1
|
Tharamelveliyil Rajendran A, Dheeraj Rajesh G, Ashtekar H, Sairam A, Kumar P, Vadakkepushpakath AN. Uncovering naringin's anticancer mechanisms in glioblastoma via molecular docking and network pharmacology approaches. Sci Rep 2024; 14:21486. [PMID: 39277626 PMCID: PMC11401857 DOI: 10.1038/s41598-024-72475-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 09/09/2024] [Indexed: 09/17/2024] Open
Abstract
Naringin, a flavonoid, exhibits diverse therapeutic properties and has been proven to exert cytotoxic effects on cancer cells. Nevertheless, the precise mechanism of naringin maintaining its cytotoxic effect on glioblastoma (GBM) remains unknown. Thus, the current study aimed to establish a plausible cellular mechanism for Naringin's inhibition of GBM. We employed various system biology techniques to forecast the primary targets, including gene ontology and cluster analysis, KEGG enrichment pathway estimation, molecular docking, MD (molecular dynamic) simulation and MMPBSA analysis. Glioblastoma target sequences were obtained via DisGeNet and Therapeutic Target Prediction, aligned with naringin targets, and analyzed for gene enrichment and ontology. Gene enrichment analysis identified the top ten hub genes. Further, molecular docking was conducted on all identified targets. For molecular dynamics modelling, we selected the two complexes that exhibited the most docking affinity and the two most prominent genes of the hub identified through analysis of the enrichment of genes. The PARP1 and ALB1 signalling pathways were found to be the main regulated routes. Naringin exhibited the highest binding potential of - 12.90 kcal/mol with PARP1 (4ZZZ), followed by ABL1 (2ABL), with naringin showing a - 8.4 kcal/mol binding score, as determined by molecular docking. The molecular dynamic approach and MM-PBSA investigation along with PCA study revealed that the complex of Naringin, with 4ZZZ (PARP1) and, 2ABL (ABL1), are highly stable compared to that of imatinib and talazoparib. Analyses of the signalling pathway suggested that naringin may have anticancer effects against GBM by influencing the protein PARP and ALB1 levels. Cytotoxicity assay was performed on two different glioblastoma cell lines C6 and U87MG cells. Naringin demonstrates a higher cytotoxic potency against U87MG human glioblastoma cells compared to C6 rat glioma cells.
Collapse
Affiliation(s)
- Arunraj Tharamelveliyil Rajendran
- Department of Pharmaceutics, NGSM Institute of Pharmaceutical Sciences, Nitte (Deemed to be University), Mangalore, Karnataka, 575018, India
| | - Gupta Dheeraj Rajesh
- Department of Pharmaceutical Chemistry, NGSM Institute of Pharmaceutical Sciences, Nitte (Deemed to be University), Mangalore, Karnataka, 575018, India
| | - Harsha Ashtekar
- Department of Pharmacology, NGSM Institute of Pharmaceutical Sciences, Nitte (Deemed to be University), Mangalore, Karnataka, 575018, India
| | - Anusha Sairam
- Department of Pharmaceutics, NGSM Institute of Pharmaceutical Sciences, Nitte (Deemed to be University), Mangalore, Karnataka, 575018, India
| | - Pankaj Kumar
- Department of Pharmaceutical Chemistry, NGSM Institute of Pharmaceutical Sciences, Nitte (Deemed to be University), Mangalore, Karnataka, 575018, India
| | - Anoop Narayanan Vadakkepushpakath
- Department of Pharmaceutics, NGSM Institute of Pharmaceutical Sciences, Nitte (Deemed to be University), Mangalore, Karnataka, 575018, India.
| |
Collapse
|
2
|
Yadav N, Tripathi S, Sangwan NS. Phyto-therapeutic potential of Withania somnifera: Molecular mechanism and health implications. Phytother Res 2024; 38:1695-1714. [PMID: 38318763 DOI: 10.1002/ptr.8100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 12/05/2023] [Accepted: 12/09/2023] [Indexed: 02/07/2024]
Abstract
Withania somnifera, the plant named Indian ginseng, Ashwagandha, or winter cherry, has been used since ancient times to cure various health ailments. Withania somnifera is rich in constituents belonging to chemical classes like alkaloids, saponins, flavonoids, phenolic acids, and withanolides. Several chemotypes were identified based on their phytochemical composition and credited for their multiple bioactivities. Besides, exhibiting neuroprotective, immunomodulatory, adaptogenic, anti-stress, bone health, plant has shown promising anti-cancer properties. Several withanolides have been reported to play a crucial role in cancer; they target cancer cells by different mechanisms such as modulating the expression of tumor suppressor genes, apoptosis, telomerase expression, and regulating cell signaling pathway. Though, many treatments are available for cancer; however, to date, no assured reliable cure for cancer is made available. Additionally, synthetic drugs may lead to development of resistance in time; therefore, focus on new and natural drugs for cancer therapeutics may prove a longtime effective alternative. This current report is a comprehensive combined analysis upto 2023 with articles focused on bio-activities of plant Withania somnifera from various sources, including national and international government sources. This review focuses on understanding of various mechanisms and pathways to inhibit uncontrolled cell growth by W. somnifera bioactives, as reported in literature. This review provides a recent updated status of the W. somnifera on pharmacological properties in general and anti-cancer in particular and may provide a guiding resource for researchers associated with natural product-based cancer research and healthcare management.
Collapse
Affiliation(s)
- Nisha Yadav
- Department of Biochemistry, School of Interdisciplinary and Applied Sciences, Central University of Haryana, Mahendergarh, India
| | | | - Neelam S Sangwan
- Department of Biochemistry, School of Interdisciplinary and Applied Sciences, Central University of Haryana, Mahendergarh, India
| |
Collapse
|
3
|
Lyon A, Tripathi R, Meeks C, He D, Wu Y, Liu J, Wang C, Chen J, Zhu H, Mukherjee S, Ganguly S, Plattner R. ABL1/2 and DDR1 Drive MEKi Resistance in NRAS-Mutant Melanomas by Stabilizing RAF/MYC/ETS1 and Promoting RAF Homodimerization. Cancers (Basel) 2023; 15:954. [PMID: 36765910 PMCID: PMC9913232 DOI: 10.3390/cancers15030954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 01/06/2023] [Accepted: 01/11/2023] [Indexed: 02/05/2023] Open
Abstract
Melanomas harboring NRAS mutations are a particularly aggressive and deadly subtype. If patients cannot tolerate or the melanomas are insensitive to immune checkpoint blockade, there are no effective 2nd-line treatment options. Drugs targeting the RAF/MEK/ERK pathway, which are used for BRAF-mutant melanomas, do little to increase progression-free survival (PFS). Here, using both loss-of-function and gain-of-function approaches, we show that ABL1/2 and DDR1 are critical nodes during NRAS-mutant melanoma intrinsic and acquired MEK inhibitor (MEKi) resistance. In some acquired resistance cells, ABL1/2 and DDR1 cooperate to stabilize RAF proteins, activate ERK cytoplasmic and nuclear signaling, repress p27/KIP1 expression, and drive RAF homodimerization. In contrast, other acquired resistance cells depend solely on ABL1/2 for their survival, and are sensitive to highly specific allosteric ABL1/2 inhibitors, which prevent β-catenin nuclear localization and destabilize MYC and ETS1 in an ERK-independent manner. Significantly, targeting ABL1/2 and DDR1 with an FDA-approved anti-leukemic drug, reverses intrinsic MEKi resistance, delays acquisition of acquired resistance, and doubles the survival time in a NRAS-mutant mouse model. These data indicate that repurposing FDA-approved drugs targeting ABL1/2 and DDR1 may be a novel and effective strategy for treating patients with treatment-refractory NRAS-driven melanomas.
Collapse
Affiliation(s)
- Anastasia Lyon
- Department of Pharmacology and Nutritional Sciences, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
| | - Rakshamani Tripathi
- Department of Pharmacology and Nutritional Sciences, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
| | - Christina Meeks
- Department of Pharmacology and Nutritional Sciences, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
| | - Daheng He
- Biostatistics and Bioinformatics Shared Resource Facility, College of Medicine, Markey Cancer Center, University of Kentucky, Lexington, KY 40508, USA
| | - Yuanyuan Wu
- Biostatistics and Bioinformatics Shared Resource Facility, College of Medicine, Markey Cancer Center, University of Kentucky, Lexington, KY 40508, USA
| | - Jinpeng Liu
- Biostatistics and Bioinformatics Shared Resource Facility, College of Medicine, Markey Cancer Center, University of Kentucky, Lexington, KY 40508, USA
| | - Chi Wang
- Biostatistics and Bioinformatics Shared Resource Facility, College of Medicine, Markey Cancer Center, University of Kentucky, Lexington, KY 40508, USA
| | - Jing Chen
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY 40536, USA
| | - Haining Zhu
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY 40536, USA
| | - Sujata Mukherjee
- Department of Pharmacology and Nutritional Sciences, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
| | - Saptadwipa Ganguly
- Department of Pharmacology and Nutritional Sciences, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
| | - Rina Plattner
- Department of Pharmacology and Nutritional Sciences, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
| |
Collapse
|
4
|
Circ_0000263 facilitates the proliferation and inhibits the apoptosis of cervical cancer depending on the regulation of miR-1179/ABL2 axis. Reprod Sci 2022; 29:2636-2646. [PMID: 35355231 DOI: 10.1007/s43032-022-00920-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 03/12/2022] [Indexed: 12/09/2022]
Abstract
Circular RNA (circRNA) has been reported to participate in the progression of cervical cancer (CC). Studies on the role and mechanism of circ_0000263 in CC are limited, and more studies are needed. The expression of circ_0000263, microRNA (miR)-1179 and ABL proto-oncogene 2 (ABL2) mRNA in tissues and cells was analyzed by quantitative real-time PCR. The proliferation and apoptosis of CC cells were determined using cell counting kit 8 assay, Edu assay, colony formation assay and flow cytometry. The protein expression of proliferation markers, apoptosis markers and ABL2 was detected by western blot analysis. The interaction between RNAs was estimated via dual-luciferase reporter assay. Xenograft models were applied to explore the effect of circ_0000263 knockdown on CC tumorigenesis. Circ_0000263 was highly expressed in CC tumor tissues. Silencing of circ_0000263 suppressed CC cell proliferation and increased apoptosis. Circ_0000263 served as a sponge for miR-1179, and miR-1179 inhibitor reversed the regulation of si-circ_0000263 on CC cell proliferation and apoptosis. ABL2 could be targeted by miR-1179, and circ_0000263 could sponge miR-1179 to regulate ABL2. Overexpression of ABL2 reversed the anti-proliferation and pro-apoptosis roles of miR-1179 in CC cells. In addition, circ_0000263 knockdown reduced CC tumor growth by miR-1179/ABL2 axis. In brief, the results demonstrated that circ_0000263 exerted an oncogene role in CC, which suggested that circ_0000263 might be a promising therapeutic target for CC.
Collapse
|
5
|
Choo F, Rakheja D, Davis LE, Davare M, Park JY, Timmons CF, Neff T, Beadling C, Corless CL, Davis JL. GAB1-ABL1 fusions in tumors that have histologic overlap with NTRK-rearranged spindle cell tumors. Genes Chromosomes Cancer 2021; 60:623-630. [PMID: 34036664 DOI: 10.1002/gcc.22972] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/09/2021] [Accepted: 05/13/2021] [Indexed: 12/16/2022] Open
Abstract
Fibroblastic spindle cell tumors are a heterogeneous group of rare soft tissue tumors that are increasingly recognized as associated with a variety of kinase gene fusions. We report two cases of GAB1-ABL1 fusions in spindle cell tumors that histologically overlap with neurotrophic tyrosine receptor kinase (NTRK)-rearranged spindle cell tumors. The first case occurred in a 76-year-old female who had a large deep-seated spindle cell tumor composed of monotonous ovoid to spindle cells in a background of thick stromal collagen bands with prominent hyalinized vessels and inconspicuous mitoses (<1/10 HPF). Immunohistochemical stains showed co-expression of S100 and CD34. A GAB1-ABL1 fusion was detected by whole transcriptome RNA sequencing. The patient had a partial response to imatinib. The second case was previously described as a solitary fibrous tumor, occurring in a 9-year-old female with a cellular spindle cell tumor with patchy CD34 immunoexpression but no expression of S100. Upon clinicopathologic re-review, including anchored multiplex next-generation sequencing, a GAB1-ABL1 fusion was identified. In summary, we report the first two cases of spindle cell tumors with variable expression of CD34 and/or S100, driven by GAB1-ABL1 gene fusions with histologic overlap with NTRK-rearranged spindle cell tumors, suggesting that ABL-fusions may also be oncogenic drivers within this spectrum of tumors. These cases highlight the evolving understanding of fibroblastic spindle cell tumor biology and the utility of sequencing in identifying a targetable alteration.
Collapse
Affiliation(s)
- Florence Choo
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, Oregon Health & Science University, Portland, Oregon, USA
| | - Dinesh Rakheja
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas, USA.,Children's Health, Dallas, Texas, USA
| | - Lara E Davis
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, Oregon Health & Science University, Portland, Oregon, USA.,Division of Hematology and Medical Oncology, Department of Medicine, Oregon Health & Science University, Portland, Oregon, USA.,Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon, USA
| | - Monika Davare
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, Oregon Health & Science University, Portland, Oregon, USA.,Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon, USA
| | - Jason Y Park
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas, USA.,Children's Health, Dallas, Texas, USA
| | - Charles F Timmons
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas, USA.,Children's Health, Dallas, Texas, USA
| | - Tanaya Neff
- Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon, USA
| | - Carol Beadling
- Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon, USA
| | - Christopher L Corless
- Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon, USA.,Department of Pathology, Oregon Health & Science University, Portland, Oregon, USA
| | - Jessica L Davis
- Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon, USA.,Department of Pathology, Oregon Health & Science University, Portland, Oregon, USA
| |
Collapse
|
6
|
Panagopoulos I, Gorunova L, Andersen K, Tafjord S, Lund-Iversen M, Lobmaier I, Micci F, Heim S. Recurrent Fusion of the GRB2 Associated Binding Protein 1 ( GAB1) Gene With ABL Proto-oncogene 1 ( ABL1) in Benign Pediatric Soft Tissue Tumors. Cancer Genomics Proteomics 2021; 17:499-508. [PMID: 32859628 DOI: 10.21873/cgp.20206] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 05/22/2020] [Accepted: 06/01/2020] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND/AIM Fusions of the ABL proto-oncogene 1 gene (ABL1 in 9q34) are common in leukemias but rare in solid tumors. The most notable is the t(9;22)(q34;q11)/BCR-ABL1 coding for a chimeric tyrosine kinase. We herein report an ABL1-fusion in a pediatric tumor. MATERIALS AND METHODS G-banding, fluorescence in situ hybridization, reverse transcription polymerase chain reaction and Sanger sequencing were performed on a soft tissue perineurioma found in the left musculus erector spinae of a child. RESULTS A der(4)t(4;9)(q31;q34) and a fusion of the GRB2 associated binding protein 1 (GAB1 in 4q31) gene with ABL1 were found. A literature search revealed 3 more cases with similar genetic and clinicopathological characteristics: a soft tissue perineurioma with t(2;9;4)(p23;q34;q31) and ABL1 rearrangement, a soft tissue angiofibroma with a GAB1-ABL1 chimeric gene, and a solitary fibrous tumor carrying a der(4)t(4;9)(q31.1;q34). CONCLUSION GAB1-ABL1 is a recurrent fusion gene in benign pediatric tumors.
Collapse
Affiliation(s)
- Ioannis Panagopoulos
- Section for Cancer Cytogenetics, Institute for Cancer Genetics and Informatics, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Ludmila Gorunova
- Section for Cancer Cytogenetics, Institute for Cancer Genetics and Informatics, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Kristin Andersen
- Section for Cancer Cytogenetics, Institute for Cancer Genetics and Informatics, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Svetlana Tafjord
- Department of Pathology, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Marius Lund-Iversen
- Department of Pathology, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Ingvild Lobmaier
- Department of Pathology, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Francesca Micci
- Section for Cancer Cytogenetics, Institute for Cancer Genetics and Informatics, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Sverre Heim
- Section for Cancer Cytogenetics, Institute for Cancer Genetics and Informatics, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway.,Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
7
|
Tripathi R, Liu Z, Jain A, Lyon A, Meeks C, Richards D, Liu J, He D, Wang C, Nespi M, Rymar A, Wang P, Wilson M, Plattner R. Combating acquired resistance to MAPK inhibitors in melanoma by targeting Abl1/2-mediated reactivation of MEK/ERK/MYC signaling. Nat Commun 2020; 11:5463. [PMID: 33122628 PMCID: PMC7596241 DOI: 10.1038/s41467-020-19075-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 09/29/2020] [Indexed: 12/20/2022] Open
Abstract
Metastatic melanoma remains an incurable disease for many patients due to the limited success of targeted and immunotherapies. BRAF and MEK inhibitors reduce metastatic burden for patients with melanomas harboring BRAF mutations; however, most eventually relapse due to acquired resistance. Here, we demonstrate that ABL1/2 kinase activities and/or expression are potentiated in cell lines and patient samples following resistance, and ABL1/2 drive BRAF and BRAF/MEK inhibitor resistance by inducing reactivation of MEK/ERK/MYC signaling. Silencing/inhibiting ABL1/2 blocks pathway reactivation, and resensitizes resistant cells to BRAF/MEK inhibitors, whereas expression of constitutively active ABL1/2 is sufficient to promote resistance. Significantly, nilotinib (2nd generation ABL1/2 inhibitor) reverses resistance, in vivo, causing prolonged regression of resistant tumors, and also, prevents BRAFi/MEKi resistance from developing in the first place. These data indicate that repurposing the FDA-approved leukemia drug, nilotinib, may be effective for prolonging survival for patients harboring BRAF-mutant melanomas.
Collapse
Affiliation(s)
- Rakshamani Tripathi
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY, 40536, USA
| | - Zulong Liu
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY, 40536, USA
| | - Aditi Jain
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY, 40536, USA.,The Jefferson Pancreas, Biliary and Related Cancer Center, Department of Surgery, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Anastasia Lyon
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY, 40536, USA
| | - Christina Meeks
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY, 40536, USA
| | - Dana Richards
- Department of Pathology, University of Kentucky College of Medicine, Lexington, KY, 40536, USA
| | - Jinpeng Liu
- Biostatistics and Bioinformatics Shared Resource Facility, Markey Cancer Center, University of Kentucky College of Medicine, Lexington, KY, 40536, USA
| | - Daheng He
- Biostatistics and Bioinformatics Shared Resource Facility, Markey Cancer Center, University of Kentucky College of Medicine, Lexington, KY, 40536, USA
| | - Chi Wang
- Biostatistics and Bioinformatics Shared Resource Facility, Markey Cancer Center, University of Kentucky College of Medicine, Lexington, KY, 40536, USA
| | | | | | - Peng Wang
- Department of Internal Medicine, University of Kentucky, College of Medicine, Lexington, KY, USA
| | - Melissa Wilson
- Department of Medical Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Rina Plattner
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY, 40536, USA.
| |
Collapse
|
8
|
Integrated Analysis to Study the Relationship between Tumor-Associated Selenoproteins: Focus on Prostate Cancer. Int J Mol Sci 2020; 21:ijms21186694. [PMID: 32933107 PMCID: PMC7555134 DOI: 10.3390/ijms21186694] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/07/2020] [Accepted: 09/11/2020] [Indexed: 11/16/2022] Open
Abstract
Selenoproteins are proteins that contain selenium within selenocysteine residues. To date, twenty-five mammalian selenoproteins have been identified; however, the functions of nearly half of these selenoproteins are unknown. Although alterations in selenoprotein expression and function have been suggested to play a role in cancer development and progression, few detailed studies have been carried out in this field. Network analyses and data mining of publicly available datasets on gene expression levels in different cancers, and the correlations with patient outcome, represent important tools to study the correlation between selenoproteins and other proteins present in the human interactome, and to determine whether altered selenoprotein expression is cancer type-specific, and/or correlated with cancer patient prognosis. Therefore, in the present study, we used bioinformatics approaches to (i) build up the network of interactions between twenty-five selenoproteins and identify the most inter-correlated proteins/genes, which are named HUB nodes; and (ii) analyze the correlation between selenoprotein gene expression and patient outcome in ten solid tumors. Then, considering the need to confirm by experimental approaches the correlations suggested by the bioinformatics analyses, we decided to evaluate the gene expression levels of the twenty-five selenoproteins and six HUB nodes in androgen receptor-positive (22RV1 and LNCaP) and androgen receptor-negative (DU145 and PC3) cell lines, compared to human nontransformed, and differentiated, prostate epithelial cells (EPN) by RT-qPCR analysis. This analysis confirmed that the combined evaluation of some selenoproteins and HUB nodes could have prognostic value and may improve patient outcome predictions.
Collapse
|
9
|
Cui X, Lin Q, Liang Y. Plant-Derived Antioxidants Protect the Nervous System From Aging by Inhibiting Oxidative Stress. Front Aging Neurosci 2020; 12:209. [PMID: 32760268 PMCID: PMC7372124 DOI: 10.3389/fnagi.2020.00209] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 06/15/2020] [Indexed: 01/04/2023] Open
Abstract
Alzheimer's disease (AD) has become a major disease contributing to human death and is thought to be closely related to the aging process. The rich antioxidant substances in plants have been shown to play a role in delaying aging, and in recent years, significant research has focused on also examining their potential role in AD onset and progression. Many plant-derived antioxidant research studies have provided insights for the future treatment and prevention of AD. This article reviews various types of plant-derived antioxidants with anti-aging effects on neurons. Also it distinguishes the different types of active substances that exhibit different degrees of protection for the nervous system and summarizes the mechanism thereof. Plant-derived antioxidants with neuroprotective functions can protect various components of the nervous system in a variety of ways and can have a positive impact on interventions to prevent and alleviate AD. Furthermore, when considering neuroprotective agents, glial cells also contribute to the defense of the nervous system and should not be ignored.
Collapse
Affiliation(s)
- Xiaoji Cui
- Molecular Nutrition Branch, National Engineering Laboratory for Rice and By-product Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, China
| | - Qinlu Lin
- Molecular Nutrition Branch, National Engineering Laboratory for Rice and By-product Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, China
| | - Ying Liang
- Molecular Nutrition Branch, National Engineering Laboratory for Rice and By-product Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, China
| |
Collapse
|
10
|
Antiepithelial-Mesenchymal Transition of Herbal Active Substance in Tumor Cells via Different Signaling. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:9253745. [PMID: 32377312 PMCID: PMC7183534 DOI: 10.1155/2020/9253745] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 03/06/2020] [Indexed: 12/31/2022]
Abstract
Epithelial-mesenchymal transition (EMT) is a biological process through which epithelial cells differentiate into mesenchymal cells. EMT plays an important role in embryonic development and wound healing; however, EMT also contributes to some pathological processes, such as tumor metastasis and fibrosis. EMT mechanisms, including gene mutation and transcription factor regulation, are complicated and not yet well understood. In this review, we introduce some herbal active substances that exert antitumor activity through inhibiting EMT that is induced by hypoxia, high blood glucose level, lipopolysaccharide, or other factors.
Collapse
|