1
|
Bahal S, Zinicola M, Moula SE, Whittaker TE, Schejtman A, Naseem A, Blanco E, Vetharoy W, Hu YT, Rai R, Gomez-Castaneda E, Cunha-Santos C, Burns SO, Morris EC, Booth C, Turchiano G, Cavazza A, Thrasher AJ, Santilli G. Hematopoietic stem cell gene editing rescues B-cell development in X-linked agammaglobulinemia. J Allergy Clin Immunol 2024; 154:195-208.e8. [PMID: 38479630 DOI: 10.1016/j.jaci.2024.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 02/26/2024] [Accepted: 03/01/2024] [Indexed: 04/09/2024]
Abstract
BACKGROUND X-linked agammaglobulinemia (XLA) is an inborn error of immunity that renders boys susceptible to life-threatening infections due to loss of mature B cells and circulating immunoglobulins. It is caused by defects in the gene encoding the Bruton tyrosine kinase (BTK) that mediates the maturation of B cells in the bone marrow and their activation in the periphery. This paper reports on a gene editing protocol to achieve "knock-in" of a therapeutic BTK cassette in hematopoietic stem and progenitor cells (HSPCs) as a treatment for XLA. METHODS To rescue BTK expression, this study employed a clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9 system that creates a DNA double-strand break in an early exon of the BTK locus and an adeno-associated virus 6 virus that carries the donor template for homology-directed repair. The investigators evaluated the efficacy of the gene editing approach in HSPCs from patients with XLA that were cultured in vitro under B-cell differentiation conditions or that were transplanted in immunodeficient mice to study B-cell output in vivo. RESULTS A (feeder-free) B-cell differentiation protocol was successfully applied to blood-mobilized HSPCs to reproduce in vitro the defects in B-cell maturation observed in patients with XLA. Using this system, the investigators could show the rescue of B-cell maturation by gene editing. Transplantation of edited XLA HSPCs into immunodeficient mice led to restoration of the human B-cell lineage compartment in the bone marrow and immunoglobulin production in the periphery. CONCLUSIONS Gene editing efficiencies above 30% could be consistently achieved in human HSPCs. Given the potential selective advantage of corrected cells, as suggested by skewed X-linked inactivation in carrier females and by competitive repopulating experiments in mouse models, this work demonstrates the potential of this strategy as a future definitive therapy for XLA.
Collapse
Affiliation(s)
- Sameer Bahal
- Infection, Immunity and Inflammation Research and Teaching Department, University College London Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Marta Zinicola
- Infection, Immunity and Inflammation Research and Teaching Department, University College London Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Shefta E Moula
- Infection, Immunity and Inflammation Research and Teaching Department, University College London Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Thomas E Whittaker
- Infection, Immunity and Inflammation Research and Teaching Department, University College London Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Andrea Schejtman
- Infection, Immunity and Inflammation Research and Teaching Department, University College London Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Asma Naseem
- Infection, Immunity and Inflammation Research and Teaching Department, University College London Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Elena Blanco
- Infection, Immunity and Inflammation Research and Teaching Department, University College London Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Winston Vetharoy
- Infection, Immunity and Inflammation Research and Teaching Department, University College London Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Yi-Ting Hu
- Infection, Immunity and Inflammation Research and Teaching Department, University College London Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Rajeev Rai
- Infection, Immunity and Inflammation Research and Teaching Department, University College London Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Eduardo Gomez-Castaneda
- Infection, Immunity and Inflammation Research and Teaching Department, University College London Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Catarina Cunha-Santos
- Infection, Immunity and Inflammation Research and Teaching Department, University College London Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Siobhan O Burns
- University College London Institute of Immunity and Transplantation, London, United Kingdom; Department of Immunology, Royal Free London National Health Service Foundation Trust, London, United Kingdom
| | - Emma C Morris
- University College London Institute of Immunity and Transplantation, London, United Kingdom; Department of Immunology, Royal Free London National Health Service Foundation Trust, London, United Kingdom
| | - Claire Booth
- Infection, Immunity and Inflammation Research and Teaching Department, University College London Great Ormond Street Institute of Child Health, London, United Kingdom; Great Ormond Street Hospital, National Health Service Foundation Trust, London, United Kingdom
| | - Giandomenico Turchiano
- Infection, Immunity and Inflammation Research and Teaching Department, University College London Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Alessia Cavazza
- Infection, Immunity and Inflammation Research and Teaching Department, University College London Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Adrian J Thrasher
- Infection, Immunity and Inflammation Research and Teaching Department, University College London Great Ormond Street Institute of Child Health, London, United Kingdom; Great Ormond Street Hospital, National Health Service Foundation Trust, London, United Kingdom
| | - Giorgia Santilli
- Infection, Immunity and Inflammation Research and Teaching Department, University College London Great Ormond Street Institute of Child Health, London, United Kingdom.
| |
Collapse
|
2
|
Whittaker TE, Moula SE, Bahal S, Bakri FG, Hayajneh WA, Daoud AK, Naseem A, Cavazza A, Thrasher AJ, Santilli G. Multidimensional Response Surface Methodology for the Development of a Gene Editing Protocol for p67 phox-Deficient Chronic Granulomatous Disease. Hum Gene Ther 2024; 35:298-312. [PMID: 38062734 PMCID: PMC7615834 DOI: 10.1089/hum.2023.114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2024] Open
Abstract
Replacing a faulty gene with a correct copy has become a viable therapeutic option as a result of recent progress in gene editing protocols. Targeted integration of therapeutic genes in hematopoietic stem cells has been achieved for multiple genes using Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/Cas9 system and Adeno-Associated Virus (AAV) to carry a donor template. Although this is a promising strategy to correct genetic blood disorders, it is associated with toxicity and loss of function in CD34+ hematopoietic stem and progenitor cells, which has hampered clinical application. Balancing the maximum achievable correction against deleterious effects on the cells is critical. However, multiple factors are known to contribute, and the optimization process is laborious and not always clearly defined. We have developed a flexible multidimensional Response Surface Methodology approach for optimization of gene correction. Using this approach, we could rapidly investigate and select editing conditions for CD34+ cells with the best possible balance between correction and cell/colony-forming unit (CFU) loss in a parsimonious one-shot experiment. This method revealed that using relatively low doses of AAV2/6 and CRISPR/Cas9 ribonucleoprotein complex, we can preserve the fitness of CD34+ cells and, at the same time, achieve high levels of targeted gene insertion. We then used these optimized editing conditions for the correction of p67phox-deficient chronic granulomatous disease (CGD), an autosomal recessive disorder of blood phagocytic cells resulting in severe recurrent bacterial and fungal infections and achieved rescue of p67phox expression and functional correction of CD34+-derived neutrophils from a CGD patient.
Collapse
Affiliation(s)
- Thomas E. Whittaker
- Infection, Immunity and Inflammation Teaching and Research Department, Great Ormond Street Institute of Child Health, University College London, United Kingdom
| | - Shefta E Moula
- Infection, Immunity and Inflammation Teaching and Research Department, Great Ormond Street Institute of Child Health, University College London, United Kingdom
| | - Sameer Bahal
- Infection, Immunity and Inflammation Teaching and Research Department, Great Ormond Street Institute of Child Health, University College London, United Kingdom
| | - Faris Ghalib Bakri
- Division of Infectious Diseases, Department of Medicine, Jordan University Hospital, Amman, Jordan
- Infectious Diseases and Vaccine Center, University of Jordan, Amman, Jordan
| | - Wail Ahmad Hayajneh
- Division of Infectious Diseases, Department of Pediatrics, Jordan University of Science & Technology, Irbid, Jordan
| | - Ammar Khaled Daoud
- Division of Immunology, Department of Internal Medicine, Jordan University of Science & Technology, Irbid, Jordan
| | - Asma Naseem
- Infection, Immunity and Inflammation Teaching and Research Department, Great Ormond Street Institute of Child Health, University College London, United Kingdom
| | - Alessia Cavazza
- Infection, Immunity and Inflammation Teaching and Research Department, Great Ormond Street Institute of Child Health, University College London, United Kingdom
| | - Adrian J Thrasher
- Infection, Immunity and Inflammation Teaching and Research Department, Great Ormond Street Institute of Child Health, University College London, United Kingdom
- NIHR Great Ormond Street Hospital Biomedical Research Centre, London, United Kingdom
| | - Giorgia Santilli
- Infection, Immunity and Inflammation Teaching and Research Department, Great Ormond Street Institute of Child Health, University College London, United Kingdom
| |
Collapse
|