1
|
Zhang M, Huang X, Wu H. Application of Biological Nanopore Sequencing Technology in the Detection of Microorganisms †. CHINESE J CHEM 2023; 41:3473-3483. [DOI: 10.1002/cjoc.202300255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 07/14/2023] [Indexed: 01/05/2025]
Abstract
Comprehensive SummaryEnvironmental pollution and the spread of pathogenic microorganisms pose a significant threat to the health of humans and the planet. Thus, understanding and detecting microorganisms is crucial for maintaining a healthy living environment. Nanopore sequencing is a single‐molecule detection method developed in the 1990s that has revolutionized various research fields. It offers several advantages over traditional sequencing methods, including low cost, label‐free, time‐saving detection speed, long sequencing reading, real‐time monitoring, convenient carrying, and other significant advantages. In this review, we summarize the technical principles and characteristics of nanopore sequencing and discuss its applications in amplicon sequencing, metagenome sequencing, and whole‐genome sequencing of environmental microorganisms, as well as its in situ application under some special circumstances. We also analyze the advantages and challenges of nanopore sequencing in microbiology research. Overall, nanopore sequencing has the potential to greatly enhance the detection and understanding of microorganisms in environmental research, but further developments are needed to overcome the current challenges.
Collapse
Affiliation(s)
- Ming‐Qian Zhang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Xiao‐Bin Huang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Hai‐Chen Wu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
2
|
Tichkule S, Myung Y, Naung MT, Ansell BRE, Guy AJ, Srivastava N, Mehra S, Cacciò SM, Mueller I, Barry AE, van Oosterhout C, Pope B, Ascher DB, Jex AR. VIVID: a web application for variant interpretation and visualisation in multidimensional analyses. Mol Biol Evol 2022; 39:6697981. [PMID: 36103257 PMCID: PMC9514033 DOI: 10.1093/molbev/msac196] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Large-scale comparative genomics- and population genetic studies generate enormous amounts of polymorphism data in the form of DNA variants. Ultimately, the goal of many of these studies is to associate genetic variants to phenotypes or fitness. We introduce VIVID, an interactive, user-friendly web application that integrates a wide range of approaches for encoding genotypic to phenotypic information in any organism or disease, from an individual or population, in three-dimensional (3D) space. It allows mutation mapping and annotation, calculation of interactions and conservation scores, prediction of harmful effects, analysis of diversity and selection, and 3D visualization of genotypic information encoded in Variant Call Format on AlphaFold2 protein models. VIVID enables the rapid assessment of genes of interest in the study of adaptive evolution and the genetic load, and it helps prioritizing targets for experimental validation. We demonstrate the utility of VIVID by exploring the evolutionary genetics of the parasitic protist Plasmodium falciparum, revealing geographic variation in the signature of balancing selection in potential targets of functional antibodies.
Collapse
Affiliation(s)
- Swapnil Tichkule
- Population Health and Immunity, Walter and Eliza Hall Institute of Medical Research , Melbourne , Australia
- Department of Medical Biology, University of Melbourne , Melbourne , Australia
| | - Yoochan Myung
- Systems and Computational Biology, Bio21 Institute, University of Melbourne , Melbourne , Australia
- Computational Biology and Clinical Informatics, Baker Heart and Diabetes , Melbourne , Australia
| | - Myo T Naung
- Population Health and Immunity, Walter and Eliza Hall Institute of Medical Research , Melbourne , Australia
- Department of Medical Biology, University of Melbourne , Melbourne , Australia
| | - Brendan R E Ansell
- Population Health and Immunity, Walter and Eliza Hall Institute of Medical Research , Melbourne , Australia
| | - Andrew J Guy
- School of Science, RMIT University , Melbourne , Australia
| | - Namrata Srivastava
- Department of Data Science and AI, Monash University , Melbourne , Australia
| | - Somya Mehra
- Life Sciences Discipline, Burnet Institute , Melbourne , Australia
| | - Simone M Cacciò
- Department of Infectious Disease, Istituto Superiore di Sanità , Rome , Italy
| | - Ivo Mueller
- Population Health and Immunity, Walter and Eliza Hall Institute of Medical Research , Melbourne , Australia
| | - Alyssa E Barry
- Life Sciences Discipline, Burnet Institute , Melbourne , Australia
- Institute of Mental and Physical Health and Clinical Translation (IMPACT) and School of Medicine, Deakin University , Geelong , Australia
| | - Cock van Oosterhout
- School of Environmental Sciences, University of East Anglia, Norwich Research Park , Norwich , UK
| | - Bernard Pope
- Melbourne Bioinformatics, University of Melbourne , Melbourne , Australia
- Australian BioCommons , Sydney , Australia
- Department of Clinical Pathology, University of Melbourne , Melbourne , Australia
- Department of Surgery (Royal Melbourne Hospital), University of Melbourne , Melbourne , Australia
| | - David B Ascher
- Systems and Computational Biology, Bio21 Institute, University of Melbourne , Melbourne , Australia
- Computational Biology and Clinical Informatics, Baker Heart and Diabetes , Melbourne , Australia
| | - Aaron R Jex
- Population Health and Immunity, Walter and Eliza Hall Institute of Medical Research , Melbourne , Australia
- Faculty of Veterinary and Agricultural Sciences, University of Melbourne , Melbourne , Australia
| |
Collapse
|
3
|
Akoniyon OP, Adewumi TS, Maharaj L, Oyegoke OO, Roux A, Adeleke MA, Maharaj R, Okpeku M. Whole Genome Sequencing Contributions and Challenges in Disease Reduction Focused on Malaria. BIOLOGY 2022; 11:587. [PMID: 35453786 PMCID: PMC9027812 DOI: 10.3390/biology11040587] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 03/31/2022] [Accepted: 04/01/2022] [Indexed: 12/11/2022]
Abstract
Malaria elimination remains an important goal that requires the adoption of sophisticated science and management strategies in the era of the COVID-19 pandemic. The advent of next generation sequencing (NGS) is making whole genome sequencing (WGS) a standard today in the field of life sciences, as PCR genotyping and targeted sequencing provide insufficient information compared to the whole genome. Thus, adapting WGS approaches to malaria parasites is pertinent to studying the epidemiology of the disease, as different regions are at different phases in their malaria elimination agenda. Therefore, this review highlights the applications of WGS in disease management, challenges of WGS in controlling malaria parasites, and in furtherance, provides the roles of WGS in pursuit of malaria reduction and elimination. WGS has invaluable impacts in malaria research and has helped countries to reach elimination phase rapidly by providing required information needed to thwart transmission, pathology, and drug resistance. However, to eliminate malaria in sub-Saharan Africa (SSA), with high malaria transmission, we recommend that WGS machines should be readily available and affordable in the region.
Collapse
Affiliation(s)
- Olusegun Philip Akoniyon
- Discipline of Genetics, School of Life Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4041, South Africa; (O.P.A.); (T.S.A.); (L.M.); (O.O.O.); (A.R.); (M.A.A.)
| | - Taiye Samson Adewumi
- Discipline of Genetics, School of Life Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4041, South Africa; (O.P.A.); (T.S.A.); (L.M.); (O.O.O.); (A.R.); (M.A.A.)
| | - Leah Maharaj
- Discipline of Genetics, School of Life Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4041, South Africa; (O.P.A.); (T.S.A.); (L.M.); (O.O.O.); (A.R.); (M.A.A.)
| | - Olukunle Olugbenle Oyegoke
- Discipline of Genetics, School of Life Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4041, South Africa; (O.P.A.); (T.S.A.); (L.M.); (O.O.O.); (A.R.); (M.A.A.)
| | - Alexandra Roux
- Discipline of Genetics, School of Life Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4041, South Africa; (O.P.A.); (T.S.A.); (L.M.); (O.O.O.); (A.R.); (M.A.A.)
| | - Matthew A. Adeleke
- Discipline of Genetics, School of Life Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4041, South Africa; (O.P.A.); (T.S.A.); (L.M.); (O.O.O.); (A.R.); (M.A.A.)
| | - Rajendra Maharaj
- Office of Malaria Research, South African Medical Research Council, Cape Town 7505, South Africa;
| | - Moses Okpeku
- Discipline of Genetics, School of Life Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4041, South Africa; (O.P.A.); (T.S.A.); (L.M.); (O.O.O.); (A.R.); (M.A.A.)
| |
Collapse
|
4
|
de Haan A, Eijgelsheim M, Vogt L, Knoers NVAM, de Borst MH. Diagnostic Yield of Next-Generation Sequencing in Patients With Chronic Kidney Disease of Unknown Etiology. Front Genet 2019; 10:1264. [PMID: 31921302 PMCID: PMC6923268 DOI: 10.3389/fgene.2019.01264] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 11/15/2019] [Indexed: 12/11/2022] Open
Abstract
Advances in next-generation sequencing (NGS) techniques, including whole exome sequencing, have facilitated cost-effective sequencing of large regions of the genome, enabling the implementation of NGS in clinical practice. Chronic kidney disease (CKD) is a major contributor to global burden of disease and is associated with an increased risk of morbidity and mortality. CKD can be caused by a wide variety of primary renal disorders. In about one in five CKD patients, no primary renal disease diagnosis can be established. Moreover, recent studies indicate that the clinical diagnosis may be incorrect in a substantial number of patients. Both the absence of a diagnosis or an incorrect diagnosis can have therapeutic implications. Genetic testing might increase the diagnostic accuracy in patients with CKD, especially in patients with unknown etiology. The diagnostic utility of NGS has been shown mainly in pediatric CKD cohorts, while emerging data suggest that genetic testing can also be a valuable diagnostic tool in adults with CKD. In addition to its implications for unexplained CKD, NGS can contribute to the diagnostic process in kidney diseases with an atypical presentation, where it may lead to reclassification of the primary renal disease diagnosis. So far, only a few studies have reported on the diagnostic yield of NGS-based techniques in patients with unexplained CKD. Here, we will discuss the potential diagnostic role of gene panels and whole exome sequencing in pediatric and adult patients with unexplained and atypical CKD.
Collapse
Affiliation(s)
- Amber de Haan
- Department of Internal Medicine, Division of Nephrology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Mark Eijgelsheim
- Department of Internal Medicine, Division of Nephrology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Liffert Vogt
- Section Nephrology, Amsterdam Cardiovascular Sciences, Department of Internal Medicine, Amsterdam University Medical Centre, University of Amsterdam, Amsterdam, Netherlands
| | - Nine V. A. M. Knoers
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Martin H. de Borst
- Department of Internal Medicine, Division of Nephrology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| |
Collapse
|
5
|
Kersey PJ. Plant genome sequences: past, present, future. CURRENT OPINION IN PLANT BIOLOGY 2019; 48:1-8. [PMID: 30579050 DOI: 10.1016/j.pbi.2018.11.001] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 11/23/2018] [Accepted: 11/26/2018] [Indexed: 05/19/2023]
Abstract
The green plants (Viridiplantae) are an essential kingdom of life, responsible via photosynthesis for the majority of global primary production, and directly utilized by humankind for nutrition, animal feed, fuel, clothing, medicine and other purposes. There are an estimated 391 000 species of land plants, in addition to 8000 species of green algae. Their genomes are unusually diverse compared to those of other kingdoms, ranging in size from ∼10 Mb to over 100 Gb. Knowledge of plant genomes initially lagged behind those of other kingdoms but has greatly increased with the development of new technologies for DNA sequencing; bioinformatic analysis, rather than data production, is increasingly the bottleneck to further knowledge. Recent proposals are now contemplating the sequencing, assembly and annotation of the genomes of all of the world's plant species; meanwhile, low coverage sequencing to measure diversity across collections and wild populations has already become commonplace for many species, especially those utilized as crops.
Collapse
|