1
|
Abou Diwan M, Lahimer M, Bach V, Gosselet F, Khorsi-Cauet H, Candela P. Impact of Pesticide Residues on the Gut-Microbiota–Blood–Brain Barrier Axis: A Narrative Review. Int J Mol Sci 2023; 24:ijms24076147. [PMID: 37047120 PMCID: PMC10094680 DOI: 10.3390/ijms24076147] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 03/17/2023] [Accepted: 03/20/2023] [Indexed: 04/03/2023] Open
Abstract
Accumulating evidence indicates that chronic exposure to a low level of pesticides found in diet affects the human gut-microbiota–blood–brain barrier (BBB) axis. This axis describes the physiological and bidirectional connection between the microbiota, the intestinal barrier (IB), and the BBB. Preclinical observations reported a gut microbial alteration induced by pesticides, also known as dysbiosis, a condition associated not only with gastrointestinal disorders but also with diseases affecting other distal organs, such as the BBB. However, the interplay between pesticides, microbiota, the IB, and the BBB is still not fully explored. In this review, we first consider the similarities/differences between these two physiological barriers and the different pathways that link the gut microbiota and the BBB to better understand the dialogue between bacteria and the brain. We then discuss the effects of chronic oral pesticide exposure on the gut-microbiota-BBB axis and raise awareness of the danger of chronic exposure, especially during the perinatal period (pregnant women and offspring).
Collapse
Affiliation(s)
- Maria Abou Diwan
- PERITOX—Périnatalité et Risques Toxiques—UMR_I 01, Centre Universitaire de Recherche en Santé, CURS-UPJV, University of Picardy Jules Verne, CEDEX 1, 80054 Amiens, France; (M.A.D.); (M.L.); (V.B.); (H.K.-C.)
- Laboratoire de la Barrière Hémato-Encéphalique (LBHE), UR 2465, University of Artois, 62300 Lens, France;
| | - Marwa Lahimer
- PERITOX—Périnatalité et Risques Toxiques—UMR_I 01, Centre Universitaire de Recherche en Santé, CURS-UPJV, University of Picardy Jules Verne, CEDEX 1, 80054 Amiens, France; (M.A.D.); (M.L.); (V.B.); (H.K.-C.)
| | - Véronique Bach
- PERITOX—Périnatalité et Risques Toxiques—UMR_I 01, Centre Universitaire de Recherche en Santé, CURS-UPJV, University of Picardy Jules Verne, CEDEX 1, 80054 Amiens, France; (M.A.D.); (M.L.); (V.B.); (H.K.-C.)
| | - Fabien Gosselet
- Laboratoire de la Barrière Hémato-Encéphalique (LBHE), UR 2465, University of Artois, 62300 Lens, France;
| | - Hafida Khorsi-Cauet
- PERITOX—Périnatalité et Risques Toxiques—UMR_I 01, Centre Universitaire de Recherche en Santé, CURS-UPJV, University of Picardy Jules Verne, CEDEX 1, 80054 Amiens, France; (M.A.D.); (M.L.); (V.B.); (H.K.-C.)
| | - Pietra Candela
- Laboratoire de la Barrière Hémato-Encéphalique (LBHE), UR 2465, University of Artois, 62300 Lens, France;
- Correspondence:
| |
Collapse
|
2
|
Eshraghi RS, Davies C, Iyengar R, Perez L, Mittal R, Eshraghi AA. Gut-Induced Inflammation during Development May Compromise the Blood-Brain Barrier and Predispose to Autism Spectrum Disorder. J Clin Med 2020; 10:jcm10010027. [PMID: 33374296 PMCID: PMC7794774 DOI: 10.3390/jcm10010027] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 12/18/2020] [Indexed: 12/11/2022] Open
Abstract
Recently, the gut microbiome has gained considerable interest as one of the major contributors to the pathogenesis of multi-system inflammatory disorders. Several studies have suggested that the gut microbiota plays a role in modulating complex signaling pathways, predominantly via the bidirectional gut-brain-axis (GBA). Subsequent in vivo studies have demonstrated the direct role of altered gut microbes and metabolites in the progression of neurodevelopmental diseases. This review will discuss the most recent advancements in our understanding of the gut microbiome’s clinical significance in regulating blood-brain barrier (BBB) integrity, immunological function, and neurobiological development. In particular, we address the potentially causal role of GBA dysregulation in the pathophysiology of autism spectrum disorder (ASD) through compromising the BBB and immunological abnormalities. A thorough understanding of the complex signaling interactions between gut microbes, metabolites, neural development, immune mediators, and neurobiological functionality will facilitate the development of targeted therapeutic modalities to better understand, prevent, and treat ASD.
Collapse
Affiliation(s)
- Rebecca S. Eshraghi
- Hearing Research and Communication Disorders Laboratory, Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (C.D.); (R.I.); (L.P.); (R.M.); (A.A.E.)
- Correspondence:
| | - Camron Davies
- Hearing Research and Communication Disorders Laboratory, Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (C.D.); (R.I.); (L.P.); (R.M.); (A.A.E.)
| | - Rahul Iyengar
- Hearing Research and Communication Disorders Laboratory, Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (C.D.); (R.I.); (L.P.); (R.M.); (A.A.E.)
| | - Linda Perez
- Hearing Research and Communication Disorders Laboratory, Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (C.D.); (R.I.); (L.P.); (R.M.); (A.A.E.)
| | - Rahul Mittal
- Hearing Research and Communication Disorders Laboratory, Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (C.D.); (R.I.); (L.P.); (R.M.); (A.A.E.)
| | - Adrien A. Eshraghi
- Hearing Research and Communication Disorders Laboratory, Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (C.D.); (R.I.); (L.P.); (R.M.); (A.A.E.)
- Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Department of Biomedical Engineering, University of Miami, Coral Gables, FL 33146, USA
- Department of Pediatrics, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| |
Collapse
|