1
|
Aldalilah Y, Fraioli F, Bomanji J. Neuro-oncology tracers: an already limited supply impacted by the pandemic? Nucl Med Commun 2020; 41:1223-1225. [PMID: 32956250 DOI: 10.1097/mnm.0000000000001294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- Yazeed Aldalilah
- University College London Hospital NHS Trust, Institute of Nuclear Medicine, London, UK
- Department of Radiology, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Francesco Fraioli
- University College London Hospital NHS Trust, Institute of Nuclear Medicine, London, UK
| | - Jamshed Bomanji
- University College London Hospital NHS Trust, Institute of Nuclear Medicine, London, UK
| |
Collapse
|
2
|
Sadeghzadeh M, Wenzel B, Gündel D, Deuther-Conrad W, Toussaint M, Moldovan RP, Fischer S, Ludwig FA, Teodoro R, Jonnalagadda S, Jonnalagadda SK, Schüürmann G, Mereddy VR, Drewes LR, Brust P. Development of Novel Analogs of the Monocarboxylate Transporter Ligand FACH and Biological Validation of One Potential Radiotracer for Positron Emission Tomography (PET) Imaging. Molecules 2020; 25:molecules25102309. [PMID: 32423056 PMCID: PMC7288138 DOI: 10.3390/molecules25102309] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 05/08/2020] [Accepted: 05/11/2020] [Indexed: 12/14/2022] Open
Abstract
Monocarboxylate transporters 1-4 (MCT1-4) are involved in several metabolism-related diseases, especially cancer, providing the chance to be considered as relevant targets for diagnosis and therapy. [18F]FACH was recently developed and showed very promising preclinical results as a potential positron emission tomography (PET) radiotracer for imaging of MCTs. Given that [18F]FACH did not show high blood-brain barrier permeability, the current work is aimed to investigate whether more lipophilic analogs of FACH could improve brain uptake for imaging of gliomas, while retaining binding to MCTs. The 2-fluoropyridinyl-substituted analogs 1 and 2 were synthesized and their MCT1 inhibition was estimated by [14C]lactate uptake assay on rat brain endothelial-4 (RBE4) cells. While compounds 1 and 2 showed lower MCT1 inhibitory potencies than FACH (IC50 = 11 nM) by factors of 11 and 25, respectively, 1 (IC50 = 118 nM) could still be a suitable PET candidate. Therefore, 1 was selected for radiosynthesis of [18F]1 and subsequent biological evaluation for imaging of the MCT expression in mouse brain. Regarding lipophilicity, the experimental log D7.4 result for [18F]1 agrees pretty well with its predicted value. In vivo and in vitro studies revealed high uptake of the new radiotracer in kidney and other peripheral MCT-expressing organs together with significant reduction by using specific MCT1 inhibitor α-cyano-4-hydroxycinnamic acid. Despite a higher lipophilicity of [18F]1 compared to [18F]FACH, the in vivo brain uptake of [18F]1 was in a similar range, which is reflected by calculated BBB permeabilities as well through similar transport rates by MCTs on RBE4 cells. Further investigation is needed to clarify the MCT-mediated transport mechanism of these radiotracers in brain.
Collapse
Affiliation(s)
- Masoud Sadeghzadeh
- Department of Neuroradiopharmaceuticals, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Permoserstraße 15, 04318 Leipzig, Germany; (B.W.); (D.G.); (W.D.-C.); (M.T.); (R.-P.M.); (S.F.); (F.-A.L.); (R.T.); (P.B.)
- Correspondence: ; Tel.: +49-341-2341794630; Fax: +49-341-2341794699
| | - Barbara Wenzel
- Department of Neuroradiopharmaceuticals, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Permoserstraße 15, 04318 Leipzig, Germany; (B.W.); (D.G.); (W.D.-C.); (M.T.); (R.-P.M.); (S.F.); (F.-A.L.); (R.T.); (P.B.)
| | - Daniel Gündel
- Department of Neuroradiopharmaceuticals, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Permoserstraße 15, 04318 Leipzig, Germany; (B.W.); (D.G.); (W.D.-C.); (M.T.); (R.-P.M.); (S.F.); (F.-A.L.); (R.T.); (P.B.)
| | - Winnie Deuther-Conrad
- Department of Neuroradiopharmaceuticals, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Permoserstraße 15, 04318 Leipzig, Germany; (B.W.); (D.G.); (W.D.-C.); (M.T.); (R.-P.M.); (S.F.); (F.-A.L.); (R.T.); (P.B.)
| | - Magali Toussaint
- Department of Neuroradiopharmaceuticals, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Permoserstraße 15, 04318 Leipzig, Germany; (B.W.); (D.G.); (W.D.-C.); (M.T.); (R.-P.M.); (S.F.); (F.-A.L.); (R.T.); (P.B.)
| | - Rareş-Petru Moldovan
- Department of Neuroradiopharmaceuticals, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Permoserstraße 15, 04318 Leipzig, Germany; (B.W.); (D.G.); (W.D.-C.); (M.T.); (R.-P.M.); (S.F.); (F.-A.L.); (R.T.); (P.B.)
| | - Steffen Fischer
- Department of Neuroradiopharmaceuticals, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Permoserstraße 15, 04318 Leipzig, Germany; (B.W.); (D.G.); (W.D.-C.); (M.T.); (R.-P.M.); (S.F.); (F.-A.L.); (R.T.); (P.B.)
| | - Friedrich-Alexander Ludwig
- Department of Neuroradiopharmaceuticals, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Permoserstraße 15, 04318 Leipzig, Germany; (B.W.); (D.G.); (W.D.-C.); (M.T.); (R.-P.M.); (S.F.); (F.-A.L.); (R.T.); (P.B.)
| | - Rodrigo Teodoro
- Department of Neuroradiopharmaceuticals, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Permoserstraße 15, 04318 Leipzig, Germany; (B.W.); (D.G.); (W.D.-C.); (M.T.); (R.-P.M.); (S.F.); (F.-A.L.); (R.T.); (P.B.)
| | - Shirisha Jonnalagadda
- Department of Chemistry and Biochemistry, Department of Pharmacy Practice & Pharmaceutical Sciences, University of Minnesota, Duluth, MN 55812, USA; (S.J.); (S.K.J.); (V.R.M.)
| | - Sravan K. Jonnalagadda
- Department of Chemistry and Biochemistry, Department of Pharmacy Practice & Pharmaceutical Sciences, University of Minnesota, Duluth, MN 55812, USA; (S.J.); (S.K.J.); (V.R.M.)
| | - Gerrit Schüürmann
- UFZ Department of Ecological Chemistry, Helmholtz Centre for Environmental Research, Permoserstraße 15, 04318 Leipzig, Germany;
- Institute of Organic Chemistry, Technical University Bergakademie Freiberg, Leipziger Straße 29, 09599 Freiberg, Germany
| | - Venkatram R. Mereddy
- Department of Chemistry and Biochemistry, Department of Pharmacy Practice & Pharmaceutical Sciences, University of Minnesota, Duluth, MN 55812, USA; (S.J.); (S.K.J.); (V.R.M.)
| | - Lester R. Drewes
- Department of Biomedical Sciences, University of Minnesota Medical School Duluth, 251 SMed, 1035 University Drive, Duluth, MN 55812, USA;
| | - Peter Brust
- Department of Neuroradiopharmaceuticals, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Permoserstraße 15, 04318 Leipzig, Germany; (B.W.); (D.G.); (W.D.-C.); (M.T.); (R.-P.M.); (S.F.); (F.-A.L.); (R.T.); (P.B.)
| |
Collapse
|
3
|
de Almeida Schirmer BG, de Araujo MR, Silveira MB, Pereira JM, Vieira LC, Alves CG, Mbolela WT, Ferreira AV, Silva-Cunha A, Fialho SL, da Silva JB, Malamut C. Comparison of [ 18F]Fluorocholine and [ 18F]Fluordesoxyglucose for assessment of progression, lung metastasis detection and therapy response in murine 4T1 breast tumor model. Appl Radiat Isot 2018; 140:278-288. [PMID: 30081351 DOI: 10.1016/j.apradiso.2018.07.032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 05/23/2018] [Accepted: 07/25/2018] [Indexed: 10/28/2022]
Abstract
The [18F]Fluorocholine ([18F]FCH) tracer for PET imaging has been proven to be effective for several malignances. However, there are only a few studies related to its breast tumor applicability and they are still limited. The aim of this study was investigate the efficacy of [18F]FCH/PET compared to [18F]FDG/PET in a murine 4T1 mammary carcinoma model treated and nontreated. [18F]FCH/PET showed its applicability for primary tumor and lung metastasis detection and their use for response monitoring of breast cancer therapeutics at earlier stages.
Collapse
Affiliation(s)
| | - Marina Rios de Araujo
- Unidade de Pesquisa e Produção de Radiofármacos, Centro de Desenvolvimento da Tecnologia Nuclear (CDTN), Belo Horizonte, Brazil
| | - Marina Bicalho Silveira
- Unidade de Pesquisa e Produção de Radiofármacos, Centro de Desenvolvimento da Tecnologia Nuclear (CDTN), Belo Horizonte, Brazil
| | - Jousie Michel Pereira
- Unidade de Pesquisa e Produção de Radiofármacos, Centro de Desenvolvimento da Tecnologia Nuclear (CDTN), Belo Horizonte, Brazil
| | - Lorena Carla Vieira
- Faculdade de Farmácia - Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil; Fundação Ezequiel Dias (FUNED), Belo Horizonte, Brazil
| | - Clarice Gregório Alves
- Unidade de Pesquisa e Produção de Radiofármacos, Centro de Desenvolvimento da Tecnologia Nuclear (CDTN), Belo Horizonte, Brazil
| | - William Tshisuaka Mbolela
- Unidade de Pesquisa e Produção de Radiofármacos, Centro de Desenvolvimento da Tecnologia Nuclear (CDTN), Belo Horizonte, Brazil
| | - Andrea Vidal Ferreira
- Unidade de Pesquisa e Produção de Radiofármacos, Centro de Desenvolvimento da Tecnologia Nuclear (CDTN), Belo Horizonte, Brazil
| | - Armando Silva-Cunha
- Faculdade de Farmácia - Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | | | - Juliana Batista da Silva
- Unidade de Pesquisa e Produção de Radiofármacos, Centro de Desenvolvimento da Tecnologia Nuclear (CDTN), Belo Horizonte, Brazil
| | - Carlos Malamut
- Unidade de Pesquisa e Produção de Radiofármacos, Centro de Desenvolvimento da Tecnologia Nuclear (CDTN), Belo Horizonte, Brazil.
| |
Collapse
|
4
|
Uptake of 18F-FET and 18F-FCH in Human Glioblastoma T98G Cell Line after Irradiation with Photons or Carbon Ions. CONTRAST MEDIA & MOLECULAR IMAGING 2017; 2017:6491674. [PMID: 29097931 PMCID: PMC5612615 DOI: 10.1155/2017/6491674] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 11/10/2016] [Accepted: 12/26/2016] [Indexed: 12/02/2022]
Abstract
The differential diagnosis between recurrence of gliomas or brain metastases and this phenomenon is important in order to choose the best therapy and predict the prognosis but is still a big problem for physicians. The new emerging MRI, CT, and PET diagnostic modalities still lack sufficient accuracy. Radiolabeled choline and amino acids have been reported to show great tumor specificity. We studied the uptake kinetics of [18F]fluoromethyl-choline (FCH) and O-(2-[18F]fluoroethyl)-L-tyrosine (FET) by the T98G human glioblastoma cells from 20 to 120 min after irradiation either with photons at 2-10-20 Gy or with carbon ions at 2 Gy (at the National Centre for Oncological Hadrontherapy (CNAO), Pavia, Italy). We also evaluated the cell death and morphology changes induced by radiation treatment. Both FET and FCH are able to trace tumor behavior in terms of higher uptake for increased doses of radiation treatment, due to the upregulation of cells attempts to repair nonlethal damage. Our data suggest that both FCH and FET could be useful to analyze the metabolic pathways of glioblastoma cells before and after radiotherapy. Physicians will have to consider the different kinetics pathways of uptake concerning the two radiopharmaceuticals.
Collapse
|