1
|
Yoo HB, Lee HH, Nga VDW, Choi YS, Lim JH. Detecting Tumor-Associated Intracranial Hemorrhage Using Proton Magnetic Resonance Spectroscopy. Neurol Int 2024; 16:1856-1877. [PMID: 39728759 DOI: 10.3390/neurolint16060133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 12/06/2024] [Accepted: 12/11/2024] [Indexed: 12/28/2024] Open
Abstract
Intracranial hemorrhage associated with primary or metastatic brain tumors is a critical condition that requires urgent intervention, often through open surgery. Nevertheless, surgical interventions may not always be feasible due to two main reasons: (1) extensive hemorrhage can obscure the underlying tumor mass, limiting radiological assessment; and (2) intracranial hemorrhage may occasionally present as the first symptom of a brain tumor without prior knowledge of its existence. The current review of case studies suggests that advanced radiological imaging techniques can improve diagnostic power for tumoral hemorrhage. Adding proton magnetic resonance spectroscopy (1H-MRS), which profiles biochemical composition of mass lesions could be valuable: it provides unique information about tumor states distinct from hemorrhagic lesions bypassing the structural obliteration caused by the hemorrhage. Recent advances in 1H-MRS techniques may enhance the modality's reliability in clinical practice. This perspective proposes that 1H-MRS can be utilized in clinical settings to enhance diagnostic power in identifying tumors underlying intracranial hemorrhage.
Collapse
Affiliation(s)
- Hye Bin Yoo
- Institute for Data Innovation in Science, Seoul National University, Seoul 08826, Republic of Korea
| | | | - Vincent Diong Weng Nga
- Division of Neurosurgery, Department of Surgery, National University Hospital, Singapore 119228, Singapore
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119074, Singapore
| | - Yoon Seong Choi
- Department of Diagnostic Radiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119074, Singapore
| | - Jeong Hoon Lim
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119074, Singapore
| |
Collapse
|
2
|
Arias-Ramos N, Vieira C, Pérez-Carro R, López-Larrubia P. Integrative Magnetic Resonance Imaging and Metabolomic Characterization of a Glioblastoma Rat Model. Brain Sci 2024; 14:409. [PMID: 38790388 PMCID: PMC11118082 DOI: 10.3390/brainsci14050409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/14/2024] [Accepted: 04/18/2024] [Indexed: 05/26/2024] Open
Abstract
Glioblastoma (GBM) stands as the most prevalent and lethal malignant brain tumor, characterized by its highly infiltrative nature. This study aimed to identify additional MRI and metabolomic biomarkers of GBM and its impact on healthy tissue using an advanced-stage C6 glioma rat model. Wistar rats underwent a stereotactic injection of C6 cells (GBM group, n = 10) or cell medium (sham group, n = 4). A multiparametric MRI, including anatomical T2W and T1W images, relaxometry maps (T2, T2*, and T1), the magnetization transfer ratio (MTR), and diffusion tensor imaging (DTI), was performed. Additionally, ex vivo magnetic resonance spectroscopy (MRS) HRMAS spectra were acquired. The MRI analysis revealed significant differences in the T2 maps, T1 maps, MTR, and mean diffusivity parameters between the GBM tumor and the rest of the studied regions, which were the contralateral areas of the GBM rats and both regions of the sham rats (the ipsilateral and contralateral). The ex vivo spectra revealed markers of neuronal loss, apoptosis, and higher glucose uptake by the tumor. Notably, the myo-inositol and phosphocholine levels were elevated in both the tumor and the contralateral regions of the GBM rats compared to the sham rats, suggesting the effects of the tumor on the healthy tissue. The MRI parameters related to inflammation, cellularity, and tissue integrity, along with MRS-detected metabolites, serve as potential biomarkers for the tumor evolution, treatment response, and impact on healthy tissue. These techniques can be potent tools for evaluating new drugs and treatment targets.
Collapse
Affiliation(s)
| | | | | | - Pilar López-Larrubia
- Instituto de Investigaciones Biomédicas Sols-Morreale, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), 28029 Madrid, Spain; (N.A.-R.)
| |
Collapse
|
3
|
Lemarié A, Lubrano V, Delmas C, Lusque A, Cerapio JP, Perrier M, Siegfried A, Arnauduc F, Nicaise Y, Dahan P, Filleron T, Mounier M, Toulas C, Cohen-Jonathan Moyal E. The STEMRI trial: Magnetic resonance spectroscopy imaging can define tumor areas enriched in glioblastoma stem-like cells. SCIENCE ADVANCES 2023; 9:eadi0114. [PMID: 37922359 PMCID: PMC10624352 DOI: 10.1126/sciadv.adi0114] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 10/03/2023] [Indexed: 11/05/2023]
Abstract
Despite maximally safe resection of the magnetic resonance imaging (MRI)-defined contrast-enhanced (CE) central tumor area and chemoradiotherapy, most patients with glioblastoma (GBM) relapse within a year in peritumoral FLAIR regions. Magnetic resonance spectroscopy imaging (MRSI) can discriminate metabolic tumor areas with higher recurrence potential as CNI+ regions (choline/N-acetyl-aspartate index >2) can predict relapse sites. As relapses are mainly imputed to glioblastoma stem-like cells (GSCs), CNI+ areas might be GSC enriched. In this prospective trial, 16 patients with GBM underwent MRSI/MRI before surgery/chemoradiotherapy to investigate GSC content in CNI-/+ biopsies from CE/FLAIR. Biopsy and derived-GSC characterization revealed a FLAIR/CNI+ sample enrichment in GSC and in gene signatures related to stemness, DNA repair, adhesion/migration, and mitochondrial bioenergetics. FLAIR/CNI+ samples generate GSC-enriched neurospheres faster than FLAIR/CNI-. Parameters assessing biopsy GSC content and time-to-neurosphere formation in FLAIR/CNI+ were associated with worse patient outcome. Preoperative MRI/MRSI would certainly allow better resection and targeting of FLAIR/CNI+ areas, as their GSC enrichment can predict worse outcomes.
Collapse
Affiliation(s)
- Anthony Lemarié
- CRCT, Université de Toulouse, Inserm, CNRS, Université Toulouse III–Paul Sabatier, Centre de Recherches en Cancérologie de Toulouse, Toulouse, France
- UFR Santé, Université de Toulouse III–Paul Sabatier, Toulouse, France
| | - Vincent Lubrano
- TONIC, Université de Toulouse, Inserm, CNRS, Université Toulouse III–Paul Sabatier, Toulouse Neuro Imaging Center, Toulouse, France
- CHU de Toulouse, Neurosurgery Department, Toulouse, France
| | - Caroline Delmas
- CRCT, Université de Toulouse, Inserm, CNRS, Université Toulouse III–Paul Sabatier, Centre de Recherches en Cancérologie de Toulouse, Toulouse, France
- Institut Claudius Regaud, IUCT-Oncopole, Interface Department, Toulouse, France
| | - Amélie Lusque
- Institut Claudius Regaud, IUCT-Oncopole, Biostatistics and Health Data Science Unit, Toulouse, France
| | - Juan-Pablo Cerapio
- CRCT, Université de Toulouse, Inserm, CNRS, Université Toulouse III–Paul Sabatier, Centre de Recherches en Cancérologie de Toulouse, Toulouse, France
| | - Marion Perrier
- CRCT, Université de Toulouse, Inserm, CNRS, Université Toulouse III–Paul Sabatier, Centre de Recherches en Cancérologie de Toulouse, Toulouse, France
| | - Aurore Siegfried
- CRCT, Université de Toulouse, Inserm, CNRS, Université Toulouse III–Paul Sabatier, Centre de Recherches en Cancérologie de Toulouse, Toulouse, France
- CHU de Toulouse, Anatomopathology Department, Toulouse, France
| | - Florent Arnauduc
- CRCT, Université de Toulouse, Inserm, CNRS, Université Toulouse III–Paul Sabatier, Centre de Recherches en Cancérologie de Toulouse, Toulouse, France
- UFR Santé, Université de Toulouse III–Paul Sabatier, Toulouse, France
| | - Yvan Nicaise
- CRCT, Université de Toulouse, Inserm, CNRS, Université Toulouse III–Paul Sabatier, Centre de Recherches en Cancérologie de Toulouse, Toulouse, France
- UFR Santé, Université de Toulouse III–Paul Sabatier, Toulouse, France
| | - Perrine Dahan
- CRCT, Université de Toulouse, Inserm, CNRS, Université Toulouse III–Paul Sabatier, Centre de Recherches en Cancérologie de Toulouse, Toulouse, France
| | - Thomas Filleron
- Institut Claudius Regaud, IUCT-Oncopole, Biostatistics and Health Data Science Unit, Toulouse, France
| | - Muriel Mounier
- Institut Claudius Regaud, IUCT-Oncopole, Clinical Trials Office, Toulouse, France
| | - Christine Toulas
- CRCT, Université de Toulouse, Inserm, CNRS, Université Toulouse III–Paul Sabatier, Centre de Recherches en Cancérologie de Toulouse, Toulouse, France
- Institut Claudius Regaud, IUCT-Oncopole, Cancer Biology Department, Molecular Oncology Division, Toulouse, France
| | - Elizabeth Cohen-Jonathan Moyal
- CRCT, Université de Toulouse, Inserm, CNRS, Université Toulouse III–Paul Sabatier, Centre de Recherches en Cancérologie de Toulouse, Toulouse, France
- UFR Santé, Université de Toulouse III–Paul Sabatier, Toulouse, France
- Institut Claudius Regaud, IUCT-Oncopole, Radiation Oncology Department, Toulouse, France
| |
Collapse
|
4
|
Ortega-Martorell S, Olier I, Hernandez O, Restrepo-Galvis PD, Bellfield RAA, Candiota AP. Tracking Therapy Response in Glioblastoma Using 1D Convolutional Neural Networks. Cancers (Basel) 2023; 15:4002. [PMID: 37568818 PMCID: PMC10417313 DOI: 10.3390/cancers15154002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/26/2023] [Accepted: 08/05/2023] [Indexed: 08/13/2023] Open
Abstract
BACKGROUND Glioblastoma (GB) is a malignant brain tumour that is challenging to treat, often relapsing even after aggressive therapy. Evaluating therapy response relies on magnetic resonance imaging (MRI) following the Response Assessment in Neuro-Oncology (RANO) criteria. However, early assessment is hindered by phenomena such as pseudoprogression and pseudoresponse. Magnetic resonance spectroscopy (MRS/MRSI) provides metabolomics information but is underutilised due to a lack of familiarity and standardisation. METHODS This study explores the potential of spectroscopic imaging (MRSI) in combination with several machine learning approaches, including one-dimensional convolutional neural networks (1D-CNNs), to improve therapy response assessment. Preclinical GB (GL261-bearing mice) were studied for method optimisation and validation. RESULTS The proposed 1D-CNN models successfully identify different regions of tumours sampled by MRSI, i.e., normal brain (N), control/unresponsive tumour (T), and tumour responding to treatment (R). Class activation maps using Grad-CAM enabled the study of the key areas relevant to the models, providing model explainability. The generated colour-coded maps showing the N, T and R regions were highly accurate (according to Dice scores) when compared against ground truth and outperformed our previous method. CONCLUSIONS The proposed methodology may provide new and better opportunities for therapy response assessment, potentially providing earlier hints of tumour relapsing stages.
Collapse
Affiliation(s)
- Sandra Ortega-Martorell
- Data Science Research Centre, Liverpool John Moores University, Liverpool L3 3AF, UK; (I.O.); (R.A.A.B.)
| | - Ivan Olier
- Data Science Research Centre, Liverpool John Moores University, Liverpool L3 3AF, UK; (I.O.); (R.A.A.B.)
| | - Orlando Hernandez
- Escuela Colombiana de Ingeniería Julio Garavito, Bogota 111166, Colombia; (O.H.); (P.D.R.-G.)
| | | | - Ryan A. A. Bellfield
- Data Science Research Centre, Liverpool John Moores University, Liverpool L3 3AF, UK; (I.O.); (R.A.A.B.)
| | - Ana Paula Candiota
- Centro de Investigación Biomédica en Red: Bioingeniería, Biomateriales y Nanomedicina, 08193 Cerdanyola del Vallès, Spain
- Departament de Bioquímica i Biologia Molecular, Facultat de Biociències, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
| |
Collapse
|
5
|
Filippi L, Frantellizzi V, Vincentis GD, Schillaci O, Evangelista L. Clinical Applications of TSPO PET for Glioma Imaging: Current Evidence and Future Perspective-A Systematic Review. Diagnostics (Basel) 2023; 13:diagnostics13101813. [PMID: 37238297 DOI: 10.3390/diagnostics13101813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 05/17/2023] [Accepted: 05/18/2023] [Indexed: 05/28/2023] Open
Abstract
Our aim was to provide a comprehensive overview of the existing literature concerning the clinical applications of positron emission computed tomography (PET) with radiopharmaceuticals targeting the translocator protein (TSPO) in gliomas. A literature search for studies about TSPO PET in the last 10 years (from 2013 to February 2023) was carried out on PubMed, Scopus, and Web of Science using the following keywords: "PET" AND "Gliomas" AND "TSPO". The Critical Appraisal Skills Program checklist for diagnostic test studies was used for testing the quality of selected papers. Ten articles were selected, encompassing 314 glioma patients submitted to PET/CT (9/10) or PET/MRI (1/10) with TSPO ligands. Among the various available TSPO tracers, the most frequently used was the third-generation ligand, [18F]-GE-180. TSPO PET results were useful to identify anaplastic transformation in gliomas and for the prognostic stratification of patients bearing homogeneous genetic alterations. When compared to amino-acid PET, TSPO PET with [18F]-GE-180 presented superior image quality and provided larger and only partially overlapping PET-based volumes. Although biased by some issues (i.e., small sample size, most of the studies coming from the same country), preliminary applications of TSPO PET were encouraging. Further studies are needed to define implications in clinical practice and shape the role of TSPO PET for patients' selection for potential TSPO-targeted molecular therapies.
Collapse
Affiliation(s)
- Luca Filippi
- Nuclear Medicine Unit, "Santa Maria Goretti" Hospital, Via Antonio Canova, 04100 Latina, Italy
| | - Viviana Frantellizzi
- Department of Radiological Sciences, Oncology and Anatomo-Pathology, Sapienza, University of Rome, 00185 Rome, Italy
| | - Giuseppe De Vincentis
- Department of Radiological Sciences, Oncology and Anatomo-Pathology, Sapienza, University of Rome, 00185 Rome, Italy
| | - Orazio Schillaci
- Department of Biomedicine and Prevention, University Tor Vergata, Viale Oxford 81, 00133 Rome, Italy
| | - Laura Evangelista
- Nuclear Medicine Unit, Department of Medicine (DIMED), University of Padua, Via Giustiniani, 35128 Padua, Italy
| |
Collapse
|
6
|
Roach JR, Plaha P, McGowan DR, Higgins GS. The role of [ 18F]fluorodopa positron emission tomography in grading of gliomas. J Neurooncol 2022; 160:577-589. [PMID: 36434486 PMCID: PMC9758109 DOI: 10.1007/s11060-022-04177-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 10/19/2022] [Indexed: 11/27/2022]
Abstract
PURPOSE Gliomas are the most commonly occurring brain tumour in adults and there remains no cure for these tumours with treatment strategies being based on tumour grade. All treatment options aim to prolong survival, maintain quality of life and slow the inevitable progression from low-grade to high-grade. Despite imaging advancements, the only reliable method to grade a glioma is to perform a biopsy, and even this is fraught with errors associated with under grading. Positron emission tomography (PET) imaging with amino acid tracers such as [18F]fluorodopa (18F-FDOPA), [11C]methionine (11C-MET), [18F]fluoroethyltyrosine (18F-FET), and 18F-FDOPA are being increasingly used in the diagnosis and management of gliomas. METHODS In this review we discuss the literature available on the ability of 18F-FDOPA-PET to distinguish low- from high-grade in newly diagnosed gliomas. RESULTS In 2016 the Response Assessment in Neuro-Oncology (RANO) and European Association for Neuro-Oncology (EANO) published recommendations on the clinical use of PET imaging in gliomas. However, since these recommendations there have been a number of studies performed looking at whether 18F-FDOPA-PET can identify areas of high-grade transformation before the typical radiological features of transformation such as contrast enhancement are visible on standard magnetic resonance imaging (MRI). CONCLUSION Larger studies are needed to validate 18F-FDOPA-PET as a non-invasive marker of glioma grade and prediction of tumour molecular characteristics which could guide decisions surrounding surgical resection.
Collapse
Affiliation(s)
- Joy R. Roach
- Department of Oncology, University of Oxford, Oxford, OX3 7DQ UK
- Department of Neurosurgery, Oxford University Hospital NHS FT, John Radcliffe Hospital, L3 West Wing, Oxford, OX3 9DU UK
| | - Puneet Plaha
- Department of Neurosurgery, Oxford University Hospital NHS FT, John Radcliffe Hospital, L3 West Wing, Oxford, OX3 9DU UK
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, OX3 7DQ UK
| | - Daniel R. McGowan
- Department of Oncology, University of Oxford, Oxford, OX3 7DQ UK
- Department of Medical Physics and Clinical Engineering, Oxford University Hospital NHS FT, Churchill Hospital, Oxford, OX3 7LE UK
| | - Geoff S. Higgins
- Department of Oncology, University of Oxford, Oxford, OX3 7DQ UK
- Department of Oncology, Oxford University Hospitals NHS FT, Oxford, UK
| |
Collapse
|