1
|
Laulhé M, Kuhn E, Bouligand J, Amazit L, Perrot J, Lebigot E, Kamenickỷ P, Lombès M, Fagart J, Viengchareun S, Martinerie L. A novel mutation in the NR3C1 gene associated with reversible glucocorticoid resistance. Eur J Endocrinol 2024; 190:284-295. [PMID: 38584335 DOI: 10.1093/ejendo/lvae031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 02/02/2024] [Accepted: 03/04/2024] [Indexed: 04/09/2024]
Abstract
OBJECTIVE Glucocorticoid resistance is a rare endocrine disease caused by variants of the NR3C1 gene encoding the glucocorticoid receptor (GR). We identified a novel heterozygous variant (GRR569Q) in a patient with uncommon reversible glucocorticoid resistance syndrome. METHODS We performed ex vivo functional characterization of the variant in patient fibroblasts and in vitro through transient transfection in undifferentiated HEK 293T cells to assess transcriptional activity, affinity, and nuclear translocation. We studied the impact of the variant on the tertiary structure of the ligand-binding domain through 3D modeling. RESULTS The patient presented initially with an adrenal adenoma with mild autonomous cortisol secretion and undetectable adrenocorticotropin hormone (ACTH) levels. Six months after surgery, biological investigations showed elevated cortisol and ACTH (urinary free cortisol 114 µg/24 h, ACTH 10.9 pmol/L) without clinical symptoms, evoking glucocorticoid resistance syndrome. Functional characterization of the GRR569Q showed decreased expression of target genes (in response to 100 nM cortisol: SGK1 control +97% vs patient +20%, P < .0001) and impaired nuclear translocation in patient fibroblasts compared to control. Similar observations were made in transiently transfected cells, but higher cortisol concentrations overcame glucocorticoid resistance. GRR569Q showed lower ligand affinity (Kd GRWT: 1.73 nM vs GRR569Q: 4.61 nM). Tertiary structure modeling suggested a loss of hydrogen bonds between H3 and the H1-H3 loop. CONCLUSION This is the first description of a reversible glucocorticoid resistance syndrome with effective negative feedback on corticotroph cells regarding increased plasma cortisol concentrations due to the development of mild autonomous cortisol secretion.
Collapse
Affiliation(s)
- Margaux Laulhé
- Université Paris-Saclay, Inserm, Physiologie et Physiopathologie Endocriniennes, 94276 Le Kremlin-Bicêtre, France
| | - Emmanuelle Kuhn
- Unité Hypophyse, Hôpital Pitié-Salpêtrière, AP-HP, Paris 75013, France
| | - Jérôme Bouligand
- Université Paris-Saclay, Inserm, Physiologie et Physiopathologie Endocriniennes, 94276 Le Kremlin-Bicêtre, France
- Service de Génétique Moléculaire, Pharmacogénétique et Hormonologie, Hôpital Bicêtre APHP Paris Saclay, Le Kremlin Bicêtre 94270, France
| | - Larbi Amazit
- UMS 44/Institut Biomédical du Val de Bièvre, Université Paris-Saclay, Le Kremlin Bicêtre 94276, France
| | - Julie Perrot
- Université Paris-Saclay, Inserm, Physiologie et Physiopathologie Endocriniennes, 94276 Le Kremlin-Bicêtre, France
| | - Elise Lebigot
- Service de Biochimie, Hôpital Bicêtre APHP Paris Saclay, Le Kremlin Bicêtre 94270, France
| | - Peter Kamenickỷ
- Université Paris-Saclay, Inserm, Physiologie et Physiopathologie Endocriniennes, 94276 Le Kremlin-Bicêtre, France
- Service d'Endocrinologie et des Maladies de la Reproduction, Hôpital Bicêtre APHP Paris Saclay, Le Kremlin-Bicêtre 94270, France
| | - Marc Lombès
- Université Paris-Saclay, Inserm, Physiologie et Physiopathologie Endocriniennes, 94276 Le Kremlin-Bicêtre, France
| | - Jérôme Fagart
- Laboratoire de Biologie Structurale de la Cellule, BIOC, Ecole Polytechnique, CNRS, Institut Polytechnique de Paris, 91128 Palaiseau cedex, France
| | - Say Viengchareun
- Université Paris-Saclay, Inserm, Physiologie et Physiopathologie Endocriniennes, 94276 Le Kremlin-Bicêtre, France
| | - Laetitia Martinerie
- Université Paris-Saclay, Inserm, Physiologie et Physiopathologie Endocriniennes, 94276 Le Kremlin-Bicêtre, France
- Endocrinologie Pédiatrique, Centre de Référence Maladies Endocriniennes Rares de la Croissance et du Développement, Hôpital Universitaire Robert-Debré APHP Nord, Paris 75019, France
- Faculté de Santé, Université Paris Cité, UFR de Médecine, Paris 75006, France
| |
Collapse
|
2
|
Role of glucocorticoid receptor mutations in hypertension and adrenal gland hyperplasia. Pflugers Arch 2022; 474:829-840. [PMID: 35732960 PMCID: PMC9217122 DOI: 10.1007/s00424-022-02715-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 05/06/2022] [Accepted: 06/02/2022] [Indexed: 11/03/2022]
Abstract
Hypertension is one of the leading causes of premature death in humans and exhibits a complex aetiology including environmental and genetic factors. Mutations within the glucocorticoid receptor (GR) can cause glucocorticoid resistance, which is characterized by several clinical features like hypercortisolism, hypokalaemia, adrenal hyperplasia and hypertension. Altered glucocorticoid receptor signalling further affects sodium and potassium homeostasis as well as blood pressure regulation and cell proliferation and differentiation that influence organ development and function. In salt-sensitive hypertension, excessive renal salt transport and sympathetic nervous system stimulation may occur simultaneously, and, thus, both the mineralocorticoid receptor (MR) and the GR-signalling may be implicated or even act interdependently. This review focuses on identified GR mutations in human primary generalized glucocorticoid resistance (PGGR) patients and their related clinical phenotype with specific emphasis on adrenal gland hyperplasia and hypertension. We compare these findings to mouse and rat mutants harbouring genetically engineered mutations to further dissect the cause and/or the consequence of clinical features which are common or different.
Collapse
|
3
|
Locantore P, Paragliola RM, Cera G, Novizio R, Maggio E, Ramunno V, Corsello A, Corsello SM. Genetic Basis of ACTH-Secreting Adenomas. Int J Mol Sci 2022; 23:ijms23126824. [PMID: 35743266 PMCID: PMC9224284 DOI: 10.3390/ijms23126824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 06/08/2022] [Accepted: 06/17/2022] [Indexed: 12/10/2022] Open
Abstract
Cushing's disease represents 60-70% of all cases of Cushing's syndrome, presenting with a constellation of clinical features associated with sustained hypercortisolism. Molecular alterations in corticotrope cells lead to the formation of ACTH-secreting adenomas, with subsequent excessive production of endogenous glucocorticoids. In the last few years, many authors have contributed to analyzing the etiopathogenesis and pathophysiology of corticotrope adenomas, which still need to be fully clarified. New molecular modifications such as somatic mutations of USP8 and other genes have been identified, and several case series and case reports have been published, highlighting new molecular alterations that need to be explored. To investigate the current knowledge of the genetics of ACTH-secreting adenomas, we performed a bibliographic search of the recent scientific literature to identify all pertinent articles. This review presents the most recent updates on somatic and germline mutations underlying Cushing's disease. The prognostic implications of these mutations, in terms of clinical outcomes and therapeutic scenarios, are still debated. Further research is needed to define the clinical features associated with the different genotypes and potential pharmacological targets.
Collapse
Affiliation(s)
- Pietro Locantore
- Unit of Endocrinology, Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore—Fondazione Policlinico “Gemelli” IRCCS, Largo Gemelli 8, I-00168 Rome, Italy; (P.L.); (G.C.); (R.N.); (E.M.); (V.R.); (A.C.); (S.M.C.)
| | - Rosa Maria Paragliola
- Unit of Endocrinology, Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore—Fondazione Policlinico “Gemelli” IRCCS, Largo Gemelli 8, I-00168 Rome, Italy; (P.L.); (G.C.); (R.N.); (E.M.); (V.R.); (A.C.); (S.M.C.)
- Correspondence:
| | - Gianluca Cera
- Unit of Endocrinology, Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore—Fondazione Policlinico “Gemelli” IRCCS, Largo Gemelli 8, I-00168 Rome, Italy; (P.L.); (G.C.); (R.N.); (E.M.); (V.R.); (A.C.); (S.M.C.)
| | - Roberto Novizio
- Unit of Endocrinology, Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore—Fondazione Policlinico “Gemelli” IRCCS, Largo Gemelli 8, I-00168 Rome, Italy; (P.L.); (G.C.); (R.N.); (E.M.); (V.R.); (A.C.); (S.M.C.)
| | - Ettore Maggio
- Unit of Endocrinology, Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore—Fondazione Policlinico “Gemelli” IRCCS, Largo Gemelli 8, I-00168 Rome, Italy; (P.L.); (G.C.); (R.N.); (E.M.); (V.R.); (A.C.); (S.M.C.)
| | - Vittoria Ramunno
- Unit of Endocrinology, Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore—Fondazione Policlinico “Gemelli” IRCCS, Largo Gemelli 8, I-00168 Rome, Italy; (P.L.); (G.C.); (R.N.); (E.M.); (V.R.); (A.C.); (S.M.C.)
| | - Andrea Corsello
- Unit of Endocrinology, Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore—Fondazione Policlinico “Gemelli” IRCCS, Largo Gemelli 8, I-00168 Rome, Italy; (P.L.); (G.C.); (R.N.); (E.M.); (V.R.); (A.C.); (S.M.C.)
| | - Salvatore Maria Corsello
- Unit of Endocrinology, Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore—Fondazione Policlinico “Gemelli” IRCCS, Largo Gemelli 8, I-00168 Rome, Italy; (P.L.); (G.C.); (R.N.); (E.M.); (V.R.); (A.C.); (S.M.C.)
- Unicamillus, Saint Camillus International University of Medical Sciences, via di S. Alessandro 10, I-00131 Rome, Italy
| |
Collapse
|
4
|
Miao H, Liu Y, Lu L, Gong F, Wang L, Duan L, Yao Y, Wang R, Chen S, Mao X, Zhang D, Heaney AP, Zhu H. Effect of 3 NR3C1 Mutations in the Pathogenesis of Pituitary ACTH Adenoma. Endocrinology 2021; 162:6357044. [PMID: 34427636 DOI: 10.1210/endocr/bqab167] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Indexed: 11/19/2022]
Abstract
CONTEXT Glucocorticoids act through the glucocorticoid receptor (GR) encoded by the nuclear receptor subfamily 3 group C member 1 (NR3C1) gene. OBJECTIVE This study aimed to examine the function of NR3C1 variants and their possible pathogenic role in Cushing disease (CD). METHODS Next-generation sequencing was conducted in 49 CD patients. Corticotroph tumor GR protein expression was examined by immunohistochemistry (IHC). Constructs harboring the 3 NR3C1-mutant and wild-type (WT) GR were transfected into the murine corticotropic adenoma cell line (AtT-20), and GR protein expression was quantified by Western blot. Translocation activity was assessed by immunofluorescence and effects of the GR mutants on corticotroph tumor proliferation, pro-opiomelanocortin (POMC) transcription, and ACTH secretion were tested. RESULTS Clinical features were similar in patients harboring the NR3C1 mutations and WT GR. Recurrent adenomas showed higher GR IHC scores than nonrecurrent tumors. In vitro studies demonstrated that the p.R469X mutant generated a truncated GR protein, and the p.D590G and p.Y693D GR mutants resulted in lower GR expression. Dexamethasone (DEX) treatment of AtT-20 cells demonstrated decreased DEX-induced nuclear translocation, increased cell proliferation, and attenuated suppression of POMC transcription of 3 GR mutants. Interestingly, the p.R469X GR mutant resulted in increased murine corticotroph tumor ACTH secretion compared to WT GR. CONCLUSION Our findings identify 3/49 (6.1%) consecutive human corticotroph tumors harboring GR mutations. Further findings demonstrate the role NR3C1 plays in CD pathogenesis and offer insights into a novel treatment approach in this patient subset.
Collapse
Affiliation(s)
- Hui Miao
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, P. R. China
| | - Yang Liu
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, P. R. China
| | - Lin Lu
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, P. R. China
| | - Fengying Gong
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, P. R. China
| | - Linjie Wang
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, P. R. China
| | - Lian Duan
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, P. R. China
| | - Yong Yao
- Department of Neurosurgery, Peking Union Medical College, Peking Union Medical College Hospital, Chinese Academy of Medical Science, Beijing 100730, P. R. China
| | - Renzhi Wang
- Department of Neurosurgery, Peking Union Medical College, Peking Union Medical College Hospital, Chinese Academy of Medical Science, Beijing 100730, P. R. China
| | - Shi Chen
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, P. R. China
| | - Xinxin Mao
- Department of Pathology, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Science, Beijing 100730, P. R. China
| | - Dongyun Zhang
- Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California 90095, USA
| | - Anthony P Heaney
- Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California 90095, USA
| | - Huijuan Zhu
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, P. R. China
| |
Collapse
|
5
|
Nicolaides NC, Charmandari E. Primary Generalized Glucocorticoid Resistance and Hypersensitivity Syndromes: A 2021 Update. Int J Mol Sci 2021; 22:ijms221910839. [PMID: 34639183 PMCID: PMC8509180 DOI: 10.3390/ijms221910839] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 09/25/2021] [Accepted: 09/27/2021] [Indexed: 12/15/2022] Open
Abstract
Glucocorticoids are the final products of the neuroendocrine hypothalamic-pituitary-adrenal axis, and play an important role in the stress response to re-establish homeostasis when it is threatened, or perceived as threatened. These steroid hormones have pleiotropic actions through binding to their cognate receptor, the human glucocorticoid receptor, which functions as a ligand-bound transcription factor inducing or repressing the expression of a large number of target genes. To achieve homeostasis, glucocorticoid signaling should have an optimal effect on all tissues. Indeed, any inappropriate glucocorticoid effect in terms of quantity or quality has been associated with pathologic conditions, which are characterized by short-term or long-lasting detrimental effects. Two such conditions, the primary generalized glucocorticoid resistance and hypersensitivity syndromes, are discussed in this review article. Undoubtedly, the tremendous progress of structural, molecular, and cellular biology, in association with the continued progress of biotechnology, has led to a better and more in-depth understanding of these rare endocrinologic conditions, as well as more effective therapeutic management.
Collapse
Affiliation(s)
- Nicolas C. Nicolaides
- First Department of Pediatrics, Division of Endocrinology, Metabolism and Diabetes, “Aghia Sophia” Children’s Hospital, National and Kapodistrian University of Athens Medical School, 11527 Athens, Greece;
- Center of Clinical, Experimental Surgery and Translational Research, Division of Endocrinology and Metabolism, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
- University Research Institute of Maternal and Child Health and Precision Medicine, University of Athens, 11527 Athens, Greece
- Department of Molecular Genetics, Function and Therapy, The Cyprus Institute of Neurology and Genetics, Nicosia 2371, Cyprus
- Correspondence:
| | - Evangelia Charmandari
- First Department of Pediatrics, Division of Endocrinology, Metabolism and Diabetes, “Aghia Sophia” Children’s Hospital, National and Kapodistrian University of Athens Medical School, 11527 Athens, Greece;
- Center of Clinical, Experimental Surgery and Translational Research, Division of Endocrinology and Metabolism, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
| |
Collapse
|
6
|
Martins CS, de Castro M. Generalized and tissue specific glucocorticoid resistance. Mol Cell Endocrinol 2021; 530:111277. [PMID: 33864884 DOI: 10.1016/j.mce.2021.111277] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 03/29/2021] [Accepted: 03/31/2021] [Indexed: 12/20/2022]
Abstract
Glucocorticoids (GCs) are steroid hormones that influence several physiologic functions and are among the most frequently prescribed drugs worldwide. Resistance to GCs has been observed in the context of the familial generalized GC resistance (Chrousos' syndrome) or tissue specific GC resistance in chronic inflammatory states. In this review, we have summarized the major factors that influence individual glucocorticoid sensitivity/resistance. The fine-tuning of GC action is determined in a tissue-specific fashion that includes the combination of different GC receptor promoters, translation initiation sites, splice isoforms, interacting proteins, post-translational modifications, and alternative mechanisms of signal transduction.
Collapse
Affiliation(s)
- Clarissa Silva Martins
- Department of Internal Medicine - Ribeirao Preto Medical School - University of Sao Paulo, Ribeirao Preto, SP, Brazil; School of Medicine, Federal University of Mato Grosso do Sul, Campo Grande, MS, Brazil
| | - Margaret de Castro
- Department of Internal Medicine - Ribeirao Preto Medical School - University of Sao Paulo, Ribeirao Preto, SP, Brazil.
| |
Collapse
|
7
|
Liu H, Li Z, Qiu F, Li C, Lin X, He Y, Qian M, Song Y, Zhang H. Association Between NR3C1 Mutations and Glucocorticoid Resistance in Children With Acute Lymphoblastic Leukemia. Front Pharmacol 2021; 12:634956. [PMID: 33854435 PMCID: PMC8039513 DOI: 10.3389/fphar.2021.634956] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 03/01/2021] [Indexed: 11/13/2022] Open
Abstract
Treatment outcomes in children with acute lymphoblastic leukemia (ALL) have been improved substantially, with a cure rate exceeding 80% using conventional therapy. However, the outcome for patients with relapsed/refractory ALL remains unsatisfactory, despite the fact that these patients generally receive more intense therapy. Glucocorticoid (GC) resistance is a leading cause of treatment failure and relapse in ALL. Abnormal NR3C1 transcription and/or translation is strongly associated with GC resistance, but the underlying molecular mechanism and the clinical value of NR3C1 alterations with GC resistance in ALL treatment remain unclear. This study applied panel sequencing to 333 newly diagnosed and 18 relapsed ALL samples to characterize the link between NR3C1 and ALL further. We identified NR3C1 mutations in three patients with newly diagnosed ALL (0.9%) and two patients with relapsed ALL (11.1%). Functional analyses revealed that four of these five NR3C1 mutations (p. R477H, p. Y478C, p. P530fs, and p. H726P) were loss-of-function (LoF) mutations. A drug sensitivity test further showed that LoF NR3C1 mutations influence GC resistance. Saturated mutagenesis of hotspot R477 demonstrated the importance of this residue for NR3C1 function. The dominant-negative effect of p. R477C and p. R477S and the non-dominant negative effect of p. R477H and p. Y478C suggests multiple mechanisms underlying GC resistance. Thus, primary or acquired genomic lesions in NR3C1 may play a critical role in GC resistance and contribute to ALL treatment failure and/or relapse.
Collapse
Affiliation(s)
- Haiyan Liu
- Department of Hematology/Oncology, Guangzhou Women and Children's Medical Center, Guangzhou, China
| | - Ziping Li
- Department of Hematology/Oncology, Guangzhou Women and Children's Medical Center, Guangzhou, China.,Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou, China
| | - Fei Qiu
- Bioinspired Engineering and Biomechanics Center, Xi'an Jiaotong University, Xi'an, China
| | - Chunjie Li
- Department of Hematology/Oncology, Guangzhou Women and Children's Medical Center, Guangzhou, China
| | - Xiaojing Lin
- Department of Hematology/Oncology, Guangzhou Women and Children's Medical Center, Guangzhou, China
| | - Yingyi He
- Department of Hematology/Oncology, Guangzhou Women and Children's Medical Center, Guangzhou, China
| | - Maoxiang Qian
- Institute of Pediatrics and Department of Hematology and Oncology, Children's Hospital of Fudan University, National Children's Medical Center, the Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Yuanbin Song
- State Key Laboratory of Oncology in South China, Department of Hematologic Oncology, Sun Yat-sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Hui Zhang
- Department of Hematology/Oncology, Guangzhou Women and Children's Medical Center, Guangzhou, China
| |
Collapse
|