1
|
Rubinski A, Franzmeier N, Neitzel J, Ewers M. FDG-PET hypermetabolism is associated with higher tau-PET in mild cognitive impairment at low amyloid-PET levels. ALZHEIMERS RESEARCH & THERAPY 2020; 12:133. [PMID: 33076977 PMCID: PMC7574434 DOI: 10.1186/s13195-020-00702-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 10/05/2020] [Indexed: 12/04/2022]
Abstract
Background FDG-PET hypermetabolism can be observed in mild cognitive impairment (MCI), but the link to primary pathologies of Alzheimer’s diseases (AD) including amyloid and tau is unclear. Methods Using voxel-based regression, we assessed local interactions between amyloid- and tau-PET on spatially matched FDG-PET in 72 MCI patients. Control groups included cerebrospinal fluid biomarker characterized cognitively normal (CN, n = 70) and AD dementia subjects (n = 95). Results In MCI, significant amyloid-PET by tau-PET interactions were found in frontal, lateral temporal, and posterior parietal regions, where higher local tau-PET was associated with higher spatially corresponding FDG-PET at low levels of local amyloid-PET. FDG-PET in brain regions with a significant local amyloid- by tau-PET interaction was higher compared to that in CN and AD dementia and associated with lower episodic memory. Conclusion Higher tau-PET in the presence of low amyloid-PET is associated with abnormally increased glucose metabolism that is accompanied by episodic memory impairment.
Collapse
Affiliation(s)
- Anna Rubinski
- Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig-Maximilians-Universität LMU, Feodor-Lynen-Straße 17, 81377, Munich, Germany
| | - Nicolai Franzmeier
- Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig-Maximilians-Universität LMU, Feodor-Lynen-Straße 17, 81377, Munich, Germany
| | - Julia Neitzel
- Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig-Maximilians-Universität LMU, Feodor-Lynen-Straße 17, 81377, Munich, Germany
| | - Michael Ewers
- Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig-Maximilians-Universität LMU, Feodor-Lynen-Straße 17, 81377, Munich, Germany. .,German Center for Neurodegenerative Diseases, Munich, Germany.
| | | |
Collapse
|
2
|
Shi Z, Fu LP, Zhang N, Zhao X, Liu S, Zuo C, Cai L, Wang Y, Gao S, Ai L, Guan YH, Xu B, Ji Y. Amyloid PET in Dementia Syndromes: A Chinese Multicenter Study. J Nucl Med 2020; 61:1814-1819. [PMID: 32385166 DOI: 10.2967/jnumed.119.240325] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 03/28/2020] [Indexed: 12/15/2022] Open
Abstract
Cerebral β-amyloid deposits and regional glucose metabolism assessed by PET are used to distinguish between Alzheimer disease (AD) and other dementia syndromes. In the present multicenter study, we estimated the prevalence of β-amyloid deposits on PET imaging in a wide variety of dementia syndromes and mild cognitive impairment (MCI) within a memory clinic population. Methods: Of the 1,193 consecutive patients with cognitive impairment (CI) who received 1 11C-PIB PET or 18F-AV45 PET or both 11C-PIB PET and 18F-AV45 PET, 960 were diagnosed with AD, 36 with frontotemporal dementia (FTD), 5 with dementia with Lewy bodies, 144 with MCI, 29 with vascular dementia, 4 with corticobasal syndrome, and 15 with unclassifiable dementia. Baseline clinical diagnoses were independently established without access to PET imaging results. Apolipoprotein E (ApoE) genotype analysis was performed on CI patients and 231 sex- and age-matched controls. Results: Of the 1,193 CI patients, 860 (72.1%) were amyloid-positive. The prevalence of amyloid positivity in AD and MCI patients was 86.8% (833/960) and 9.7% (14/144), respectively. In FTD patients, the prevalence of β-amyloid deposits was 5.6% (2/36). In the 4 corticobasal syndrome patients, 2 were amyloid-positive. Three of the 5 patients with dementia with Lewy bodies showed amyloid positivity, as did 6 of the 29 vascular dementia (20.7%) patients. The ApoEε4 allele frequency was significantly increased in amyloid-positive CI patients (30.5%) as compared with other amyloid-negative CI patients (14%) or controls (7.3%). Conclusion: Amyloid imaging may potentially be the most helpful parameter for differential diagnosis in dementia, particularly to distinguish between AD and FTD. Amyloid PET can be used in conjunction with the ApoEε4 allele genetic risk test for amyloid deposits.
Collapse
Affiliation(s)
- Zhihong Shi
- Tianjin Key Laboratory of Cerebrovascular and Neurodegenerative Diseases, Department of Neurology, Tianjin Dementia Institute, Tianjin Huanhu Hospital, Tianjin, China
| | - Li-Ping Fu
- Department of Nuclear Medicine, 1st Medical Center, Chinese PLA (People's Liberation Army) General Hospital, Beijing, China.,Department of Nuclear Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Nan Zhang
- Department of Neurology, General Hospital of Tianjin Medical University, Tianjin, China
| | - Xiaobin Zhao
- Department of Nuclear Medicine, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Shuai Liu
- Tianjin Key Laboratory of Cerebrovascular and Neurodegenerative Diseases, Department of Neurology, Tianjin Dementia Institute, Tianjin Huanhu Hospital, Tianjin, China
| | - Chuantao Zuo
- PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Li Cai
- Department of PET-CT Diagnostics, Tianjin Medical University General Hospital, Tianjin, China
| | - Ying Wang
- Department of PET-CT Diagnostics, Tianjin Medical University General Hospital, Tianjin, China
| | - Shuo Gao
- Department of PET-CT Diagnostics, Tianjin Medical University General Hospital, Tianjin, China
| | - Lin Ai
- Department of Nuclear Medicine, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yi-Hui Guan
- PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Baixuan Xu
- Department of Nuclear Medicine, 1st Medical Center, Chinese PLA (People's Liberation Army) General Hospital, Beijing, China
| | - Yong Ji
- Tianjin Key Laboratory of Cerebrovascular and Neurodegenerative Diseases, Department of Neurology, Tianjin Dementia Institute, Tianjin Huanhu Hospital, Tianjin, China .,China National Clinical Research Center for Neurological Diseases, Beijing, China; and.,Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
3
|
Alves GS, de Carvalho LDA, Sudo FK, Briand L, Laks J, Engelhardt E. A panel of clinical and neuropathological features of cerebrovascular disease through the novel neuroimaging methods. Dement Neuropsychol 2017; 11:343-355. [PMID: 29354214 PMCID: PMC5769992 DOI: 10.1590/1980-57642016dn11-040003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
UNLABELLED The last decade has witnessed substantial progress in acquiring diagnostic biomarkers for the diagnostic workup of cerebrovascular disease (CVD). Advanced neuroimaging methods not only provide a strategic contribution for the differential diagnosis of vascular dementia (VaD) and vascular cognitive impairment (VCI), but also help elucidate the pathophysiological mechanisms ultimately leading to small vessel disease (SVD) throughout its course. OBJECTIVE In this review, the novel imaging methods, both structural and metabolic, were summarized and their impact on the diagnostic workup of age-related CVD was analysed. Methods: An electronic search between January 2010 and 2017 was carried out on PubMed/MEDLINE, Institute for Scientific Information Web of Knowledge and EMBASE. RESULTS The use of full functional multimodality in simultaneous Magnetic Resonance (MR)/Positron emission tomography (PET) may potentially improve the clinical characterization of VCI-VaD; for structural imaging, MRI at 3.0 T enables higher-resolution scanning with greater imaging matrices, thinner slices and more detail on the anatomical structure of vascular lesions. CONCLUSION Although the importance of most of these techniques in the clinical setting has yet to be recognized, there is great expectancy in achieving earlier and more refined therapeutic interventions for the effective management of VCI-VaD.
Collapse
Affiliation(s)
| | | | - Felipe Kenji Sudo
- Departamento de Psicologia, Pontifícia Universidade Católica do Rio de Janeiro, RJ, Brazil
- Instituto D'Or de Ensino e Pesquisa, Rio de Janeiro, RJ, Brazil
| | - Lucas Briand
- Departamento de Medicina Interna, Universidade Federal do Ceará, CE, Brazil
| | - Jerson Laks
- Instituto de Psiquiatria, Universidade Federal do Rio de Janeiro, RJ, Brazil
- Programa de Pós-Graduação em Biomedicina Translacional (BIOTRANS), Unigranrio, Duque de Caxias, RJ, Brazil
| | - Eliasz Engelhardt
- Setor de Neurologia Cognitiva e do Comportamento, Instituto de Neurologia Deolindo Couto (INDC-CDA/IPUB), Rio de Janeiro, RJ, Brazil
| |
Collapse
|
4
|
Eliassen CF, Reinvang I, Selnes P, Grambaite R, Fladby T, Hessen E. Biomarkers in subtypes of mild cognitive impairment and subjective cognitive decline. Brain Behav 2017; 7:e00776. [PMID: 28948074 PMCID: PMC5607543 DOI: 10.1002/brb3.776] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2017] [Revised: 06/07/2017] [Accepted: 06/12/2017] [Indexed: 11/10/2022] Open
Abstract
OBJECTIVES Preclinical Alzheimers disease (AD) patients may or may not show cognitive impairment on testing. AD biomarkers are central to the identification of those at low, intermediate, or high risk of later dementia due to AD. We investigated biomarker distribution in those identified as subjective cognitive decline (SCD), amnestic (aMCI), and nonamnestic (naMCI) mild cognitive impairment (MCI) subtypes. In addition, the clinical groups were compared with controls on downstream neuroimaging markers. MATERIALS AND METHODS Cerebrospinal fluid (CSF) amyloid-β42 (A β42) and total tau (t-tau), phosphorylated tau (p-tau), fluorodeoxyglucose (FDG), positron-emission tomography (PET), and MRI neuroimaging measures were collected from 116 memory clinic patients. They were characterized as SCD, aMCI, and naMCI according to comprehensive neuropsychological criteria. ANOVAs were used to assess differences when biomarkers were treated as continuous variables and chi square analyses were used to assess group differences in distribution of biomarkers. RESULTS We did not find any between group differences in Aβ42, nor in p-tau, but we observed elevated t-tau in aMCI and SCD relative to the naMCI group. Significantly lower cortical glucose metabolism (as measured by FDG PET) was found in aMCI relative to SCD and controls, and there was a trend for lower metabolism in naMCI. Significant thinner entorhinal cortex (ERC) was found in aMCI and SCD. As expected biomarkers were significantly more frequently pathological in aMCI than in naMCI and SCD, whereas the naMCI and SCD groups displayed similar pathological biomarker burden. CONCLUSIONS aMCI cases show the most pathologic biomarker burden. Interestingly naMCI and SCD subjects show similar levels of pathological biomarkers albeit the former displayed neuropsychological deficits. That the latter group may represent a risk group is supported by our observation of both elevated CSF tau and thinner ERC relative to controls.
Collapse
Affiliation(s)
- Carl F Eliassen
- Department of Psychology University of Oslo Oslo Norway.,Department of Neurology Akershus University Hospital Lørenskog Norway
| | - Ivar Reinvang
- Department of Psychology University of Oslo Oslo Norway
| | - Per Selnes
- Department of Neurology Akershus University Hospital Lørenskog Norway
| | - Ramune Grambaite
- Department of Neurology Akershus University Hospital Lørenskog Norway
| | - Tormod Fladby
- Department of Neurology Akershus University Hospital Lørenskog Norway.,Institute of Clinical Medicine Campus Ahus University of Oslo Oslo Norway
| | - Erik Hessen
- Department of Psychology University of Oslo Oslo Norway.,Department of Neurology Akershus University Hospital Lørenskog Norway
| |
Collapse
|
5
|
Taswell C, Villemagne VL, Yates P, Shimada H, Leyton CE, Ballard KJ, Piguet O, Burrell JR, Hodges JR, Rowe CC. 18F-FDG PET Improves Diagnosis in Patients with Focal-Onset Dementias. J Nucl Med 2015; 56:1547-53. [DOI: 10.2967/jnumed.115.161067] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 07/20/2015] [Indexed: 11/16/2022] Open
|
6
|
Cash DM, Rohrer JD, Ryan NS, Ourselin S, Fox NC. Imaging endpoints for clinical trials in Alzheimer's disease. Alzheimers Res Ther 2014; 6:87. [PMID: 25621018 PMCID: PMC4304258 DOI: 10.1186/s13195-014-0087-9] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
As the need to develop a successful disease-modifying treatment for Alzheimer's disease (AD) becomes more urgent, imaging is increasingly used in therapeutic trials. We provide an overview of how the different imaging modalities are used in AD studies and the current regulatory guidelines for their use in clinical trials as endpoints. We review the current literature for results of imaging endpoints of efficacy and safety in published clinical trials. We start with trials in mild to moderate AD, where imaging (largely magnetic resonance imaging (MRI)) has long played a role in inclusion and exclusion criteria; more recently, MRI has been used to identify adverse events and to measure rates of brain atrophy. The advent of amyloid imaging using positron emission tomography has led to trials incorporating amyloid measurements as endpoints and incidentally to the recognition of the high proportion of amyloid-negative individuals that may be recruited into these trials. Ongoing and planned trials now commonly include multimodality imaging: amyloid positron emission tomography, MRI and other modalities. At the same time, the failure of recent large profile trials in mild to moderate AD together with the realisation that there is a long prodromal period to AD has driven a push to move studies to earlier in the disease. Imaging has particularly important roles, alongside other biomarkers, in assessing efficacy because conventional clinical outcomes may have limited ability to detect treatment effects in these early stages.
Collapse
Affiliation(s)
- David M Cash
- />Dementia Research Centre, Box 16, The National Hospital for Neurology and Neurosurgery, Queen Square, London, WC1N 3BG UK
- />Translational Imaging Group, Centre for Medical Image Computing, University College of London, 3rd Floor, Wolfson House, 4 Stephenson Way, London, NW1 2HE UK
| | - Jonathan D Rohrer
- />Dementia Research Centre, Box 16, The National Hospital for Neurology and Neurosurgery, Queen Square, London, WC1N 3BG UK
| | - Natalie S Ryan
- />Dementia Research Centre, Box 16, The National Hospital for Neurology and Neurosurgery, Queen Square, London, WC1N 3BG UK
| | - Sebastien Ourselin
- />Dementia Research Centre, Box 16, The National Hospital for Neurology and Neurosurgery, Queen Square, London, WC1N 3BG UK
- />Translational Imaging Group, Centre for Medical Image Computing, University College of London, 3rd Floor, Wolfson House, 4 Stephenson Way, London, NW1 2HE UK
| | - Nick C Fox
- />Dementia Research Centre, Box 16, The National Hospital for Neurology and Neurosurgery, Queen Square, London, WC1N 3BG UK
| |
Collapse
|
7
|
|