1
|
Lens G, Ahmadi Bidakhvidi N, Vandecaveye V, Grauwels S, Laenen A, Deckers W, Peeters R, Dresen RC, Dekervel J, Verslype C, Nackaerts K, Clement PM, Van Cutsem E, Koole M, Goffin K, Van Laere K, Deroose CM. Intra-individual qualitative and quantitative comparison of [ 68Ga]Ga-DOTATATE PET/CT and PET/MRI. Ther Adv Med Oncol 2023; 15:17588359231189133. [PMID: 37885461 PMCID: PMC10599114 DOI: 10.1177/17588359231189133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 07/04/2023] [Indexed: 10/28/2023] Open
Abstract
Background Somatostatin receptor (SSTR) positron emission tomography (PET) is a cornerstone of neuroendocrine tumor (NET) management. Hybrid PET/magnetic resonance imaging (MRI) is now available for NET-imaging, next to PET/computed tomography (CT). Objectives To determine whether CT or MRI is the best hybrid partner for [68Ga]Ga-DOTATATE PET. Design Monocentric, prospective study. Methods Patients received a same-day [68Ga]Ga-DOTATATE PET/CT and subsequent PET/MRI, for suspicion of NET, (re)staging or peptide receptor radionuclide therapy-selection. The union (PETunion) of malignant lesions detected on PETCT and PETMRI was the reference standard. Concordance of detection of malignant lesions in an organ was measured between PETunion and CT and PETunion and MRI. Seven bins were used to categorize the number of malignant lesions, containing following ordinal variables: 0, 1, 2-5, 6-10, 11-20, >20 countable and diffuse/uncountable. The difference in number of malignant lesions was obtained as the difference in bin level ('Δbin') between PETunion and CT and PETunion and MRI with a Δbin closer to zero implying a higher concordance rate. Results Twenty-nine patients were included. Primary tumors included 17 gastroenteropancreatic-NETs, 1 colon neuroendocrine carcinoma, 7 lung-NETs and 2 meningiomas. Patient level concordance with PETunion was 96% for MRI and 67% for CT (p = 0.039). Organ level concordance with PETunion was 74% for MRI and 40% for CT (p < 0.0001). In bone, there was a higher concordance rate for MRI compared to CT, 92% and 33%, respectively (p = 0.016). Overall, a mean Δbin of 0.5 ± 1.1 for PETunion/MRI and 1.4 ± 1.2 for PETunion/CT (p < 0.0001) was noted. In liver, a mean Δbin of 0.0 ± 1.1 for PETunion/MRI and 1.7 ± 1.2 for PETunion/CT was observed (p = 0.0078). In bone, a mean Δbin closer to zero was observed for PETunion/MRI compared to PETunion/CT, 0.6 ± 1.4 and 2.0 ± 1.5, respectively (p = 0.0098). Conclusions Compared to SSTR PET/CT, SSTR PET/MRI had a higher patient and organ level concordance for malignant tumoral involvement and number of malignant lesions, with a clear added value in bone and liver specifically.
Collapse
Affiliation(s)
- Géraldine Lens
- Nuclear Medicine, University Hospitals Leuven, Leuven, Belgium
| | - Niloefar Ahmadi Bidakhvidi
- Nuclear Medicine, University Hospitals Leuven, Leuven, BelgiumNuclear Medicine and Molecular Imaging, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| | | | | | - Annouschka Laenen
- Interuniversity Institute for Biostatistics and Statistical Bioinformatics, Leuven, Belgium
| | - Wies Deckers
- Nuclear Medicine, University Hospitals Leuven, Leuven, Belgium
| | | | | | - Jeroen Dekervel
- Digestive Oncology, University Hospitals Leuven, Leuven, Belgium
| | - Chris Verslype
- Digestive Oncology, University Hospitals Leuven, Leuven, Belgium
| | | | - Paul M. Clement
- General Medical Oncology, University Hospitals Leuven, Leuven, Belgium
| | - Eric Van Cutsem
- Digestive Oncology, University Hospitals Leuven, Leuven, Belgium
| | - Michel Koole
- Nuclear Medicine and Molecular Imaging, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| | - Karolien Goffin
- Nuclear Medicine, University Hospitals Leuven, Leuven, BelgiumNuclear Medicine and Molecular Imaging, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| | - Koen Van Laere
- Nuclear Medicine, University Hospitals Leuven, Leuven, BelgiumNuclear Medicine and Molecular Imaging, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| | - Christophe M. Deroose
- Nuclear Medicine, University Hospitals Leuven, Leuven, Belgium
- Nuclear Medicine and Molecular Imaging, Department of Imaging and Pathology, KU Leuven, Herestraat 49, 3000 Leuven, Flanders, Belgium
| |
Collapse
|
2
|
Mansi L. Radiolabeled somatostatin analogues for the diagnosis and therapy of NETs: upcoming new strategies. Clin Transl Imaging 2020. [DOI: 10.1007/s40336-020-00355-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
3
|
Detection Rate of Culprit Tumors Causing Osteomalacia Using Somatostatin Receptor PET/CT: Systematic Review and Meta-Analysis. Diagnostics (Basel) 2019; 10:diagnostics10010002. [PMID: 31861469 PMCID: PMC7169446 DOI: 10.3390/diagnostics10010002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 12/16/2019] [Accepted: 12/17/2019] [Indexed: 12/19/2022] Open
Abstract
Background: Tumor-induced or oncogenic osteomalacia (TIO) is a rare paraneoplastic syndrome in which osteomalacia is a consequence of fibroblast growth factor 23 (FGF23) secretion by a mesenchymal tumor. The localization of the culprit lesion in patients with TIO is often challenging. Several studies have evaluated the detection rate (DR) of these tumors using somatostatin receptor positron emission tomography (SSTR-PET/CT). We aimed to summarize literature findings on this topic providing pooled estimates of DR. Methods: A comprehensive literature search by screening PubMed, Embase and Cochrane library electronic databases through August 2019 was performed. The pooled DR of culprit tumors using SSTR-PET/CT in patients with TIO was calculated using a random-effects statistical model. Results: Fourteen studies on the use of SSTR-PET/CT in detecting the culprit tumor in patients with TIO were included in the qualitative analysis. The pooled DR of SSTR-PET/CT on a per-patient-based analysis calculated using eleven studies (166 patients) was 87.6% (95% confidence interval (95% CI) 80.2–95.1%). Statistical heterogeneity among studies was detected (I-square = 63%), likely due to the use of different radiolabeled somatostatin analogues, as demonstrated by a subgroup analysis. Conclusions: Despite limited literature data due to the rarity of the disease, SSTR-PET/CT demonstrated a very high DR of culprit tumors in patients with TIO and it could be used as first-line imaging method for this indication.
Collapse
|
4
|
Mapelli P, Ironi G, Fallanca F, Partelli S, Muffatti F, Andreasi V, Gianolli L, Falconi M, De Cobelli F, Picchio M. 68Ga-DOTA-peptides PET/MRI in pancreatico-duodenal neuroendocrine tumours: a flash pictorial essay on assets and lacks. Clin Transl Imaging 2019. [DOI: 10.1007/s40336-019-00341-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
5
|
Muffatti F, Partelli S, Cirocchi R, Andreasi V, Mapelli P, Picchio M, Gianolli L, Falconi M. Combined 68Ga-DOTA-peptides and 18F-FDG PET in the diagnostic work-up of neuroendocrine neoplasms (NEN). Clin Transl Imaging 2019. [DOI: 10.1007/s40336-019-00328-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
6
|
Franco Machado J, Silva RD, Melo R, G Correia JD. Less Exploited GPCRs in Precision Medicine: Targets for Molecular Imaging and Theranostics. Molecules 2018; 24:E49. [PMID: 30583594 PMCID: PMC6337414 DOI: 10.3390/molecules24010049] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Revised: 12/07/2018] [Accepted: 12/09/2018] [Indexed: 12/18/2022] Open
Abstract
Precision medicine relies on individually tailored therapeutic intervention taking into account individual variability. It is strongly dependent on the availability of target-specific drugs and/or imaging agents that recognize molecular targets and patient-specific disease mechanisms. The most sensitive molecular imaging modalities, Single Photon Emission Computed Tomography (SPECT) and Positron Emission Tomography (PET), rely on the interaction between an imaging radioprobe and a target. Moreover, the use of target-specific molecular tools for both diagnostics and therapy, theranostic agents, represent an established methodology in nuclear medicine that is assuming an increasingly important role in precision medicine. The design of innovative imaging and/or theranostic agents is key for further accomplishments in the field. G-protein-coupled receptors (GPCRs), apart from being highly relevant drug targets, have also been largely exploited as molecular targets for non-invasive imaging and/or systemic radiotherapy of various diseases. Herein, we will discuss recent efforts towards the development of innovative imaging and/or theranostic agents targeting selected emergent GPCRs, namely the Frizzled receptor (FZD), Ghrelin receptor (GHSR-1a), G protein-coupled estrogen receptor (GPER), and Sphingosine-1-phosphate receptor (S1PR). The pharmacological and clinical relevance will be highlighted, giving particular attention to the studies on the synthesis and characterization of targeted molecular imaging agents, biological evaluation, and potential clinical applications in oncology and non-oncology diseases. Whenever relevant, supporting computational studies will be also discussed.
Collapse
Affiliation(s)
- João Franco Machado
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, CTN, Estrada Nacional 10 (km 139,7), 2695-066 Bobadela LRS, Portugal.
- Centro de Química Estrutural, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal.
| | - Rúben D Silva
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, CTN, Estrada Nacional 10 (km 139,7), 2695-066 Bobadela LRS, Portugal.
| | - Rita Melo
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, CTN, Estrada Nacional 10 (km 139,7), 2695-066 Bobadela LRS, Portugal.
- Center for Neuroscience and Cell Biology; Rua Larga, Faculdade de Medicina, Polo I, 1ºandar, Universidade de Coimbra, 3004-504 Coimbra, Portugal.
| | - João D G Correia
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, CTN, Estrada Nacional 10 (km 139,7), 2695-066 Bobadela LRS, Portugal.
| |
Collapse
|
7
|
Hou X, Birkenfeld B, Piwowarska-Bilska H, Celler A. Patient-specific dosimetry of 99mTc-HYNIC-Tyr 3-Octreotide in children. EJNMMI Phys 2017; 4:24. [PMID: 29030760 PMCID: PMC5640560 DOI: 10.1186/s40658-017-0191-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 10/04/2017] [Indexed: 02/03/2023] Open
Abstract
Background Technetium-99m-hydrazinonicotinamide-Tyr3-octreotide (99mTc-HYNIC-TOC) is recognized as a promising radiopharmaceutical for diagnosing neuroendocrine tumors (NETs). However, 99mTc-HYNIC-TOC dosimetry has been investigated only for adults. As pediatric radionuclide therapies become increasingly common, similar dosimetric studies for children are urgently needed. The aim of this study is to report personalized image-based biodistributions and dosimetry evaluations for children studies performed using 99mTc-HYNIC-TOC and to compare them with those from adult subjects. Eleven children/teenage patients with suspected or diagnosed NETs were enrolled. Patient imaging included a series of 2–3 whole-body planar scans and SPECT/CT performed over 2–24 h after the 99mTc-HYNIC-TOC injections. The time-integrated activity coefficients (TIACs) were obtained from the hybrid planar/SPECT technique. Patient-specific doses were calculated using both the voxel-level and the organ-level approaches. Estimated children doses were compared with adults’ dosimetry. Results Pathologic uptake was observed in five patients. TIACs for normal organs with significant uptakes, i.e., kidneys, spleen, and liver, were similar to adults’ TIACs. Using the voxel-level approach, the average organ doses for children were 0.024 ± 0.009, 0.032 ± 0.017, and 0.017 ± 0.007 mGy/MBq for the kidneys, spleen, and liver, respectively, which were 30% larger than adults’ doses. Similar values were obtained from the organ-level dosimetry when using OLINDA with adapted organ masses. Tumor doses were 0.010–0.024 mGy/MBq. However, cross-organ contributions were much larger in children than in adults, comprising about 15–40% of the total organ/tumor doses. No statistical differences were found between mean doses and dose distributions in patients with and without pathologic uptakes. Conclusion Although the children TIACs were similar to those in adults, their doses were about 30% higher. No significant correlation was found between the children’s doses and their ages. However, substantial inter-patient variability in radiotracer uptake, indicating disparity in expression of somatostatin receptor between different patients, emphasizes the importance and necessity of patient-specific dosimetry for clinical studies.
Collapse
Affiliation(s)
- Xinchi Hou
- Medical Imaging Research Group, Department of Radiology, University of British Columbia, 828 West 10th Avenue, Rm 366, Vancouver, BC, V5Z1L8, Canada
| | - Bozena Birkenfeld
- Nuclear Medicine Department, Pomeranian Medical University, Szczecin, Poland
| | | | - Anna Celler
- Medical Imaging Research Group, Department of Radiology, University of British Columbia, 828 West 10th Avenue, Rm 366, Vancouver, BC, V5Z1L8, Canada.
| |
Collapse
|
8
|
Abstract
Fluorodeoxyglucose PET and PET/computed tomography have gained acceptance in the evaluation of disease. Nontargeted tracers have been used in the diagnosis of certain malignancies but may not be sensitive or specific enough to become standard of care. Newer targeted PET tracers have been developed that target disease-specific biomarkers, and allow accurate and sensitive detection of disease. Combined with the capabilities of MR imaging to evaluate soft tissue, precision imaging with PET/MR imaging can change the diagnosis. This article discusses specific areas in which precision imaging with nontargeted and targeted diagnostic agents can change the diagnosis and treatment.
Collapse
Affiliation(s)
- Eugene Huo
- Department of Radiology and Biomedical Imaging, University of California San Francisco, 505 Parnassus Avenue, San Francisco, CA 94143, USA
| | - David M Wilson
- Department of Radiology and Biomedical Imaging, University of California San Francisco, 505 Parnassus Avenue, San Francisco, CA 94143, USA
| | - Laura Eisenmenger
- Department of Radiology and Biomedical Imaging, University of California San Francisco, 505 Parnassus Avenue, San Francisco, CA 94143, USA
| | - Thomas A Hope
- Department of Radiology and Biomedical Imaging, University of California San Francisco, 505 Parnassus Avenue, San Francisco, CA 94143, USA; Department of Radiology, San Francisco VA Health Care System, 4150 Clement Street, San Francisco, CA 94121, USA.
| |
Collapse
|
9
|
|