1
|
Cao M, Peng Q, Wei ZG, Liu F, Hou YF. EdClust: A heuristic sequence clustering method with higher sensitivity. J Bioinform Comput Biol 2021; 20:2150036. [PMID: 34939905 DOI: 10.1142/s0219720021500360] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The development of high-throughput technologies has produced increasing amounts of sequence data and an increasing need for efficient clustering algorithms that can process massive volumes of sequencing data for downstream analysis. Heuristic clustering methods are widely applied for sequence clustering because of their low computational complexity. Although numerous heuristic clustering methods have been developed, they suffer from two limitations: overestimation of inferred clusters and low clustering sensitivity. To address these issues, we present a new sequence clustering method (edClust) based on Edlib, a C/C[Formula: see text] library for fast, exact semi-global sequence alignment to group similar sequences. The new method edClust was tested on three large-scale sequence databases, and we compared edClust to several classic heuristic clustering methods, such as UCLUST, CD-HIT, and VSEARCH. Evaluations based on the metrics of cluster number and seed sensitivity (SS) demonstrate that edClust can produce fewer clusters than other methods and that its SS is higher than that of other methods. The source codes of edClust are available from https://github.com/zhang134/EdClust.git under the GNU GPL license.
Collapse
Affiliation(s)
- Ming Cao
- Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China.,School of Mathematics and Statistics, Shaanxi Xueqian Normal University, Xi'an, 710100, P. R. China
| | - Qinke Peng
- Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Ze-Gang Wei
- Institute of Physics and Optoelectronics Technology, Baoji University of Arts and Sciences, Baoji, 721016, P. R. China
| | - Fei Liu
- Institute of Physics and Optoelectronics Technology, Baoji University of Arts and Sciences, Baoji, 721016, P. R. China
| | - Yi-Fan Hou
- Institute of Physics and Optoelectronics Technology, Baoji University of Arts and Sciences, Baoji, 721016, P. R. China
| |
Collapse
|
2
|
Wei ZG, Zhang XD, Cao M, Liu F, Qian Y, Zhang SW. Comparison of Methods for Picking the Operational Taxonomic Units From Amplicon Sequences. Front Microbiol 2021; 12:644012. [PMID: 33841367 PMCID: PMC8024490 DOI: 10.3389/fmicb.2021.644012] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Accepted: 02/17/2021] [Indexed: 12/31/2022] Open
Abstract
With the advent of next-generation sequencing technology, it has become convenient and cost efficient to thoroughly characterize the microbial diversity and taxonomic composition in various environmental samples. Millions of sequencing data can be generated, and how to utilize this enormous sequence resource has become a critical concern for microbial ecologists. One particular challenge is the OTUs (operational taxonomic units) picking in 16S rRNA sequence analysis. Lucky, this challenge can be directly addressed by sequence clustering that attempts to group similar sequences. Therefore, numerous clustering methods have been proposed to help to cluster 16S rRNA sequences into OTUs. However, each method has its clustering mechanism, and different methods produce diverse outputs. Even a slight parameter change for the same method can also generate distinct results, and how to choose an appropriate method has become a challenge for inexperienced users. A lot of time and resources can be wasted in selecting clustering tools and analyzing the clustering results. In this study, we introduced the recent advance of clustering methods for OTUs picking, which mainly focus on three aspects: (i) the principles of existing clustering algorithms, (ii) benchmark dataset construction for OTU picking and evaluation metrics, and (iii) the performance of different methods with various distance thresholds on benchmark datasets. This paper aims to assist biological researchers to select the reasonable clustering methods for analyzing their collected sequences and help algorithm developers to design more efficient sequences clustering methods.
Collapse
Affiliation(s)
- Ze-Gang Wei
- Institute of Physics and Optoelectronics Technology, Baoji University of Arts and Sciences, Baoji, China
- Key Laboratory of Information Fusion Technology of Ministry of Education, School of Automation, Northwestern Polytechnical University, Xi’an, China
| | - Xiao-Dan Zhang
- Institute of Physics and Optoelectronics Technology, Baoji University of Arts and Sciences, Baoji, China
| | - Ming Cao
- Faculty of Electronic and Information Engineering, Xi’an Jiaotong University, Xi’an, China
- School of Mathematics and Statistics, Shaanxi Xueqian Normal University, Xi’an, China
| | - Fei Liu
- Institute of Physics and Optoelectronics Technology, Baoji University of Arts and Sciences, Baoji, China
| | - Yu Qian
- Institute of Physics and Optoelectronics Technology, Baoji University of Arts and Sciences, Baoji, China
| | - Shao-Wu Zhang
- Key Laboratory of Information Fusion Technology of Ministry of Education, School of Automation, Northwestern Polytechnical University, Xi’an, China
| |
Collapse
|
3
|
Wei ZG, Zhang SW, Liu F. smsMap: mapping single molecule sequencing reads by locating the alignment starting positions. BMC Bioinformatics 2020; 21:341. [PMID: 32753028 PMCID: PMC7430848 DOI: 10.1186/s12859-020-03698-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Accepted: 07/23/2020] [Indexed: 01/09/2023] Open
Abstract
Background Single Molecule Sequencing (SMS) technology can produce longer reads with higher sequencing error rate. Mapping these reads to a reference genome is often the most fundamental and computing-intensive step for downstream analysis. Most existing mapping tools generally adopt the traditional seed-and-extend strategy, and the candidate aligned regions for each query read are selected either by counting the number of matched seeds or chaining a group of seeds. However, for all the existing mapping tools, the coverage ratio of the alignment region to the query read is lower, and the read alignment quality and efficiency need to be improved. Here, we introduce smsMap, a novel mapping tool that is specifically designed to map the long reads of SMS to a reference genome. Results smsMap was evaluated with other existing seven SMS mapping tools (e.g., BLASR, minimap2, and BWA-MEM) on both simulated and real-life SMS datasets. The experimental results show that smsMap can efficiently achieve higher aligned read coverage ratio and has higher sensitivity that can align more sequences and bases to the reference genome. Additionally, smsMap is more robust to sequencing errors. Conclusions smsMap is computationally efficient to align SMS reads, especially for the larger size of the reference genome (e.g., H. sapiens genome with over 3 billion base pairs). The source code of smsMap can be freely downloaded from https://github.com/NWPU-903PR/smsMap.
Collapse
Affiliation(s)
- Ze-Gang Wei
- Key Laboratory of Information Fusion Technology of Ministry of Education, School of Automation, Northwestern Polytechnical University, Xi'an, 710072, China.,Institute of Physics and Optoelectronics Technology, Baoji University of Arts and Sciences, Baoji, 721016, China
| | - Shao-Wu Zhang
- Key Laboratory of Information Fusion Technology of Ministry of Education, School of Automation, Northwestern Polytechnical University, Xi'an, 710072, China.
| | - Fei Liu
- Institute of Physics and Optoelectronics Technology, Baoji University of Arts and Sciences, Baoji, 721016, China
| |
Collapse
|
4
|
Wei ZG, Zhang SW. DMSC: A Dynamic Multi-Seeds Method for Clustering 16S rRNA Sequences Into OTUs. Front Microbiol 2019; 10:428. [PMID: 30915052 PMCID: PMC6422886 DOI: 10.3389/fmicb.2019.00428] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Accepted: 02/19/2019] [Indexed: 12/30/2022] Open
Abstract
Next-generation sequencing (NGS)-based 16S rRNA sequencing by jointly using the PCR amplification and NGS technology is a cost-effective technique, which has been successfully used to study the phylogeny and taxonomy of samples from complex microbiomes or environments. Clustering 16S rRNA sequences into operational taxonomic units (OTUs) is often the first step for many downstream analyses. Heuristic clustering is one of the most widely employed approaches for generating OTUs. However, most heuristic OTUs clustering methods just select one single seed sequence to represent each cluster, resulting in their outcomes suffer from either overestimation of OTUs number or sensitivity to sequencing errors. In this paper, we present a novel dynamic multi-seeds clustering method (namely DMSC) to pick OTUs. DMSC first heuristically generates clusters according to the distance threshold. When the size of a cluster reaches the pre-defined minimum size, then DMSC selects the multi-core sequences (MCS) as the seeds that are defined as the n-core sequences (n ≥ 3), in which the distance between any two sequences is less than the distance threshold. A new sequence is assigned to the corresponding cluster depending on the average distance to MCS and the distance standard deviation within the MCS. If a new sequence is added to the cluster, dynamically update the MCS until no sequence is merged into the cluster. The new method DMSC was tested on several simulated and real-life sequence datasets and also compared with the traditional heuristic methods such as CD-HIT, UCLUST, and DBH. Experimental results in terms of the inferred OTUs number, normalized mutual information (NMI) and Matthew correlation coefficient (MCC) metrics demonstrate that DMSC can produce higher quality clusters with low memory usage and reduce OTU overestimation. Additionally, DMSC is also robust to the sequencing errors. The DMSC software can be freely downloaded from https://github.com/NWPU-903PR/DMSC.
Collapse
Affiliation(s)
- Ze-Gang Wei
- Key Laboratory of Information Fusion Technology of Ministry of Education, School of Automation, Northwestern Polytechnical University, Xi'an, China.,Institute of Physics and Optoelectronics Technology, Baoji University of Arts and Science, Baoji, China
| | - Shao-Wu Zhang
- Key Laboratory of Information Fusion Technology of Ministry of Education, School of Automation, Northwestern Polytechnical University, Xi'an, China
| |
Collapse
|
5
|
Wei ZG, Zhang SW, Zhang YZ. DMclust, a Density-based Modularity Method for Accurate OTU Picking of 16S rRNA Sequences. Mol Inform 2017; 36. [PMID: 28586119 DOI: 10.1002/minf.201600059] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 04/25/2017] [Indexed: 11/08/2022]
Abstract
Clustering 16S rRNA sequences into operational taxonomic units (OTUs) is a crucial step in analyzing metagenomic data. Although many methods have been developed, how to obtain an appropriate balance between clustering accuracy and computational efficiency is still a major challenge. A novel density-based modularity clustering method, called DMclust, is proposed in this paper to bin 16S rRNA sequences into OTUs with high clustering accuracy. The DMclust algorithm consists of four main phases. It first searches for the sequence dense group defined as n-sequence community, in which the distance between any two sequences is less than a threshold. Then these dense groups are used to construct a weighted network, where dense groups are viewed as nodes, each pair of dense groups is connected by an edge, and the distance of pairwise groups represents the weight of the edge. Then, a modularity-based community detection method is employed to generate the preclusters. Finally, the remaining sequences are assigned to their nearest preclusters to form OTUs. Compared with existing widely used methods, the experimental results on several metagenomic datasets show that DMclust has higher accurate clustering performance with acceptable memory usage.
Collapse
Affiliation(s)
- Ze-Gang Wei
- Key Laboratory of Information Fusion Technology of Ministry of Education, School of Automation, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Shao-Wu Zhang
- Key Laboratory of Information Fusion Technology of Ministry of Education, School of Automation, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Yi-Zhai Zhang
- Key Laboratory of Information Fusion Technology of Ministry of Education, School of Automation, Northwestern Polytechnical University, Xi'an, 710072, China
| |
Collapse
|
6
|
DBH: A de Bruijn graph-based heuristic method for clustering large-scale 16S rRNA sequences into OTUs. J Theor Biol 2017; 425:80-87. [PMID: 28454900 DOI: 10.1016/j.jtbi.2017.04.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 03/28/2017] [Accepted: 04/20/2017] [Indexed: 12/22/2022]
Abstract
Recent sequencing revolution driven by high-throughput technologies has led to rapid accumulation of 16S rRNA sequences for microbial communities. Clustering short sequences into operational taxonomic units (OTUs) is an initial crucial process in analyzing metagenomic data. Although many heuristic methods have been proposed for OTU inferences with low computational complexity, they just select one sequence as the seed for each cluster and the results are sensitive to the selected sequences that represent the clusters. To address this issue, we present a de Bruijn graph-based heuristic clustering method (DBH) for clustering massive 16S rRNA sequences into OTUs by introducing a novel seed selection strategy and greedy clustering approach. Compared with existing widely used methods on several simulated and real-life metagenomic datasets, the results show that DBH has higher clustering performance and low memory usage, facilitating the overestimation of OTUs number. DBH is more effective to handle large-scale metagenomic datasets. The DBH software can be freely downloaded from https://github.com/nwpu134/DBH.git for academic users.
Collapse
|