1
|
Mingels C, Weissenrieder L, Zeimpekis K, Sari H, Nardo L, Caobelli F, Alberts I, Rominger A, Pyka T. FDG imaging with long-axial field-of-view PET/CT in patients with high blood glucose-a matched pair analysis. Eur J Nucl Med Mol Imaging 2024; 51:2036-2046. [PMID: 38383743 PMCID: PMC11139721 DOI: 10.1007/s00259-024-06646-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 02/05/2024] [Indexed: 02/23/2024]
Abstract
PURPOSE High blood glucose (hBG) in patients undergoing [18F]FDG PET/CT scans often results in rescheduling the examination, which may lead to clinical delay for the patient and decrease productivity for the department. The aim of this study was to evaluate whether long-axial field-of-view (LAFOV) PET/CT can minimize the effect of altered bio-distribution in hBG patients and is able to provide diagnostic image quality in hBG situations. MATERIALS AND METHODS Oncologic patients with elevated blood glucose (≥ 8.0 mmol/l) and normal blood glucose (< 8.0 mmol/l, nBG) levels were matched for tumor entity, gender, age, and BMI. hBG patients were further subdivided into two groups (BG 8-11 mmol/l and BG > 11 mmol/l). Tracer uptake in the liver, muscle, and tumor was evaluated. Furthermore, image quality was compared between long acquisitions (ultra-high sensitivity mode, 360 s) on a LAFOV PET/CT and routine acquisitions equivalent to a short-axial field-of-view scanner (simulated (sSAFOV), obtained with high sensitivity mode, 120 s). Tumor-to-background ratio (TBR) and contrast-to-noise ratio (CNR) were used as the main image quality criteria. RESULTS Thirty-one hBG patients met the inclusion criteria and were matched with 31 nBG patients. Overall, liver uptake was significantly higher in hBG patients (SUVmean, 3.07 ± 0.41 vs. 2.37 ± 0.33; p = 0.03), and brain uptake was significantly lower (SUVmax, 7.58 ± 0.74 vs. 13.38 ± 3.94; p < 0.001), whereas muscle (shoulder/gluteal) uptake showed no statistically significant difference. Tumor uptake was lower in hBG patients, resulting in a significantly lower TBR in the hBG cohort (3.48 ± 0.74 vs. 5.29 ± 1.48, p < 0.001). CNR was higher in nBG compared to hBG patients (12.17 ± 4.86 vs. 23.31 ± 12.22, p < 0.001). However, subgroup analysis of nBG 8-11 mmol/l on sSAFOV PET/CT compared to hBG (> 11 mmol/l) patients examined with LAFOV PET/CT showed no statistical significant difference in CNR (19.84 ± 8.40 vs. 17.79 ± 9.3, p = 0.08). CONCLUSION While elevated blood glucose (> 11 mmol) negatively affected TBR and CNR in our cohort, the images from a LAFOV PET-scanner had comparable CNR to PET-images acquired from nBG patients using sSAFOV PET/CT. Therefore, we argue that oncologic patients with increased blood sugar levels might be imaged safely with LAFOV PET/CT when rescheduling is not feasible.
Collapse
Affiliation(s)
- Clemens Mingels
- Department of Nuclear Medicine, Inselspital, University Hospital Bern, University of Bern, Freiburgstr. 18, 3010, Bern, Switzerland.
| | - Luis Weissenrieder
- Department of Nuclear Medicine, Inselspital, University Hospital Bern, University of Bern, Freiburgstr. 18, 3010, Bern, Switzerland
| | - Konstantinos Zeimpekis
- Department of Nuclear Medicine, Inselspital, University Hospital Bern, University of Bern, Freiburgstr. 18, 3010, Bern, Switzerland
| | - Hasan Sari
- Department of Nuclear Medicine, Inselspital, University Hospital Bern, University of Bern, Freiburgstr. 18, 3010, Bern, Switzerland
- Advanced Clinical Imaging Technology, Siemens Healthcare AG, Lausanne, Switzerland
| | - Lorenzo Nardo
- Department of Radiology, University of California Davis, Sacramento, CA, USA
| | - Federico Caobelli
- Department of Nuclear Medicine, Inselspital, University Hospital Bern, University of Bern, Freiburgstr. 18, 3010, Bern, Switzerland
| | - Ian Alberts
- Molecular Imaging and Therapy, BC Cancer Agency, Vancouver, BC, Canada
| | - Axel Rominger
- Department of Nuclear Medicine, Inselspital, University Hospital Bern, University of Bern, Freiburgstr. 18, 3010, Bern, Switzerland
| | - Thomas Pyka
- Department of Nuclear Medicine, Inselspital, University Hospital Bern, University of Bern, Freiburgstr. 18, 3010, Bern, Switzerland
| |
Collapse
|
2
|
Pijl JP, Glaudemans AWJM, Gheysens O, Slart RHJA, Kwee TC. Importance of Blood Glucose Management Before 18F-FDG PET/CT in 322 Patients with Bacteremia of Unknown Origin. J Nucl Med 2023:jnumed.122.264839. [PMID: 37414447 DOI: 10.2967/jnumed.122.264839] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 04/14/2023] [Indexed: 07/08/2023] Open
Abstract
We investigated the effects of blood glucose levels on the performance of 18F-FDG PET/CT for detecting an infection focus in patients with bacteremia. Methods: A total of 322 consecutive patients with bacteremia who underwent 18F-FDG PET/CT between 2010 and 2021 were included. Logistic regression analysis was performed to evaluate the association between finding a true-positive infection focus on 18F-FDG PET/CT and blood glucose level, type of diabetes, and use of hypoglycemic medication. C-reactive protein, leukocyte count, duration of antibiotic treatment, and type of isolated bacteria were considered as well. Results: Blood glucose level (odds ratio, 0.76 per unit increase; P = <0.001) was significantly and independently associated with 18F-FDG PET/CT outcome. In patients with a blood glucose level between 3.0 and 7.9 mmol/L (54-142 mg/dL), the true-positive detection rate of 18F-FDG PET/CT varied between 61% and 65%, whereas in patients with a blood glucose level between 8.0 and 10.9 mmol/L (144-196 mg/dL), the true-positive detection rate decreased to 30%-38%. In patients with a blood glucose level greater than 11.0 mmol/L (200 mg/dL), the true-positive detection rate was 17%. In addition to C-reactive protein (odds ratio, 1.004 per point increase; P = 0.009), no other variables were independently associated with 18F-FDG PET/CT outcome. Conclusion: In patients with moderate to severe hyperglycemia, 18F-FDG PET/CT was much less likely to identify the focus of infection than in normoglycemic patients. Although current guidelines recommend postponing 18F-FDG PET/CT only in cases of severe hyperglycemia with glucose levels greater than 11 mmol/L (200 mg/dL), a lower blood glucose threshold seems to be more appropriate in patients with bacteremia of unknown origin and other infectious diseases.
Collapse
Affiliation(s)
- Jordy P Pijl
- Medical Imaging Center, Department of Radiology, Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands;
| | - Andor W J M Glaudemans
- Medical Imaging Center, Department of Radiology, Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Olivier Gheysens
- Department of Nuclear Medicine, Cliniques Universitaires Saint-Luc and Institute of Clinical and Experimental Research, Université Catholique de Louvain, Brussels, Belgium; and
| | - Riemer H J A Slart
- Medical Imaging Center, Department of Radiology, Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
- Department of Biomedical Photonic Imaging, University of Twente, Enschede, The Netherlands
| | - Thomas C Kwee
- Medical Imaging Center, Department of Radiology, Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
3
|
Pijl JP, Nienhuis PH, Kwee TC, Glaudemans AWJM, Slart RHJA, Gormsen LC. Limitations and Pitfalls of FDG-PET/CT in Infection and Inflammation. Semin Nucl Med 2021; 51:633-645. [PMID: 34246448 DOI: 10.1053/j.semnuclmed.2021.06.008] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
White blood cells activated by either a pathogen or as part of a systemic inflammatory disease are characterized by high energy consumption and are therefore taking up the glucose analogue PET tracer FDG avidly. It is therefore not surprising that a steadily growing body of research and clinical reports now supports the use of FDG PET/CT to diagnose a wide range of patients with non-oncological diseases. However, using FDG PET/CT in patients with infectious or inflammatory diseases has some limitations and potential pitfalls that are not necessarily as pronounced in oncology FDG PET/CT. Some of these limitations are of a general nature and related to the laborious acquisition of PET images in patients that are often acutely ill, whereas others are more disease-specific and related to the particular metabolism in some of the organs most commonly affected by infections or inflammatory disease. Both inflammatory and infectious diseases are characterized by a more diffuse and less pathognomonic pattern of FDG uptake than oncology FDG PET/CT and the affected organs also typically have some physiological FDG uptake. In addition, patients referred to PET/CT with suspected infection or inflammation are rarely treatment naïve and may have received varying doses of antibiotics, corticosteroids or other immune-modulating drugs at the time of their examination. Combined, this results in a higher rate of false positive FDG findings and also in some cases a lower sensitivity to detect active disease. In this review, we therefore discuss the limitations and pitfalls of FDG PET/CT to diagnose infections and inflammation taking these issues into consideration. Our review encompasses the most commonly encountered inflammatory and infectious diseases in head and neck, in the cardiovascular system, in the abdominal organs and in the musculoskeletal system. Finally, new developments in the field of PET/CT that may help overcome some of these limitations are briefly highlighted.
Collapse
Affiliation(s)
- Jordy P Pijl
- Medical Imaging Center, Departments of Radiology, Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen
| | - Pieter H Nienhuis
- Medical Imaging Center, Departments of Radiology, Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen
| | - Thomas C Kwee
- Medical Imaging Center, Departments of Radiology, Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen
| | - Andor W J M Glaudemans
- Medical Imaging Center, Departments of Radiology, Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen
| | - Riemer H J A Slart
- Medical Imaging Center, Departments of Radiology, Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen; Faculty of Science and Technology, Department of Biomedical Photonic Imaging, University of Twente, Enschede
| | - Lars C Gormsen
- Department of Nuclear Medicine & PET Center, Aarhus University Hospital, Aarhus N.
| |
Collapse
|