HNC, the hazard ratio (HR), and 95% confidence intervals (95% CI). The comprehensive meta-analysis was performed using the random effects model. Heterogeneity among the data collected was assessed using the Q test, Tau2, I2, and Z measures. Publication bias of the included studies was checked using the Egger's bias indicator test, Orwin and classic fail-safe N test, Begg and Mazumdar rank collection test, and Duval and Tweedie's trim and fill methods. Results: After collating the data from 23 studies, dysregulation of 34 miRNAs was observed in 2189 people. These data were gathered from 23 studies. Out of the 34 miRNAs considered, 22 were up-regulated, while 12 were down-regulated. The TaqMan transcription kits were the most used miRNA profiling platform, and miR-200c was seen to have a mixed dysregulation. We measured the overall pooled effect estimate of HR to be 1.516 for the various analyzed miRNA at a 95% confidence interval of 1.303-1.765, with a significant p-value. The null hypothesis test's Z value was 5.377, and the p-value was correspondingly noted to be less than 0.0001. This outcome indicates that the risk of death is determined to be higher in up-regulated groups than in down-regulated groups. Among the 34 miRNAs that were investigated, seven miRNAs were associated with an improved prognosis, especially with the overexpression of these seven miRNAs (miR15b-5p, miR-548b, miR-519d, miR-1278, miR-145, miR-200c, Hsa- miR139-3p). Discussion: The findings reveal that intricate relationships between miRNAs' expression and chemotherapeutic resistance in HNC are more likely to exist and can be potential therapeutic targets. This review suggests the involvement of specific miRNAs as predictors of chemoresistance and sensitivity in HNC. The examination of the current study results illustrates the significance of miRNA expression as a theragnostic biomarker in medical oncology.
Collapse
Affiliation(s)
- Rama Jayaraj
- Jindal Institute of Behavioral Sciences (JIBS), Jindal Global Institution of Eminence Deemed to Be University, Sonipat 131001, India
- Director of Clinical Sciences, Northern Territory Institute of Research and Training, Darwin, NT 0909, Australia
- Correspondence: ; Tel.: +61-410-541-300
| | - Karthikbinu Polpaya
- School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, India
| | - Milind Kunale
- School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, India
| | | | - Sameep Shetty
- Department of Oral and Maxillofacial Surgery, Manipal College of Dental Sciences, Mangalore, Manipal Academy of Higher Education, A Constituent of MAHE, Manipal 576104, India
| | - Siddhartha Baxi
- MBBS, FRANZCR GAICD (Siddhartha Baxi), Genesis Care Gold Coast Radiation Oncologist, Tugun, QLD 4224, Australia
| | - Ravishankar Ram Mani
- Department of Pharmaceutical Biology, Faculty of Pharmaceutical Sciences, UCSI University Kuala Lumpur (South Wing), No. 1, Jalan Menara Gading, UCSI Heights Cheras, Kuala Lumpur 56000, Malaysia
| | | | - Vinosh Purushothaman
- Faculty of Health and Life Sciences, INTI International University, Nilai 71800, Malaysia
| | - Saminathan Kayarohanam
- Faculty of Bioeconomics and Health Sciences, University Geomatika Malaysia, Kuala Lumpur 54200, Malaysia
| | - Ashok Kumar Janakiraman
- Department of Pharmaceutical Biology, Faculty of Pharmaceutical Sciences, UCSI University Kuala Lumpur (South Wing), No. 1, Jalan Menara Gading, UCSI Heights Cheras, Kuala Lumpur 56000, Malaysia
| | - Ashok Kumar Balaraman
- Faculty of Pharmacy, MAHSA University, Bandar Saujana Putra, Jenjarom 42610, Malaysia
| |
Collapse
|
2
|
Li C, Li X. Antitumor Activity of lncRNA NBAT-1 via Inhibition of miR-4504 to Target to WWC3 in Oxaliplatin-Resistant Colorectal Carcinoma. JOURNAL OF HEALTHCARE ENGINEERING 2022; 2022:9121554. [PMID: 35494512 PMCID: PMC9050265 DOI: 10.1155/2022/9121554] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 04/02/2022] [Accepted: 04/04/2022] [Indexed: 11/18/2022]
Abstract
Background Increasing evidence shows that dysfunction of noncoding RNAs is implicated in cancer. Neuroblastoma associated transcript 1 (NBAT-1) has been identified as a tumor suppressive lncRNA that is aberrantly expressed in cancers. However, the function and the underlying mechanisms of the NBAT-1 in colorectal carcinoma (CRC) remain unknown. Methods Gene expression was detected by RT-qPCR. The influence of NBAT-1 on CRC was evaluated by the cell counting kit-8 (CCK-8) assay and an in vivo xenograft mouse model. The possible binding of NBAT-1 to miRNAs was predicted via the miRDB online tool and confirmed by a dual-luciferase reporter assay. Protein expression was detected by western blot. Results NBAT-1 expression was significantly decreased in CRC tissues, especially in patients with oxaliplatin (OXA) resistance. NBAT-1 inhibited OXA-resistant CRC cell proliferation in vitro and tumor growth in vivo. The mechanism study revealed that NBAT-1 functioned as a competing endogenous RNA (ceRNA) of miR-4504. NBAT-1 bound miR-4504 and decreased miR-4504 expression in CRC cells. Furthermore, WW-and-C2-domain-containing protein family member 3 (WWC3) was identified as a target of miR-4504. Downregulation of NBAT-1 promoted miR-4504 expression and reduced the level of WWC3. Inhibition of WWC3 by NBAT-1 depletion inactivated Hippo signalling by inhibiting the phosphorylation of large tumor suppressor kinase 1 (LATS1) and yes-associated protein (YAP). Consistently, knockdown of NBAT-1 suppressed the expression of YAP transcriptional targets. Conclusions These findings demonstrated that lncRNA NBAT-1 suppresses OXA-resistant CRC cell growth via inhibition of miR-4504 to regulate the WWC3/LATS1/YAP axis.
Collapse
Affiliation(s)
- Chen Li
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
- Molecular Testing Center, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121001, China
| | - Xu Li
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
- Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education of China, Xi'an 710048, China
| |
Collapse
|
3
|
A Clinical Investigation on the Theragnostic Effect of MicroRNA Biomarkers for Survival Outcome in Cervical Cancer: A PRISMA-P Compliant Protocol for Systematic Review and Comprehensive Meta-Analysis. Genes (Basel) 2022; 13:genes13030463. [PMID: 35328017 PMCID: PMC8948737 DOI: 10.3390/genes13030463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/25/2022] [Accepted: 02/27/2022] [Indexed: 12/09/2022] Open
Abstract
Background: The most often diagnosed malignancy in women worldwide is cancer of the cervix. It is also the most prevalent kind of gynecological cancer in women. This cancer originates in the opening of the cervix and spreads through sexual contact. Even though human papillomavirus (HPV) may not cause cancer immediately, it does develop over time as a result of the virus’s lengthy persistence to cause dysplastic changes overtime, particularly in high-risk kinds. The primary objective of this research is to see if miRNAs are dysregulated as a result of treatment resistance in cervical cancer (CC). The aim is to see if these microRNAs may be utilized as biomarkers for detecting chemoresistance in CC, particularly for clinical applications. Methods: The recommended protocol for comprehensive study and meta-analysis (PRISMA-P) standards will be utilized for the analysis and data interpretation. The bibliographic databases will be methodically searched using a combination of search keywords. Based on established inclusion and exclusion criteria, the acquired findings will be reviewed, and data retrieved from the selected scientific papers for systematic review. We will then construct a forest from the pooled Hazard ratio (HR) and 95% C.I. values, data obtained using the random-effects model. Discussion: The focus of this study is to identify the function of miRNAs as a chemoresistance regulator and determine if they have the potential scope to be considered as biomarkers for cervical cancer. Through this systematic review and meta-analysis, the goal is to collect, compare, and analyze the data pertaining to the role of miRNAs in cervical cancer, thereby, enabling us to understand the role they play in chemosensitivity.
Collapse
|
4
|
Shaw P, Lokhotiya K, Kumarasamy C, Sunil K, Suresh D, Shetty S, Muthukaliannan GK, Baxi S, Mani RR, Sivanandy P, Chandramoorthy HC, Gupta MM, Samiappan S, Jayaraj R. Mapping Research on miRNAs in Cancer: A Global DataAnalysis and Bibliometric Profiling Analysis. PATHOPHYSIOLOGY 2022; 29:66-80. [PMID: 35366290 PMCID: PMC8950962 DOI: 10.3390/pathophysiology29010007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 01/31/2022] [Accepted: 02/08/2022] [Indexed: 11/16/2022] Open
Abstract
miRNAs biomarkers are emerging as an essential part of clinical oncology. Their oncogenic and tumour suppressor properties playing a role in malignancy has generated interest in their potential for use in disease prognosis. While several studies on miRNA have been carried out across the globe, evaluating the clinical implications of miRNAs in cancer diagnosis and prognosis research has currently not been attempted. A study delineating the area of miRNA research, including the topics presently being focused on, the seminal papers in this field, and the direction of research interest, does not exist. This study aims to conduct a large-scale, global data analysis and bibliometric profiling analysis of studies to evaluate the research output of clinical implications of miRNAs in cancer diagnosis and prognosis listed in the SCOPUS database. A systematic search strategy was followed to identify and extract all relevant studies, subsequently analysed to generate a bibliometric map. SPSS software (version 27) was used to calculate bibliometric indicators or parameters for analysis, such as year and country of affiliation with leading authors, journals, and institutions. It is also used to analyse annual research outputs, including total citations and the number of times it has been cited with productive nations and H-index. The number of global research articles retrieved for miRNA-Cancer research over the study period 2003 to 2019 was 18,636. Between 2012 and 2019, the growth rate of global publications is six times (n = 15,959; 90.71 percent articles) that of 2003 to 2011. (2704; 9.29 per cent articles). China published the most publications in the field of miRNA in cancer (n = 7782; 41%), while the United States had the most citations (n = 327,538; 48%) during the time span. Of these journals, Oncotarget has the highest percentage of article publications. The journal Cancer Research had the most citations (n = 41,876), with 6.20 per cent (n = 41,876). This study revealed a wide variety of journals in which miRNA-Cancer research are published; these bibliometric parameters exhibit crucial clinical information on performance assessment of research productivity and quality of research output. Therefore, this study provides a helpful reference for clinical oncologists, cancer scientists, policy decision-makers and clinical data researchers.
Collapse
Affiliation(s)
- Peter Shaw
- Oujiang Laboratory, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, China;
- Menzies School of Health Research, Darwin 0810, Australia
| | - Kartik Lokhotiya
- School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, India; (K.L.); (G.K.M.)
| | - Chellan Kumarasamy
- School of Health and Medical Sciences, Curtin University, Perth 6102, Australia;
| | - Krishnan Sunil
- Department of Radiation Oncology, Mayo Clinic Florida, Jacksonville, FL 32224, USA;
| | - Deepa Suresh
- Division of Endocrinology, Department of Internal Medicine, Mayo Clinic Florida, Jacksonville, FL 32224, USA;
| | - Sameep Shetty
- Department of Oral and Maxillofacial Surgery, Manipal College of Dental Sciences, Mangalore, Manipal Academy of Higher Education, A Constituent of MAHE, Manipal 576104, India;
| | | | - Siddhartha Baxi
- Genesis Care Gold Coast Radiation Oncologist, John Flynn Hospital, Tugun 4224, Australia;
| | - Ravishankar Ram Mani
- Department of Pharmaceutical Biology, Faculty of Pharmaceutical Sciences, UCSI University, Kuala Lumpur 56000, Malaysia;
| | - Palanisamy Sivanandy
- Department of Pharmacy Practice, School of Pharmacy, International Medical University, Kuala Lumpur 57000, Malaysia;
| | - Harish C. Chandramoorthy
- Stem Cells and Regenerative Medicine Unit, Department of Microbiology and Clinical Parasitology, College of Medicine, King Khalid University, Abha 56000, Saudi Arabia;
| | - Madan Mohan Gupta
- School of Pharmacy, Faculty of Medical Sciences, The University of the West Indies, St. Augustine 3303, Trinidad and Tobago;
| | - Suja Samiappan
- Department of Biochemistry, Bharathiar University, Coimbatore 641046, India;
| | - Rama Jayaraj
- Northern Territory Institute of Research and Training, Tiwi 0810, Australia
- Correspondence:
| |
Collapse
|
5
|
Molecular Investigation of miRNA Biomarkers as Chemoresistance Regulators in Melanoma: A Protocol for Systematic Review and Meta-Analysis. Genes (Basel) 2022; 13:genes13010115. [PMID: 35052456 PMCID: PMC8775297 DOI: 10.3390/genes13010115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 12/18/2021] [Accepted: 01/05/2022] [Indexed: 01/25/2023] Open
Abstract
Introduction: Melanoma is a global disease that is predominant in Western countries. However, reliable data resources and comprehensive studies on the theragnostic efficiency of miRNAs in melanoma are scarce. Hence, a decisive study or comprehensive review is required to collate the evidence for profiling miRNAs as a theragnostic marker. This protocol details a comprehensive systematic review and meta-analysis on the impact of miRNAs on chemoresistance and their association with theragnosis in melanoma. Methods and analysis: The articles will be retrieved from online bibliographic databases, including Cochrane Review, EMBASE, MEDLINE, PubMed, Scopus, Science Direct, and Web of Science, with different permutations of ‘keywords’. To obtain full-text papers of relevant research, a stated search method will be used, along with selection criteria. The Preferred Reporting Items for Systematic Reviews and Meta-Analysis for Protocols 2015 (PRISMA-P) standards were used to create this study protocol. The hazard ratio (HR) with a 95% confidence interval will be analyzed using Comprehensive Meta-Analysis (CMA) software 3.0. (CI). The pooled effect size will be calculated using a random or fixed-effects meta-analysis model. Cochran’s Q test and the I2 statistic will be used to determine heterogeneity. Egger’s bias indicator test, Orwin’s and the classic fail-safe N tests, the Begg and Mazumdar rank collection test, and Duval and Tweedie’s trim and fill calculation will all be used to determine publication bias. The overall standard deviation will be evaluated using Z-statistics. Subgroup analyses will be performed according to the melanoma participants’ clinicopathological and biological characteristics and methodological factors if sufficient studies and retrieved data are identified and available. The source of heterogeneity will be assessed using a meta-regression analysis. A pairwise matrix could be developed using either a pairwise correlation or expression associations of miRNA with patients’ survival for the same studies.
Collapse
|
6
|
Parisi A, Porzio G, Pulcini F, Cannita K, Ficorella C, Mattei V, Delle Monache S. What Is Known about Theragnostic Strategies in Colorectal Cancer. Biomedicines 2021; 9:biomedicines9020140. [PMID: 33535557 PMCID: PMC7912746 DOI: 10.3390/biomedicines9020140] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 01/22/2021] [Accepted: 01/25/2021] [Indexed: 02/08/2023] Open
Abstract
Despite the paradigmatic shift occurred in recent years for defined molecular subtypes in the metastatic setting treatment, colorectal cancer (CRC) still remains an incurable disease in most of the cases. Therefore, there is an urgent need for new tools and biomarkers for both early tumor diagnosis and to improve personalized treatment. Thus, liquid biopsy has emerged as a minimally invasive tool that is capable of detecting genomic alterations from primary or metastatic tumors, allowing the prognostic stratification of patients, the detection of the minimal residual disease after surgical or systemic treatments, the monitoring of therapeutic response, and the development of resistance, establishing an opportunity for early intervention before imaging detection or worsening of clinical symptoms. On the other hand, preclinical and clinical evidence demonstrated the role of gut microbiota dysbiosis in promoting inflammatory responses and cancer initiation. Altered gut microbiota is associated with resistance to chemo drugs and immune checkpoint inhibitors, whereas the use of microbe-targeted therapies including antibiotics, pre-probiotics, and fecal microbiota transplantation can restore response to anticancer drugs, promote immune response, and therefore support current treatment strategies in CRC. In this review, we aim to summarize preclinical and clinical evidence for the utilization of liquid biopsy and gut microbiota in CRC.
Collapse
Affiliation(s)
- Alessandro Parisi
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy;
- Medical Oncology Unit, St. Salvatore Hospital, 67100 L’Aquila, Italy; (G.P.); (K.C.); (C.F.)
| | - Giampiero Porzio
- Medical Oncology Unit, St. Salvatore Hospital, 67100 L’Aquila, Italy; (G.P.); (K.C.); (C.F.)
- Department of Biotechnology and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy;
| | - Fanny Pulcini
- Department of Biotechnology and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy;
| | - Katia Cannita
- Medical Oncology Unit, St. Salvatore Hospital, 67100 L’Aquila, Italy; (G.P.); (K.C.); (C.F.)
- Department of Biotechnology and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy;
| | - Corrado Ficorella
- Medical Oncology Unit, St. Salvatore Hospital, 67100 L’Aquila, Italy; (G.P.); (K.C.); (C.F.)
- Department of Biotechnology and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy;
| | - Vincenzo Mattei
- Biomedicine and Advanced Technologies Rieti Center, Sabina Universitas, via Angelo Maria Ricci 35A, 02100 Rieti, Italy;
| | - Simona Delle Monache
- Department of Biotechnology and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy;
- Correspondence: ; Tel.: +39-086-243-3569
| |
Collapse
|
7
|
miRNA as promising theragnostic biomarkers for predicting radioresistance in cancer: A systematic review and meta-analysis. Crit Rev Oncol Hematol 2020; 157:103183. [PMID: 33310279 DOI: 10.1016/j.critrevonc.2020.103183] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 11/17/2020] [Accepted: 11/23/2020] [Indexed: 02/08/2023] Open
Abstract
Radioresistance remains as an obstacle in cancer treatment. This systematic review and meta-analysis aimed to evaluate the association between the expression of miRNAs and responses to radiotherapy and the prognosis of different tumors. In total, 77 miRNAs in 19 cancer types were studied, in which 24 miRNAs were upregulated and 58 miRNAs were downregulated in cancer patients. Five miRNAs were differentially expressed. Moreover, 75 miRNAs were found to be related to radioresistance, while 5 were observed to be related to radiosensitivity. The pooled HR and 95 % confidence interval for the combined studies was 1.135 (0.819-1.574; P-value = 0.4). The HR values of the subgroup analysis for miR-21 (HR = 2.344; 95 % CI: 1.927-2.850; P-value = 0.000), nasopharyngeal carcinoma (HR = 0.448; 95 % CI: 0.265-0.760; P = 0.003) and breast cancer (HR = 1.131; 95 % CI: 0.311-4.109; P = .85) were obtained. Our results highlighted that across the published literature, miRNAs can modulate tumor radioresistance or sensitivity by affecting radiation-related signaling pathways. It seems that miRNAs could be considered as a theragnostic biomarker to predict and monitor clinical response to radiotherapy. Thus, the prediction of radioresistance in malignant patients will improve radiotherapy outcomes and radiotherapeutic resistance.
Collapse
|
8
|
Han J, Sun W, Liu R, Zhou Z, Zhang H, Chen X, Ba Y. Plasma Exosomal miRNA Expression Profile as Oxaliplatin-Based Chemoresistant Biomarkers in Colorectal Adenocarcinoma. Front Oncol 2020; 10:1495. [PMID: 33072545 PMCID: PMC7531016 DOI: 10.3389/fonc.2020.01495] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 07/13/2020] [Indexed: 12/19/2022] Open
Abstract
Background: Chemotherapy is one of the most common therapies used in the treatment of colorectal cancer (CRC), but chemoresistance inevitably occurs. It is challenging to obtain an immediate and accurate diagnosis of chemoresistance. The potential of circulating exosomal miRNAs as oxaliplatin-based chemoresistant biomarkers in CRC patients was investigated in this study. Methods: Plasma exosomal miRNAs in sensitive and resistant patients were analyzed by miRNA microarray analysis, followed by verification with a quantitative reverse-transcription polymerase chain reaction (RT-qPCR) assay in two independent cohorts. The diagnostic accuracy was determined by ROC curve analysis. Logistic regression analysis and Spearman's rank correlation test were also performed. Finally, bioinformatics was used to preliminarily explore the potential molecular mechanism of the selected miRNAs in chemoresistance. Results: miRNA microarray analysis identified four upregulated miRNAs and 20 downregulated miRNAs in chemoresistant patients compared to chemosensitive patients. Twelve markedly dysregulated miRNAs were selected for further investigation, of which six (miR-100, miR-92a, miR-16, miR-30e, miR-144-5p, and let-7i) were verified to be significantly and consistently dysregulated (>1.5-fold, P < 0.05). The combination of the six miRNAs had the highest AUC (0.825, 95% CI, 0.753–0.897). The expression level of these 6 miRNAs was not correlated with tumor location, stage, or chemotherapy program. Only miR-100 was significantly upregulated in low histological grade. GO analysis and KEGG pathway analysis showed that miRNAs were related to RNA polymerase II transcription and enriched in the PI3K-AKT signaling pathway, AMPK signaling pathway, and FoxO signaling pathway. Conclusions: We identified a panel of plasma exosomal miRNAs, containing miR-100, miR-92a, miR-16, miR-30e, miR-144-5p, and let-7i, that could significantly distinguish chemoresistant patients from chemosensitive patients. The detection of circulating exosomal miRNAs may serve as an effective way to monitor CRC patient responses to chemotherapy. Targeting these miRNAs may also be a promising strategy for CRC treatment.
Collapse
Affiliation(s)
- Jiayi Han
- Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin, China
| | - Wu Sun
- The Comprehensive Cancer Centre of Drum Tower Hospital, Medical School of Nanjing University and Clinical Cancer Institute of Nanjing University, Nanjing, China
| | - Rui Liu
- Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin, China
| | - Zhen Zhou
- State Key Laboratory of Pharmaceutical Biotechnology, Collaborative Innovation Center of Chemistry for Life Sciences, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, School of Life Sciences, Nanjing University Advanced Institute for Life Sciences (NAILS), Nanjing University, Nanjing, China
| | - Haiyang Zhang
- Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin, China
| | - Xi Chen
- State Key Laboratory of Pharmaceutical Biotechnology, Collaborative Innovation Center of Chemistry for Life Sciences, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, School of Life Sciences, Nanjing University Advanced Institute for Life Sciences (NAILS), Nanjing University, Nanjing, China
| | - Yi Ba
- Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin, China
| |
Collapse
|
9
|
Prognostic Significance of FOXC1 in Various Cancers: A Systematic Review and Meta-Analysis. Mol Diagn Ther 2020; 23:695-706. [PMID: 31372939 DOI: 10.1007/s40291-019-00416-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
BACKGROUND Forkhead box C1 (FOXC1), a member of the Forkhead box (Fox) transcription factor family, plays an essential role in lymphatic vessel formation, angiogenesis and metastasis. Observational studies examining the relationship between the protein biomarker FOXC1 and breast cancer prognosis have reported conflicting findings. This systematic review and meta-analysis evaluates the prognostic value of the FOXC1 expression in association with patient survival in breast cancer and other types of cancers in order to identify the overall prognostic effectiveness of FOXC1. METHODS This study followed the guidelines established in the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA). We conducted a broad search on the online bibliographic databases EMBASE, PubMed, Science Direct and Scopus, limiting search to publications from 2010 to 2018. The prognostic value was demonstrated by a random effects model meta-analysis using the hazard ratio (HR) with 95% confidence interval (CI) for overall survival (OS) in various cancer patients. The heterogeneity was measured by the I2 statistic. Publication bias and quality assessment for the selected articles was performed. Subgroup analysis was conducted based on the data available from the selected articles. RESULTS A total of 16 studies met the predefined selection criteria established for our systematic review and meta-analysis, with multiple studies using diverse methodologies and reported on differing clinical outcomes, falling under a common banner of FOXC1 expression and survival in cancer. Overall, we observed a statistically non-significant association between FOXC1 protein expression and patients survival (HR: 1.186 and 95% CI 1.122-1.255, p = 0.000, I2 = 88.83%). CONCLUSION In summary, FOXC1 protein expression indicated poor survival outcome in various carcinomas, especially in patients with breast cancer, suggesting it as a possible biomarker for the prognosis in multiple carcinomas. Further clinical evaluation and large-scale cohort studies are required to accurately identify its possible clinical utility.
Collapse
|
10
|
Kumarasamy C, Madhav MR, Sabarimurugan S, Krishnan S, Baxi S, Gupta A, Gothandam KM, Jayaraj R. Prognostic Value of miRNAs in Head and Neck Cancers: A Comprehensive Systematic and Meta-Analysis. Cells 2019; 8:cells8080772. [PMID: 31349668 PMCID: PMC6721479 DOI: 10.3390/cells8080772] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 07/18/2019] [Indexed: 12/13/2022] Open
Abstract
Head and Neck Cancer (HNC) is the sixth most common type of cancer across the globe, with more than 300,000 deaths each year, globally. However, there are currently no standardised molecular markers that assist in determining HNC prognosis. The literature for this systematic review and meta-analysis were sourced from multiple bibliographic databases. This review followed PRISMA guidelines. The Hazard Ratio (HR) was selected as the effect size metric to independently assess overall survival (OS), disease-free survival (DFS), and prognosis. Subgroup analysis was performed for individual highly represented miRNA. A total of 6843 patients across 50 studies were included in the systematic review and 34 studies were included in the meta-analysis. Studies across 12 countries were assessed, with China representing 36.7% of all included studies. The analysis of the survival endpoints of OS and DFS were conducted separately, with the overall pooled effect size (HR) for each being 1.825 (95% CI 1.527–2.181; p < 0.05) and 2.596 (95% CI 1.917–3.515; p < 0.05), respectively. Subgroup analysis was conducted for impact of miR-21, 200b, 155, 18a, 34c-5p, 125b, 20a and 375 on OS, and miR-21 and 34a on DFS. The pooled results were found to be statistically significant for both OS and DFS. The meta-analysis indicated that miRNA alterations can account for an 82.5% decrease in OS probability and a 159.6% decrease in DFS probability. These results indicate that miRNAs have potential clinical value as prognostic biomarkers in HNC, with miR-21, 125b, 34c-5p and 18a, in particular, showing great potential as prognostic molecular markers. Further large scale cohort studies focusing on these miRNAs are recommended to verify the clinical utility of these markers individually and/or in combination.
Collapse
Affiliation(s)
- Chellan Kumarasamy
- North Terrace Campus, University of Adelaide, Adelaide, South Australia 5005, Australia
| | | | - Shanthi Sabarimurugan
- School of Bio Science and Technology, Vellore Institute of Technology (VIT), Vellore 632014, India
| | - Sunil Krishnan
- Department of Radiation Oncology, Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA
| | - Siddhartha Baxi
- John Flynn Private Hospital, Genesis Cancer Care, 42 Inland Drive, Tugun, Queensland 4224, Australia
| | - Ajay Gupta
- Medical Oncology P-41, South Extension Part 2, New Delhi 110049, India
| | - K M Gothandam
- School of Bio Science and Technology, Vellore Institute of Technology (VIT), Vellore 632014, India
| | - Rama Jayaraj
- College of Health and Human Sciences, Yellow 1.1.05, Ellengowan Drive, Casuarina, Darwin, Northern Territory 0909, Charles Darwin University, Australia.
| |
Collapse
|