1
|
Scardaci R, Berlinska E, Scaparone P, Vietti Michelina S, Garbo E, Novello S, Santamaria D, Ambrogio C. Novel RAF-directed approaches to overcome current clinical limits and block the RAS/RAF node. Mol Oncol 2024; 18:1355-1377. [PMID: 38362705 PMCID: PMC11161739 DOI: 10.1002/1878-0261.13605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 11/30/2023] [Accepted: 01/30/2024] [Indexed: 02/17/2024] Open
Abstract
Mutations in the RAS-RAF-MEK-ERK pathway are frequent alterations in cancer and RASopathies, and while RAS oncogene activation alone affects 19% of all patients and accounts for approximately 3.4 million new cases every year, less frequent alterations in the cascade's downstream effectors are also involved in cancer etiology. RAS proteins initiate the signaling cascade by promoting the dimerization of RAF kinases, which can act as oncoproteins as well: BRAFV600E is the most common oncogenic driver, mutated in the 8% of all malignancies. Research in this field led to the development of drugs that target the BRAFV600-like mutations (Class I), which are now utilized in clinics, but cause paradoxical activation of the pathway and resistance development. Furthermore, they are ineffective against non-BRAFV600E malignancies that dimerize and could be either RTK/RAS independent or dependent (Class II and III, respectively), which are still lacking an effective treatment. This review discusses the recent advances in anti-RAF therapies, including paradox breakers, dimer-inhibitors, immunotherapies, and other novel approaches, critically evaluating their efficacy in overcoming the therapeutic limitations, and their putative role in blocking the RAS pathway.
Collapse
Affiliation(s)
- Rossella Scardaci
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology CenterUniversity of TorinoItaly
| | - Ewa Berlinska
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology CenterUniversity of TorinoItaly
| | - Pietro Scaparone
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology CenterUniversity of TorinoItaly
| | - Sandra Vietti Michelina
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology CenterUniversity of TorinoItaly
| | - Edoardo Garbo
- Department of OncologyUniversity of Torino, San Luigi HospitalOrbassanoItaly
| | - Silvia Novello
- Department of OncologyUniversity of Torino, San Luigi HospitalOrbassanoItaly
| | - David Santamaria
- Centro de Investigación del CáncerCSIC‐Universidad de SalamancaSpain
| | - Chiara Ambrogio
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology CenterUniversity of TorinoItaly
| |
Collapse
|
2
|
Steininger J, Gellrich FF, Engellandt K, Meinhardt M, Westphal D, Beissert S, Meier F, Glitza Oliva IC. Leptomeningeal Metastases in Melanoma Patients: An Update on and Future Perspectives for Diagnosis and Treatment. Int J Mol Sci 2023; 24:11443. [PMID: 37511202 PMCID: PMC10380419 DOI: 10.3390/ijms241411443] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/10/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
Leptomeningeal disease (LMD) is a devastating complication of cancer with a particularly poor prognosis. Among solid tumours, malignant melanoma (MM) has one of the highest rates of metastasis to the leptomeninges, with approximately 10-15% of patients with advanced disease developing LMD. Tumour cells that metastasise to the brain have unique properties that allow them to cross the blood-brain barrier, evade the immune system, and survive in the brain microenvironment. Metastatic colonisation is achieved through dynamic communication between metastatic cells and the tumour microenvironment, resulting in a tumour-permissive milieu. Despite advances in treatment options, the incidence of LMD appears to be increasing and current treatment modalities have a limited impact on survival. This review provides an overview of the biology of LMD, diagnosis and current treatment approaches for MM patients with LMD, and an overview of ongoing clinical trials. Despite the still limited efficacy of current therapies, there is hope that emerging treatments will improve the outcomes for patients with LMD.
Collapse
Affiliation(s)
- Julian Steininger
- Department of Dermatology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität (TU) Dresden, 01307 Dresden, Germany
| | - Frank Friedrich Gellrich
- Department of Dermatology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität (TU) Dresden, 01307 Dresden, Germany
| | - Kay Engellandt
- Department of Neuroradiology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität (TU) Dresden, 01307 Dresden, Germany
| | - Matthias Meinhardt
- Institute of Pathology, University Hospital Carl Gustav Carus, Technische Universität (TU) Dresden, 01307 Dresden, Germany
| | - Dana Westphal
- Department of Dermatology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität (TU) Dresden, 01307 Dresden, Germany
| | - Stefan Beissert
- Department of Dermatology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität (TU) Dresden, 01307 Dresden, Germany
| | - Friedegund Meier
- Department of Dermatology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität (TU) Dresden, 01307 Dresden, Germany
- Skin Cancer Center at the University Cancer Center, National Center for Tumor Diseases (NCT/UCC), 01307 Dresden, Germany
| | - Isabella C Glitza Oliva
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
3
|
Johnson AE, Raju AR, Jacob A, Hildebrandt GC. Case report: A case of classic hairy cell leukemia with CNS involvement treated with vemurafenib. Front Oncol 2023; 12:1100577. [PMID: 36713531 PMCID: PMC9877286 DOI: 10.3389/fonc.2022.1100577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 12/16/2022] [Indexed: 01/14/2023] Open
Abstract
Hairy cell leukemia (HCL) is a rare mature B-cell lymphoproliferative disorder and most often presents as classic hairy cell leukemia. This entity is characterized by an indolent course and the presence of the BRAF V600E mutation. We report the case of an 80-year-old man with a history of classical hairy cell leukemia who presented with fatigue, dizziness, shortness of breath, blurring of vision, and headache. His initial diagnosis was 9 years prior, and he received treatments with cladribine, pentostatin, and rituximab. The workup showed an elevated white blood cell count with atypical lymphocytes, anemia, and thrombocytopenia. A peripheral blood smear confirmed HCL relapse, and a magnetic resonance imaging (MRI) of the brain showed diffuse, nonenhancing masses in the supratentorial and infratentorial regions of the brain. He was initiated on treatment with vemurafenib, with improvements in his white blood cell count and a recovery of his platelet count and hemoglobin. A repeat MRI of the brain after 3 months showed complete resolution of the lesions. Vemurafenib was discontinued after 6 months, with bone marrow biopsy showing no evidence of residual hairy cell leukemia. There have only been limited reports of HCL involvement in the central nervous system in the literature. Due to the rarity of the condition, it is not clear which treatments can be effective for intracranial disease control. Our report shows the successful use of vemurafenib, resulting in complete remission of relapsed HCL with CNS involvement.
Collapse
Affiliation(s)
- Anna E. Johnson
- Department of Internal Medicine, University of Kentucky, Lexington, KY, United States
| | - Athul Raj Raju
- Department of Hematology and Oncology, Pikeville Medical Center, Pikeville, KY, United States
| | - Aasems Jacob
- Department of Hematology and Oncology, Pikeville Medical Center, Pikeville, KY, United States
| | - Gerhard C. Hildebrandt
- Division of Hematology and Medical Oncology, University of Missouri, Columbia, MO, United States
| |
Collapse
|
4
|
Capogiri M, De Micheli AJ, Lassaletta A, Muñoz DP, Coppé JP, Mueller S, Guerreiro Stucklin AS. Response and resistance to BRAF V600E inhibition in gliomas: Roadblocks ahead? Front Oncol 2023; 12:1074726. [PMID: 36698391 PMCID: PMC9868954 DOI: 10.3389/fonc.2022.1074726] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 12/12/2022] [Indexed: 01/11/2023] Open
Abstract
BRAFV600E represents the most common BRAF mutation in all human cancers. Among central nervous system (CNS) tumors, BRAFV600E is mostly found in pediatric low-grade gliomas (pLGG, ~20%) and, less frequently, in pediatric high-grade gliomas (pHGG, 5-15%) and adult glioblastomas (GBM, ~5%). The integration of BRAF inhibitors (BRAFi) in the treatment of patients with gliomas brought a paradigm shift to clinical care. However, not all patients benefit from treatment due to intrinsic or acquired resistance to BRAF inhibition. Defining predictors of response, as well as developing strategies to prevent resistance to BRAFi and overcome post-BRAFi tumor progression/rebound growth are some of the main challenges at present in the field. In this review, we outline current achievements and limitations of BRAF inhibition in gliomas, with a special focus on potential mechanisms of resistance. We discuss future directions of targeted therapy for BRAFV600E mutated gliomas, highlighting how insights into resistance to BRAFi could be leveraged to improve outcomes.
Collapse
Affiliation(s)
- Monica Capogiri
- Department of Oncology and Children’s Research Center, University Children’s Hospital of Zurich, Zurich, Switzerland
| | - Andrea J. De Micheli
- Department of Oncology and Children’s Research Center, University Children’s Hospital of Zurich, Zurich, Switzerland
| | - Alvaro Lassaletta
- Department of Pediatric Hematology and Oncology, Hospital Universitario Niño Jesús, Madrid, Spain
| | - Denise P. Muñoz
- Department of Medicine, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, United States
| | - Jean-Philippe Coppé
- Department of Medicine, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, United States
| | - Sabine Mueller
- Department of Oncology and Children’s Research Center, University Children’s Hospital of Zurich, Zurich, Switzerland,Department of Neurology, Neurosurgery and Pediatrics, University of California, San Francisco, United States
| | - Ana S. Guerreiro Stucklin
- Department of Oncology and Children’s Research Center, University Children’s Hospital of Zurich, Zurich, Switzerland,*Correspondence: Ana S. Guerreiro Stucklin,
| |
Collapse
|
5
|
Pozzi S, Scomparin A, Ben-Shushan D, Yeini E, Ofek P, Nahmad AD, Soffer S, Ionescu A, Ruggiero A, Barzel A, Brem H, Hyde TM, Barshack I, Sinha S, Ruppin E, Weiss T, Madi A, Perlson E, Slutsky I, Florindo HF, Satchi-Fainaro R. MCP-1/CCR2 axis inhibition sensitizes the brain microenvironment against melanoma brain metastasis progression. JCI Insight 2022; 7:154804. [PMID: 35980743 PMCID: PMC9536270 DOI: 10.1172/jci.insight.154804] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 07/27/2022] [Indexed: 11/21/2022] Open
Abstract
Development of resistance to chemo- and immunotherapies often occurs following treatment of melanoma brain metastasis (MBM). The brain microenvironment (BME), particularly astrocytes, cooperate toward MBM progression by upregulating secreted factors, among which we found that monocyte chemoattractant protein-1 (MCP-1) and its receptors, CCR2 and CCR4, were overexpressed in MBM compared with primary lesions. Among other sources of MCP-1 in the brain, we show that melanoma cells altered astrocyte secretome and evoked MCP-1 expression and secretion, which in turn induced CCR2 expression in melanoma cells, enhancing in vitro tumorigenic properties, such as proliferation, migration, and invasion of melanoma cells. In vivo pharmacological blockade of MCP-1 or molecular knockout of CCR2/CCR4 increased the infiltration of cytotoxic CD8+ T cells and attenuated the immunosuppressive phenotype of the BME as shown by decreased infiltration of Tregs and tumor-associated macrophages/microglia in several models of intracranially injected MBM. These in vivo strategies led to decreased MBM outgrowth and prolonged the overall survival of the mice. Our findings highlight the therapeutic potential of inhibiting interactions between BME and melanoma cells for the treatment of this disease.
Collapse
Affiliation(s)
- Sabina Pozzi
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Anna Scomparin
- Department of Drug Science and Technology, University of Turin, Turin, Italy
| | - Dikla Ben-Shushan
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Eilam Yeini
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Paula Ofek
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Alessio D Nahmad
- The School of Neurobiology, Biochemistry and Biophysics, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Shelly Soffer
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ariel Ionescu
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Antonella Ruggiero
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Adi Barzel
- The School of Neurobiology, Biochemistry and Biophysics, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Henry Brem
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, United States of America
| | - Thomas M Hyde
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, United States of America
| | - Iris Barshack
- Department of Pathology, Sheba Medical Center, Tel Hashomer, Israel
| | - Sanju Sinha
- Cancer Data Science Lab, National Cancer Institute, National Institutes of Health, Bethesda, United States of America
| | - Eytan Ruppin
- Cancer Data Science Lab, National Cancer Institute, National Institutes of Health, Bethesda, United States of America
| | - Tomer Weiss
- Department of Pathology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Asaf Madi
- Department of Pathology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Eran Perlson
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Inna Slutsky
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | | | - Ronit Satchi-Fainaro
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
6
|
Navani V, Graves MC, Mandaliya H, Hong M, van der Westhuizen A, Martin J, Bowden NA. Melanoma: An immunotherapy journey from bench to bedside. Cancer Treat Res 2022; 183:49-89. [PMID: 35551656 DOI: 10.1007/978-3-030-96376-7_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Melanoma gave science a window into the role immune evasion plays in the development of malignancy. The entire spectrum of immune focused anti-cancer therapies has been subjected to clinical trials in this disease, with limited success until the immune checkpoint blockade era. That revolution launched first in melanoma, heralded a landscape change throughout cancer that continues to reverberate today.
Collapse
Affiliation(s)
| | - Moira C Graves
- Centre for Drug Repurposing and Medicines Research, University of Newcastle and Hunter Medical Research Institute, University Dr, Callaghan, NSW, 2308, Australia
| | - Hiren Mandaliya
- Calvary Mater Hospital Newcastle, Edith St, Waratah, NSW, 2298, Australia
| | - Martin Hong
- Calvary Mater Hospital Newcastle, Edith St, Waratah, NSW, 2298, Australia
| | - Andre van der Westhuizen
- Centre for Drug Repurposing and Medicines Research, University of Newcastle and Hunter Medical Research Institute, University Dr, Callaghan, NSW, 2308, Australia.,Calvary Mater Hospital Newcastle, Edith St, Waratah, NSW, 2298, Australia
| | - Jennifer Martin
- Centre for Drug Repurposing and Medicines Research, University of Newcastle and Hunter Medical Research Institute, University Dr, Callaghan, NSW, 2308, Australia.,John Hunter Hospital, Newcastle, NSW, Australia
| | - Nikola A Bowden
- Centre for Drug Repurposing and Medicines Research, University of Newcastle and Hunter Medical Research Institute, University Dr, Callaghan, NSW, 2308, Australia
| |
Collapse
|
7
|
Wichmann J, Rynn C, Friess T, Petrig-Schaffland J, Kornacker M, Handl C, Emmenegger J, Eckmann J, Herting F, Frances N, Hunziker D, Krummenacher D, Rüttinger D, Ribeiro A, Bacac M, Brigo A, Hewings DS, Dummer R, Levesque MP, Schnetzler G, Martoglio B, Bischoff JR, Pettazzoni P. Preclinical characterization of a next generation brain permeable, paradox breaker BRAF inhibitor. Clin Cancer Res 2021; 28:770-780. [PMID: 34782366 DOI: 10.1158/1078-0432.ccr-21-2761] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/15/2021] [Accepted: 11/08/2021] [Indexed: 11/16/2022]
Abstract
PURPOSE Disease progression in BRAF V600E/K positive melanomas to approved BRAF/MEK inhibitor therapies is associated with the development of resistance mediated by RAF dimer inducing mechanisms. Moreover, progressing disease after BRAFi/MEKi frequently involves brain metastasis. Here we present the development of a novel BRAF inhibitor (Compound Ia) designed to address the limitations of available BRAFi/MEKi. EXPERIMENTAL DESIGN The novel, brain penetrant, paradox breaker BRAFi is comprehensively characterized in vitro, ex vivo and in several preclinical in vivo models of melanoma mimicking peripheral disease, brain metastatic disease and acquired resistance to first generation BRAFi. RESULTS Compound Ia manifested elevated potency and selectivity, which triggered cytotoxic activity restricted to BRAF-mutated models and did not induce RAF paradoxical activation. In comparison to approved BRAFi at clinical relevant doses, this novel agent showed a substantially improved activity in a number of diverse BRAF V600E models. In addition, as a single agent, it outperformed a currently approved BRAFi/MEKi combination in a model of acquired resistance to clinically available BRAFi. Compound Ia presents high Central Nervous System (CNS) penetration and triggered evident superiority over approved BRAFi in a macro-metastatic and in a disseminated micro-metastatic brain model. Potent inhibition of MAPK by Compound Ia was also demonstrated in patient-derived tumor samples. CONCLUSIONS The novel BRAFi demonstrates preclinically the potential to outperform available targeted therapies for the treatment of BRAF-mutant tumors, thus supporting its clinical investigation.
Collapse
Affiliation(s)
- Jürgen Wichmann
- Roche Pharma Research & Early Development pRED, Roche Innovation Center Basel, Switzerland
| | - Caroline Rynn
- Roche Pharma Research & Early Development pRED, Roche Innovation Center Basel, Switzerland
| | - Thomas Friess
- Roche Pharma Research & Early Development pRED, Roche Innovation Center Munich, Penzberg, Germany
| | | | - Martin Kornacker
- Roche Pharma Research & Early Development pRED, Roche Innovation Center Basel, Switzerland
| | - Cornelia Handl
- Roche Pharma Research & Early Development pRED, Roche Innovation Center Basel, Switzerland
| | - Jasmin Emmenegger
- Roche Pharma Research & Early Development pRED, Roche Innovation Center Basel, Switzerland
| | - Jan Eckmann
- Roche Pharma Research & Early Development pRED, Roche Innovation Center Munich, Penzberg, Germany
| | - Frank Herting
- Roche Pharma Research & Early Development pRED, Roche Innovation Center Munich, Penzberg, Germany
| | - Nicolas Frances
- Roche Pharma Research & Early Development pRED, Roche Innovation Center Basel, Switzerland
| | - Daniel Hunziker
- Roche Pharma Research & Early Development pRED, Roche Innovation Center Basel, Switzerland
| | - Daniela Krummenacher
- Roche Pharma Research & Early Development pRED, Roche Innovation Center Basel, Switzerland
| | - Dominik Rüttinger
- Roche Pharma Research & Early Development pRED, Roche Innovation Center Munich, Penzberg, Germany
| | - Alison Ribeiro
- Roche Pharma Research & Early Development pRED, Roche Innovation Center Zurich, Schlieren Switzerland
| | - Marina Bacac
- Roche Pharma Research & Early Development pRED, Roche Innovation Center Zurich, Schlieren Switzerland
| | - Alessandro Brigo
- Roche Pharma Research & Early Development pRED, Roche Innovation Center Basel, Switzerland
| | - David S Hewings
- Roche Pharma Research & Early Development pRED, Roche Innovation Center Basel, Switzerland
| | - Reinhard Dummer
- Dermatology of Department, University of Zurich, University Hospital Zurich, Zurich, Switzerland
| | - Mitchell P Levesque
- Dermatology of Department, University of Zurich, University Hospital Zurich, Zurich, Switzerland
| | - Gabriel Schnetzler
- Roche Pharma Research & Early Development pRED, Roche Innovation Center Basel, Switzerland
| | - Bruno Martoglio
- Roche Pharma Research & Early Development pRED, Roche Innovation Center Basel, Switzerland
| | - James R Bischoff
- Roche Pharma Research & Early Development pRED, Roche Innovation Center Basel, Switzerland
| | - Piergiorgio Pettazzoni
- Roche Pharma Research & Early Development pRED, Roche Innovation Center Basel, Switzerland
| |
Collapse
|
8
|
Ai X, Cai Y, Chu Q, Han C, Lu Y, Qin S, Wu L, Xie C, Yuan Z, Zhong W, Zhu X, Chang JY, Zhu Z. [Combination of Radiation Therapy and Immunotherapy for Non-small Cell Lung Cancer: Peer Exchange on Frontier Academic Topics]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2021; 23:532-540. [PMID: 32517461 PMCID: PMC7309548 DOI: 10.3779/j.issn.1009-3419.2020.102.24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
肺癌是目前导致全球和中国癌症患者死亡的主要瘤种。多年来,常规的肿瘤治疗方法,如手术、化疗和放疗一直主导着非小细胞肺癌(non-small cell lung cancer, NSCLC)治疗领域。临床实践中引入免疫疗法使肺癌的治疗与其他实体瘤一样发生了根本性转变。最新临床前和临床数据表明,放疗可以通过诱导免疫原性细胞死亡和重新编程肿瘤微环境促进抗肿瘤免疫反应。研究者开始重新审视放疗作为免疫治疗的联合疗法,导致研究其潜在协同作用的临床试验数量呈指数级增长。放疗联合免疫治疗的临床试验引起了医疗界的广泛关注,会议邀请专家交流前沿及争议学术问题:①放疗联合免疫检查点抑制剂治疗NSCLC最新进展;②放疗联合免疫治疗是否显著增加毒性;③免疫检查点抑制剂治疗后出现的混合反应及局部治疗的干预价值;④放疗联合免疫治疗脑转移瘤的机制和进展。
Collapse
Affiliation(s)
| | - Xinghao Ai
- Lung Tumor Clinical Medical Center, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Yong Cai
- Department of Radiation Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
| | - Qian Chu
- Department of Radiation Oncology, Tongji Hospital, Tongji Medical College, Wuhan 430030, China
| | - Chengbo Han
- Department of Clinical Oncology, Shengjing Hospital, China Medical University, Shenyang 110022, China
| | - You Lu
- Department of Oncology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Songbing Qin
- Department of Radiation Oncology, The First Affiliated Hospital of Suzhou University, Suzhou 215006, China
| | - Lin Wu
- Hunan Cancer Hospital The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, China
| | - Conghua Xie
- Department of Cancer Radiotherapy and Chemotherapy, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Zhiyong Yuan
- Department of Radiation Oncology, Cancer Institute and Hospital, Tianjin Medical University, Tianjin 300060, China
| | - Wenzhao Zhong
- Cancer Center, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangdong Lung Cancer Institute, Guangzhou 510080, China
| | - Xiaoxia Zhu
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Joe Y Chang
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston TX 77030, USA
| | - Zhengfei Zhu
- Department of Radiotherapy, Fudan University Shanghai Cancer Center, Shanghai 200032, China
| |
Collapse
|
9
|
Meng P, Koopman B, Kok K, Ter Elst A, Schuuring E, van Kempen LC, Timens W, Hiltermann TJN, Groen HJM, van den Berg A, van der Wekken AJ. Combined osimertinib, dabrafenib and trametinib treatment for advanced non-small-cell lung cancer patients with an osimertinib-induced BRAF V600E mutation. Lung Cancer 2020; 146:358-361. [PMID: 32534795 DOI: 10.1016/j.lungcan.2020.05.036] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 05/18/2020] [Accepted: 05/23/2020] [Indexed: 12/25/2022]
Abstract
INTRODUCTION Previous studies have reported an acquiredBRAF V600E mutation as a potential resistance mechanism to osimertinib treatment in advanced NSCLC patients with an activating mutation in EGFR. However, the therapeutic effect of combining dabrafenib and trametinib with osimertinib remains unclear. Here we report treatment efficacy in two cases with acquired BRAF V600E mutations. METHODS Two patients with anEGFR exon 19 deletion and a T790 M mutation, both treated with osimertinib, acquired a BRAF V600E mutation at disease progression. Following the recommendation of the molecular tumor board, a concurrent combination of dabrafenib and trametinib plus osimertinib was administered. RESULTS Because of toxicity, one patient ultimately received a reduced dose of dabrafenib and trametinib combined with a normal dose of osimertinib. Clinical response in this patient lasted for 13.4 months. Re-biopsy upon tumor progression revealed loss ofBRAF V600E and emergence of EGFR C797S. The other patient, treated with full doses of the combined therapy, had progression with metastases in lung and brain one month after starting therapy. CONCLUSION BRAF V600E may be a resistance mechanism induced by osimertinib in EGFR-mutated advanced NSCLC. Combined treatment using dabrafenib/trametinib concurrently with osimertinib needs to be explored for osimertinib-induced BRAF V600E mutation.
Collapse
Affiliation(s)
- Pei Meng
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, the Netherlands
| | - Bart Koopman
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, the Netherlands
| | - Klaas Kok
- Department of Genetics, University of Groningen, University Medical Center Groningen, the Netherlands
| | - Arja Ter Elst
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, the Netherlands
| | - Ed Schuuring
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, the Netherlands
| | - Léon C van Kempen
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, the Netherlands
| | - Wim Timens
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, the Netherlands
| | - T Jeroen N Hiltermann
- Department of Pulmonary Diseases, University of Groningen, University Medical Center Groningen, the Netherlands
| | - Harry J M Groen
- Department of Pulmonary Diseases, University of Groningen, University Medical Center Groningen, the Netherlands
| | - Anke van den Berg
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, the Netherlands
| | - Anthonie J van der Wekken
- Department of Pulmonary Diseases, University of Groningen, University Medical Center Groningen, the Netherlands.
| |
Collapse
|
10
|
Gampa G, Kenchappa RS, Mohammad AS, Parrish KE, Kim M, Crish JF, Luu A, West R, Hinojosa AQ, Sarkaria JN, Rosenfeld SS, Elmquist WF. Enhancing Brain Retention of a KIF11 Inhibitor Significantly Improves its Efficacy in a Mouse Model of Glioblastoma. Sci Rep 2020; 10:6524. [PMID: 32300151 PMCID: PMC7162859 DOI: 10.1038/s41598-020-63494-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 03/21/2020] [Indexed: 12/23/2022] Open
Abstract
Glioblastoma, the most lethal primary brain cancer, is extremely proliferative and invasive. Tumor cells at tumor/brain-interface often exist behind a functionally intact blood-brain barrier (BBB), and so are shielded from exposure to therapeutic drug concentrations. An ideal glioblastoma treatment needs to engage targets that drive proliferation as well as invasion, with brain penetrant therapies. One such target is the mitotic kinesin KIF11, which can be inhibited with ispinesib, a potent molecularly-targeted drug. Although, achieving durable brain exposures of ispinesib is critical for adequate tumor cell engagement during mitosis, when tumor cells are vulnerable, for efficacy. Our results demonstrate that the delivery of ispinesib is restricted by P-gp and Bcrp efflux at BBB. Thereby, ispinesib distribution is heterogeneous with concentrations substantially lower in invasive tumor rim (intact BBB) compared to glioblastoma core (disrupted BBB). We further find that elacridar—a P-gp and Bcrp inhibitor—improves brain accumulation of ispinesib, resulting in remarkably reduced tumor growth and extended survival in a rodent model of glioblastoma. Such observations show the benefits and feasibility of pairing a potentially ideal treatment with a compound that improves its brain accumulation, and supports use of this strategy in clinical exploration of cell cycle-targeting therapies in brain cancers.
Collapse
Affiliation(s)
- Gautham Gampa
- Brain Barriers Research Center, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, MN, USA
| | | | - Afroz S Mohammad
- Brain Barriers Research Center, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, MN, USA
| | - Karen E Parrish
- Brain Barriers Research Center, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, MN, USA
| | - Minjee Kim
- Brain Barriers Research Center, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, MN, USA
| | - James F Crish
- Department of Cancer Biology, Cleveland Clinic, Cleveland, OH, USA
| | - Amanda Luu
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL, USA
| | - Rita West
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL, USA
| | | | - Jann N Sarkaria
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN, USA
| | | | - William F Elmquist
- Brain Barriers Research Center, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
11
|
Erickson AW, Das S. The Impact of Targeted Therapy on Intracranial Metastatic Disease Incidence and Survival. Front Oncol 2019; 9:797. [PMID: 31508362 PMCID: PMC6716495 DOI: 10.3389/fonc.2019.00797] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 08/06/2019] [Indexed: 11/13/2022] Open
Abstract
Intracranial metastatic disease (IMD) is a common and severe complication of primary cancers. Current treatment options for IMD include surgical resection and radiation therapy, although there has been recent interest in targeted therapy in the management of IMD. As of yet, insufficient data exist to support the recommendation of targeted therapies in the treatment of IMD. Paradoxically, targeted therapy has been hypothesized to play a role in the development of IMD in patients with primary cancers. This is based on the observations that patients who receive targeted therapy for primary cancer experience prolonged survival, and that prolonged survival has been associated with increased incidence of IMD. Few data exist to clarify if treatment of primary cancers with targeted therapies influences IMD incidence. Here, we discuss the role of targeted therapy in IMD management, review the current literature on IMD incidence and targeted therapy use in primary cancer, and propose the need for future studies to inform physicians in choosing treatment options and counseling patients.
Collapse
Affiliation(s)
- Anders W Erickson
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Sunit Das
- Division of Neurosurgery, University of Toronto, Toronto, ON, Canada.,Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, ON, Canada
| |
Collapse
|
12
|
Gampa G, Kim M, Mohammad AS, Parrish KE, Mladek AC, Sarkaria JN, Elmquist WF. Brain Distribution and Active Efflux of Three panRAF Inhibitors: Considerations in the Treatment of Melanoma Brain Metastases. J Pharmacol Exp Ther 2019; 368:446-461. [PMID: 30622172 PMCID: PMC6374543 DOI: 10.1124/jpet.118.253708] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 01/02/2019] [Indexed: 12/15/2022] Open
Abstract
Targeted inhibition of RAF and MEK by molecularly targeted agents has been employed as a strategy to block aberrant mitogen-activated protein kinase (MAPK) signaling in melanoma. While the use of BRAF and MEK inhibitors, either as a single agent or in combination, improved efficacy in BRAF-mutant melanoma, initial responses are often followed by relapse due to acquired resistance. Moreover, some BRAF inhibitors are associated with paradoxical activation of the MAPK pathway, causing the development of secondary malignancies. The use of panRAF inhibitors, i.e., those that target all isoforms of RAF, may overcome paradoxical activation and resistance. The purpose of this study was to perform a quantitative assessment and evaluation of the influence of efflux mechanisms at the blood-brain barrier (BBB), in particular, Abcb1/P-glycoprotein (P-gp) and Abcg2/breast cancer resistance protein (Bcrp), on the brain distribution of three panRAF inhibitors: CCT196969 [1-(3-(tert-butyl)-1-phenyl-1H-pyrazol-5-yl)-3-(2-fluoro-4-((3-oxo-3,4-dihydropyrido[2,3-b]pyrazin-8-yl)oxy)phenyl)urea], LY3009120 1-(3,3-Dimethylbutyl)-3-(2-fluoro-4-methyl-5-(7-methyl-2-(methylamino)pyrido(2,3-d)pyrimidin-6-yl)phenyl)urea, and MLN2480 [4-pyrimidinecarboxamide, 6-amino-5-chloro-N-[(1R)-1-[5-[[[5-chloro-4-(trifluoromethyl)-2-pyridinyl]amino]carbonyl]-2-thiazolyl]ethyl]-]. In vitro studies using transfected Madin-Darby canine kidney II cells indicate that only LY3009120 and MLN2480 are substrates of Bcrp, and none of the three inhibitors are substrates of P-gp. The three panRAF inhibitors show high nonspecific binding in brain and plasma. In vivo studies in mice show that the brain distribution of CCT196969, LY3009120, and MLN2480 is limited, and is enhanced in transgenic mice lacking P-gp and Bcrp. While MLN2480 has a higher brain distribution, LY3009120 exhibits superior in vitro efficacy in patient-derived melanoma cell lines. The delivery of a drug to the site of action residing behind a functionally intact BBB, along with drug potency against the target, collectively play a critical role in determining in vivo efficacy outcomes.
Collapse
Affiliation(s)
- Gautham Gampa
- Brain Barriers Research Center, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota (G.G., M.K., A.S.M., K.E.P., W.F.E.); and Radiation Oncology, Mayo Clinic, Rochester, Minnesota (A.C.M., J.N.S.)
| | - Minjee Kim
- Brain Barriers Research Center, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota (G.G., M.K., A.S.M., K.E.P., W.F.E.); and Radiation Oncology, Mayo Clinic, Rochester, Minnesota (A.C.M., J.N.S.)
| | - Afroz S Mohammad
- Brain Barriers Research Center, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota (G.G., M.K., A.S.M., K.E.P., W.F.E.); and Radiation Oncology, Mayo Clinic, Rochester, Minnesota (A.C.M., J.N.S.)
| | - Karen E Parrish
- Brain Barriers Research Center, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota (G.G., M.K., A.S.M., K.E.P., W.F.E.); and Radiation Oncology, Mayo Clinic, Rochester, Minnesota (A.C.M., J.N.S.)
| | - Ann C Mladek
- Brain Barriers Research Center, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota (G.G., M.K., A.S.M., K.E.P., W.F.E.); and Radiation Oncology, Mayo Clinic, Rochester, Minnesota (A.C.M., J.N.S.)
| | - Jann N Sarkaria
- Brain Barriers Research Center, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota (G.G., M.K., A.S.M., K.E.P., W.F.E.); and Radiation Oncology, Mayo Clinic, Rochester, Minnesota (A.C.M., J.N.S.)
| | - William F Elmquist
- Brain Barriers Research Center, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota (G.G., M.K., A.S.M., K.E.P., W.F.E.); and Radiation Oncology, Mayo Clinic, Rochester, Minnesota (A.C.M., J.N.S.)
| |
Collapse
|
13
|
Gampa G, Kim M, Cook-Rostie N, Laramy JK, Sarkaria JN, Paradiso L, DePalatis L, Elmquist WF. Brain Distribution of a Novel MEK Inhibitor E6201: Implications in the Treatment of Melanoma Brain Metastases. Drug Metab Dispos 2018; 46:658-666. [PMID: 29437873 PMCID: PMC5896365 DOI: 10.1124/dmd.117.079194] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 01/30/2018] [Indexed: 01/14/2023] Open
Abstract
Clinically meaningful efficacy in the treatment of brain tumors, including melanoma brain metastases (MBM), requires selection of a potent inhibitor against a suitable target, and adequate drug distribution to target sites in the brain. Deregulated constitutive signaling of mitogen-activated protein kinase (MAPK) pathway has been frequently observed in melanoma, and mitogen-activated protein/extracellular signal-regulated kinase (MEK) has been identified to be an important target. E6201 is a potent synthetic small-molecule MEK inhibitor. The purpose of this study was to evaluate brain distribution of E6201, and examine the impact of active efflux transport at the blood-brain barrier on the central nervous system (CNS) exposure of E6201. In vitro studies utilizing transfected Madin-Darby canine kidney II (MDCKII) cells indicate that E6201 is not a substrate of P-glycoprotein (P-gp) and breast cancer resistance protein (Bcrp). In vivo studies also suggest a minimal involvement of P-gp and Bcrp in E6201's brain distribution. The total concentrations in brain were higher than in plasma, resulting in a brain-to-plasma AUC ratio (Kp) of 2.66 in wild-type mice. The brain distribution was modestly enhanced in Mdr1a/b-/-, Bcrp1-/-, and Mdr1a/b-/-Bcrp1-/- knockout mice. The nonspecific binding of E6201 was higher in brain compared with plasma. However, free-drug concentrations in brain following 40 mg/kg intravenous dose reach levels that exceed reported in vitro half-maximal inhibitory concentration (IC50) values, suggesting that E6201 may be efficacious in inhibiting MEK-driven brain tumors. The brain distribution characteristics of E6201 make it an attractive targeted agent for clinical testing in MBM, glioblastoma, and other CNS tumors that may be effectively targeted with inhibition of MEK signaling.
Collapse
Affiliation(s)
- Gautham Gampa
- Brain Barriers Research Center, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota (G.G., M.K., N.C.-R., J.K.L., W.F.E.); Radiation Oncology, Mayo Clinic, Rochester, Minnesota (J.N.S.); and Strategia Therapeutics Inc., Spring, Texas (L.P., L.D.)
| | - Minjee Kim
- Brain Barriers Research Center, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota (G.G., M.K., N.C.-R., J.K.L., W.F.E.); Radiation Oncology, Mayo Clinic, Rochester, Minnesota (J.N.S.); and Strategia Therapeutics Inc., Spring, Texas (L.P., L.D.)
| | - Nicholas Cook-Rostie
- Brain Barriers Research Center, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota (G.G., M.K., N.C.-R., J.K.L., W.F.E.); Radiation Oncology, Mayo Clinic, Rochester, Minnesota (J.N.S.); and Strategia Therapeutics Inc., Spring, Texas (L.P., L.D.)
| | - Janice K Laramy
- Brain Barriers Research Center, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota (G.G., M.K., N.C.-R., J.K.L., W.F.E.); Radiation Oncology, Mayo Clinic, Rochester, Minnesota (J.N.S.); and Strategia Therapeutics Inc., Spring, Texas (L.P., L.D.)
| | - Jann N Sarkaria
- Brain Barriers Research Center, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota (G.G., M.K., N.C.-R., J.K.L., W.F.E.); Radiation Oncology, Mayo Clinic, Rochester, Minnesota (J.N.S.); and Strategia Therapeutics Inc., Spring, Texas (L.P., L.D.)
| | - Linda Paradiso
- Brain Barriers Research Center, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota (G.G., M.K., N.C.-R., J.K.L., W.F.E.); Radiation Oncology, Mayo Clinic, Rochester, Minnesota (J.N.S.); and Strategia Therapeutics Inc., Spring, Texas (L.P., L.D.)
| | - Louis DePalatis
- Brain Barriers Research Center, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota (G.G., M.K., N.C.-R., J.K.L., W.F.E.); Radiation Oncology, Mayo Clinic, Rochester, Minnesota (J.N.S.); and Strategia Therapeutics Inc., Spring, Texas (L.P., L.D.)
| | - William F Elmquist
- Brain Barriers Research Center, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota (G.G., M.K., N.C.-R., J.K.L., W.F.E.); Radiation Oncology, Mayo Clinic, Rochester, Minnesota (J.N.S.); and Strategia Therapeutics Inc., Spring, Texas (L.P., L.D.)
| |
Collapse
|
14
|
Gampa G, Vaidhyanathan S, Sarkaria JN, Elmquist WF. Drug delivery to melanoma brain metastases: Can current challenges lead to new opportunities? Pharmacol Res 2017. [PMID: 28634084 DOI: 10.1016/j.phrs.2017.06.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Melanoma has a high propensity to metastasize to the brain, and patients with melanoma brain metastases (MBM) have an extremely poor prognosis. The recent approval of several molecularly-targeted agents (e.g., BRAF, MEK inhibitors) and biologics (anti-CTLA-4, anti-PD-1 and anti-PD-L1 antibodies) has brought new hope to patients suffering from this formerly untreatable and lethal disease. Importantly, there have been recent reports of success in some clinical studies examining the efficacy of both targeted agents and immunotherapies that show similar response rates in both brain metastases and extracranial disease. While these studies are encouraging, there remains significant room for improvement in the treatment of MBM, given the lack of durable response and the development of resistance to current therapies. Critical questions remain regarding mechanisms that lead to this lack of durable response and development of resistance, and how those mechanisms may differ in systemic sites versus brain metastases. One issue that may not be fully appreciated is that the delivery of several small molecule molecularly-targeted therapies to the brain is often restricted due to active efflux at the blood-brain barrier (BBB) interface. Inadequate local drug concentrations may be partially responsible for the development of unique patterns of resistance at metastatic sites in the brain. It is clear that there can be local, heterogeneous BBB breakdown in MBM, as exemplified by contrast-enhancement on T1-weighted MR imaging. However, it is possible that the successful treatment of MBM with small molecule targeted therapies will depend, in part, on the ability of these therapies to penetrate an intact BBB and reach the protected micro-metastases (so called "sub-clinical" disease) that escape early detection by contrast-enhanced MRI, as well as regions of tumor within MRI-detectable metastases that may have a less compromised BBB. The emergence of resistance in MBM may be related to several diverse, yet interrelated, factors including the distinct microenvironment of the brain and inadequate brain penetration of targeted therapies to specific regions of tumor. The tumor microenvironment has been ascribed to play a key role in steering the course of disease progression, by dictating changes in expression of tumor drivers and resistance-related signaling mechanisms. Therefore, a key issue to consider is how changes in drug delivery, and hence local drug concentrations within a metastatic microenvironment, will influence the development of resistance. Herein we discuss our perspective on several critical questions that focus on many aspects relevant to the treatment of melanoma brain metastases; the answers to which may lead to important advances in the treatment of this devastating disease.
Collapse
Affiliation(s)
- Gautham Gampa
- Brain Barriers Research Center, Department of Pharmaceutics, University of Minnesota, Minneapolis, MN, USA
| | - Shruthi Vaidhyanathan
- Brain Barriers Research Center, Department of Pharmaceutics, University of Minnesota, Minneapolis, MN, USA
| | | | - William F Elmquist
- Brain Barriers Research Center, Department of Pharmaceutics, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|