1
|
Pemmada R, Telang VS, Tandon P, Thomas V. Patient-specific mechanical analysis of PCL periodontal membrane: Modeling and simulation. J Mech Behav Biomed Mater 2024; 151:106397. [PMID: 38266546 DOI: 10.1016/j.jmbbm.2024.106397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/08/2024] [Accepted: 01/09/2024] [Indexed: 01/26/2024]
Abstract
This research fills a knowledge gap in bone tissue engineering by examining the mechanical characteristics of scaffolds at bone-tissue interfaces utilizing a cutting-edge technique involving the creation of 3D scaffolds from Polycaprolactone (PCL). The work employs Finite element analysis to measure the scaffolds' maximum principal and Von Mises stresses and strains. CT scans of the Maxilla and Mandible were used to apply load conditions to 3D models of the upper central incisor. In the derived computational model, four different load situations considered were: the masticatory load (70-100 N at 45°), two parafunctional habits (100-130 N) and 500-550 N at the incisal edge, both at 45°), and a trauma case (800-850 N applied perpendicularly from the inwards direction at 90°). The findings revealed that the central tooth region experiences the highest stress concentration, while the Maxilla and Mandible regions show the least stress. These results provide critical insights into the mechanical behavior of scaffolds at bone-tissue interfaces, suggesting a research direction for developing scaffolds that closely mimic real bone characteristics. The results of this study are particularly significant for using bone replacement materials, providing an approach to more effective healing options for bone traumas and degenerative bone disorders.
Collapse
Affiliation(s)
- Rakesh Pemmada
- Department of Mechanical and Materials Engineering, University of Alabama at Birmingham, United States.
| | - Vicky Subhash Telang
- Department of Mechanical Engineering, PDPM Indian Institute of Information Technology Design and Manufacturing, Jabalpur, India.
| | - Puneet Tandon
- Department of Mechanical Engineering, PDPM Indian Institute of Information Technology Design and Manufacturing, Jabalpur, India.
| | - Vinoy Thomas
- Department of Mechanical and Materials Engineering, University of Alabama at Birmingham, United States; Department of Biomedical Engineering, University of Alabama at Birmingham, United States.
| |
Collapse
|
2
|
Salehi Abar E, Vandghanooni S, Torab A, Jaymand M, Eskandani M. A comprehensive review on nanocomposite biomaterials based on gelatin for bone tissue engineering. Int J Biol Macromol 2024; 254:127556. [PMID: 37884249 DOI: 10.1016/j.ijbiomac.2023.127556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 10/09/2023] [Accepted: 10/18/2023] [Indexed: 10/28/2023]
Abstract
The creation of a suitable scaffold is a crucial step in the process of bone tissue engineering (BTE). The scaffold, acting as an artificial extracellular matrix, plays a significant role in determining the fate of cells by affecting their proliferation and differentiation in BTE. Therefore, careful consideration should be given to the fabrication approach and materials used for scaffold preparation. Natural polypeptides such as gelatin and collagen have been widely used for this purpose. The unique properties of nanoparticles, which vary depending on their size, charge, and physicochemical properties, have demonstrated potential in solving various challenges encountered in BTE. Therefore, nanocomposite biomaterials consisting of polymers and nanoparticles have been extensively used for BTE. Gelatin has also been utilized in combination with other nanomaterials to apply for this purpose. Composites of gelatin with various types of nanoparticles are particularly promising for creating scaffolds with superior biological and physicochemical properties. This review explores the use of nanocomposite biomaterials based on gelatin and various types of nanoparticles together for applications in bone tissue engineering.
Collapse
Affiliation(s)
- Elaheh Salehi Abar
- Department of Prosthodontics, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran; Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Somayeh Vandghanooni
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Torab
- Department of Prosthodontics, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehdi Jaymand
- Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran; Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Morteza Eskandani
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
3
|
Kim S, Hwangbo H, Chae S, Lee H. Biopolymers and Their Application in Bioprinting Processes for Dental Tissue Engineering. Pharmaceutics 2023; 15:2118. [PMID: 37631331 PMCID: PMC10457894 DOI: 10.3390/pharmaceutics15082118] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/05/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
Dental tissues are composed of multiple tissues with complex organization, such as dentin, gingiva, periodontal ligament, and alveolar bone. These tissues have different mechanical and biological properties that are essential for their functions. Therefore, dental diseases and injuries pose significant challenges for restorative dentistry, as they require innovative strategies to regenerate damaged or missing dental tissues. Biomimetic bioconstructs that can effectively integrate with native tissues and restore their functionalities are desirable for dental tissue regeneration. However, fabricating such bioconstructs is challenging due to the diversity and complexity of dental tissues. This review provides a comprehensive overview of the recent developments in polymer-based tissue engineering and three-dimensional (3D) printing technologies for dental tissue regeneration. It also discusses the current state-of-the-art, focusing on key techniques, such as polymeric biomaterials and 3D printing with or without cells, used in tissue engineering for dental tissues. Moreover, the final section of this paper identifies the challenges and future directions of this promising research field.
Collapse
Affiliation(s)
- Suhon Kim
- Barun Plant Orthodontics and Dental Clinic, Seongnam 13312, Republic of Korea;
| | - Hanjun Hwangbo
- Department of Precision Medicine, Sungkyunkwan University School of Medicine, Suwon 16419, Republic of Korea; (H.H.); (S.C.)
| | - SooJung Chae
- Department of Precision Medicine, Sungkyunkwan University School of Medicine, Suwon 16419, Republic of Korea; (H.H.); (S.C.)
| | - Hyeongjin Lee
- Department of Precision Medicine, Sungkyunkwan University School of Medicine, Suwon 16419, Republic of Korea; (H.H.); (S.C.)
- Department of Biotechnology and Bioinformatics, Korea University, Sejong 30019, Republic of Korea
| |
Collapse
|
4
|
Santos LRKD, Pelegrine AA, da Silveira Bueno CE, Muniz Ferreira JR, Aloise AC, Stringheta CP, Martinez EF, Pelegrine RA. Pulp-Dentin Complex Regeneration with Cell Transplantation Technique Using Stem Cells Derived from Human Deciduous Teeth: Histological and Immunohistochemical Study in Immunosuppressed Rats. Bioengineering (Basel) 2023; 10:bioengineering10050610. [PMID: 37237680 DOI: 10.3390/bioengineering10050610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/13/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023] Open
Abstract
The aim of this study was to histologically verify the performance of pulp-derived stem cells used in the pulp-dentin complex regeneration. Maxillary molars of 12 immunosuppressed rats were divided into two groups: the SC (stem cells) group, and the PBS (just standard phosphate-buffered saline) group. After pulpectomy and canal preparation, the teeth received the designated materials, and the cavities were sealed. After 12 weeks, the animals were euthanized, and the specimens underwent histological processing and qualitative evaluation of intracanal connective tissue, odontoblast-like cells, intracanal mineralized tissue, and periapical inflammatory infiltrate. Immunohistochemical evaluation was performed to detect dentin matrix protein 1 (DMP1). In the PBS group, an amorphous substance and remnants of mineralized tissue were observed throughout the canal, and abundant inflammatory cells were observed in the periapical region. In the SC group, an amorphous substance and remnants of mineralized tissue were observed throughout the canal; odontoblasts-like cells immunopositive for DMP1 and mineral plug were observed in the apical region of the canal; and a mild inflammatory infiltrate, intense vascularization, and neoformation of organized connective tissue were observed in the periapical region. In conclusion, the transplantation of human pulp stem cells promoted partial pulp tissue neoformation in adult rat molars.
Collapse
Affiliation(s)
| | - André Antonio Pelegrine
- Faculdade São Leopoldo Mandic, Instituto de Pesquisas São Leopoldo Mandic, Implantodontia, Campinas 13045-755, Brazil
| | | | | | - Antonio Carlos Aloise
- Faculdade São Leopoldo Mandic, Instituto de Pesquisas São Leopoldo Mandic, Implantodontia, Campinas 13045-755, Brazil
| | - Carolina Pessoa Stringheta
- Faculdade São Leopoldo Mandic, Instituto de Pesquisas São Leopoldo Mandic, Endodontia, Campinas 13045-755, Brazil
| | - Elizabeth Ferreira Martinez
- Faculdade São Leopoldo Mandic, Instituto de Pesquisas São Leopoldo Mandic, Patologia Oral, Campinas 13045-755, Brazil
| | - Rina Andréa Pelegrine
- Faculdade São Leopoldo Mandic, Instituto de Pesquisas São Leopoldo Mandic, Endodontia, Campinas 13045-755, Brazil
| |
Collapse
|
5
|
Mohabatpour F, Chen X, Papagerakis S, Papagerakis P. Novel trends, challenges and new perspectives for enamel repair and regeneration to treat dental defects. Biomater Sci 2022; 10:3062-3087. [PMID: 35543379 DOI: 10.1039/d2bm00072e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Dental enamel is the hardest tissue in the human body, providing external protection for the tooth against masticatory forces, temperature changes and chemical stimuli. Once enamel is damaged/altered by genetic defects, dental caries, trauma, and/or dental wear, it cannot repair itself due to the loss of enamel producing cells following the tooth eruption. The current restorative dental materials are unable to replicate physico-mechanical, esthetic features and crystal structures of the native enamel. Thus, development of alternative approaches to repair and regenerate enamel defects is much needed but remains challenging due to the structural and functional complexities involved. This review paper summarizes the clinical aspects to be taken into consideration for the development of optimal therapeutic approaches to tackle dental enamel defects. It also provides a comprehensive overview of the emerging acellular and cellular approaches proposed for enamel remineralization and regeneration. Acellular approaches aim to artificially synthesize or re-mineralize enamel, whereas cell-based strategies aim to mimic the natural process of enamel development given that epithelial cells can be stimulated to produce enamel postnatally during the adult life. The key issues and current challenges are also discussed here, along with new perspectives for future research to advance the field of regenerative dentistry.
Collapse
Affiliation(s)
- Fatemeh Mohabatpour
- Division of Biomedical Engineering, University of Saskatchewan, 57 Campus Dr., S7N 5A9, SK, Canada. .,College of Dentistry, University of Saskatchewan, 105 Wiggins Rd, Saskatoon, S7N 5E4, SK, Canada
| | - Xiongbiao Chen
- Division of Biomedical Engineering, University of Saskatchewan, 57 Campus Dr., S7N 5A9, SK, Canada. .,Department of Mechanical Engineering, University of Saskatchewan, 57 Campus Dr., Saskatoon, S7N 5A9, SK, Canada
| | - Silvana Papagerakis
- Division of Biomedical Engineering, University of Saskatchewan, 57 Campus Dr., S7N 5A9, SK, Canada. .,Department of Surgery, College of Medicine, University of Saskatchewan, 107 Wiggins Rd B419, S7N 0 W8, SK, Canada
| | - Petros Papagerakis
- Division of Biomedical Engineering, University of Saskatchewan, 57 Campus Dr., S7N 5A9, SK, Canada. .,College of Dentistry, University of Saskatchewan, 105 Wiggins Rd, Saskatoon, S7N 5E4, SK, Canada
| |
Collapse
|
6
|
Contessi Negrini N, Angelova Volponi A, Higgins C, Sharpe P, Celiz A. Scaffold-based developmental tissue engineering strategies for ectodermal organ regeneration. Mater Today Bio 2021; 10:100107. [PMID: 33889838 PMCID: PMC8050778 DOI: 10.1016/j.mtbio.2021.100107] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 02/15/2021] [Accepted: 02/27/2021] [Indexed: 12/12/2022] Open
Abstract
Tissue engineering (TE) is a multidisciplinary research field aiming at the regeneration, restoration, or replacement of damaged tissues and organs. Classical TE approaches combine scaffolds, cells and soluble factors to fabricate constructs mimicking the native tissue to be regenerated. However, to date, limited success in clinical translations has been achieved by classical TE approaches, because of the lack of satisfactory biomorphological and biofunctional features of the obtained constructs. Developmental TE has emerged as a novel TE paradigm to obtain tissues and organs with correct biomorphology and biofunctionality by mimicking the morphogenetic processes leading to the tissue/organ generation in the embryo. Ectodermal appendages, for instance, develop in vivo by sequential interactions between epithelium and mesenchyme, in a process known as secondary induction. A fine artificial replication of these complex interactions can potentially lead to the fabrication of the tissues/organs to be regenerated. Successful developmental TE applications have been reported, in vitro and in vivo, for ectodermal appendages such as teeth, hair follicles and glands. Developmental TE strategies require an accurate selection of cell sources, scaffolds and cell culture configurations to allow for the correct replication of the in vivo morphogenetic cues. Herein, we describe and discuss the emergence of this TE paradigm by reviewing the achievements obtained so far in developmental TE 3D scaffolds for teeth, hair follicles, and salivary and lacrimal glands, with particular focus on the selection of biomaterials and cell culture configurations.
Collapse
Affiliation(s)
| | - A. Angelova Volponi
- Centre for Craniofacial and Regenerative Biology, King's College London, London, UK
| | - C.A. Higgins
- Department of Bioengineering, Imperial College London, London, UK
| | - P.T. Sharpe
- Centre for Craniofacial and Regenerative Biology, King's College London, London, UK
| | - A.D. Celiz
- Department of Bioengineering, Imperial College London, London, UK
| |
Collapse
|
7
|
Li J, Xu T, Hou W, Liu F, Qing W, Huang L, Ma G, Mu Y, Weng J. The response of host blood vessels to graded distribution of macro-pores size in the process of ectopic osteogenesis. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 109:110641. [PMID: 32228974 DOI: 10.1016/j.msec.2020.110641] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 10/19/2019] [Accepted: 01/03/2020] [Indexed: 11/17/2022]
Abstract
Angiogenesis is of great importance to bone regeneration, but it remains a significant challenge to induce sufficient angiogenesis and osteogenesis within bone grafts for large bone defect healing. The aim of this study is to investigate the effects of hydroxyapatite (HA) scaffold via a novel graded pore distribution approach on vascularization and osteoinduction. Two types of graded porous scaffolds were fabricated by sugar templates-leaching techniques: (1) one with large pores of 1100-1250 μm in the center and small pores of 500-650 μm at the periphery (HALS); (2) the other with small pores of 500-650 μm in the center and large pores of 1100-1250 μm at the periphery (HASL). In vivo data showed different pore size distribution had a remarkable impact on blood vessel formation during bone formation, which led to distinct localization of new bone within the defects. After one month of implantation, the diameters of the blood vessels infiltrated on the periphery of HASL were substantially larger than those in the center though the host blood vessels were successful in infiltrating throughout the whole scaffold. In contrast, vascularization within HALS appeared to be poor with very few blood vessels formed in the center, indicating heterogeneous vascularization in the scaffolds. After 3 months of implantation, we found that HASL induced more homogeneous bone formation in the whole bone graft but new bone was only found at the periphery of HALS. This study suggests that the pores size distribution in graded scaffolds cannot only affected early stage vascularization, but also influence late stage bone formation and remodeling. The architecture of larger pores at the periphery of graded scaffold may be capable of enhancing angiogenesis and osteogenesis during large size bone defect healing.
Collapse
Affiliation(s)
- Jinyu Li
- Key Laboratory of Advanced Technologies of Materials (MOE), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, PR China; WuXi AppTec (Chengdu) Co. Ltd., Chengdu 611130, PR China
| | - Taotao Xu
- Key Laboratory of Advanced Technologies of Materials (MOE), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, PR China
| | - Wenqing Hou
- Key Laboratory of Advanced Technologies of Materials (MOE), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, PR China
| | - Feng Liu
- Guangyuan First People's Hospital, Guangyuan 628000, PR China
| | - Wei Qing
- Department of Stomatology, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu 610072, PR China
| | - Lijuan Huang
- Department of Stomatology, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu 610072, PR China
| | - Gang Ma
- Guangyuan First People's Hospital, Guangyuan 628000, PR China
| | - Yandong Mu
- Department of Stomatology, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu 610072, PR China.
| | - Jie Weng
- Key Laboratory of Advanced Technologies of Materials (MOE), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, PR China.
| |
Collapse
|
8
|
El Gezawi M, Wölfle UC, Haridy R, Fliefel R, Kaisarly D. Remineralization, Regeneration, and Repair of Natural Tooth Structure: Influences on the Future of Restorative Dentistry Practice. ACS Biomater Sci Eng 2019; 5:4899-4919. [PMID: 33455239 DOI: 10.1021/acsbiomaterials.9b00591] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Currently, the principal strategy for the treatment of carious defects involves cavity preparations followed by the restoration of natural tooth structure with a synthetic material of inferior biomechanical and esthetic qualities and with questionable long-term clinical reliability of the interfacial bonds. Consequently, prevention and minimally invasive dentistry are considered basic approaches for the preservation of sound tooth structure. Moreover, conventional periodontal therapies do not always ensure predictable outcomes or completely restore the integrity of the periodontal ligament complex that has been lost due to periodontitis. Much effort and comprehensive research have been undertaken to mimic the natural development and biomineralization of teeth to regenerate and repair natural hard dental tissues and restore the integrity of the periodontium. Regeneration of the dentin-pulp tissue has faced several challenges, starting with the basic concerns of clinical applicability. Recent technologies and multidisciplinary approaches in tissue engineering and nanotechnology, as well as the use of modern strategies for stem cell recruitment, synthesis of effective biodegradable scaffolds, molecular signaling, gene therapy, and 3D bioprinting, have resulted in impressive outcomes that may revolutionize the practice of restorative dentistry. This Review covers the current approaches and technologies for remineralization, regeneration, and repair of natural tooth structure.
Collapse
Affiliation(s)
- Moataz El Gezawi
- Department of Restorative Dental Sciences, Imam Abdulrahman Bin Faisal University, Dammam 34221, Saudi Arabia
| | - Uta Christine Wölfle
- Department of Conservative Dentistry and Periodontology, University Hospital, LMU Munich, 80336 Munich, Germany
| | - Rasha Haridy
- Department of Clinical Dental Sciences, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia.,Department of Conservative Dentistry, Faculty of Oral and Dental Medicine, Cairo University, Cairo 11553, Egypt
| | - Riham Fliefel
- Experimental Surgery and Regenerative Medicine (ExperiMed), University Hospital, LMU Munich, 80336 Munich, Germany.,Department of Oral and Maxillofacial Surgery, University Hospital, LMU Munich, 80337 Munich, Germany.,Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Alexandria University, Alexandria 21526, Egypt
| | - Dalia Kaisarly
- Department of Conservative Dentistry and Periodontology, University Hospital, LMU Munich, 80336 Munich, Germany.,Biomaterials Department, Faculty of Oral and Dental Medicine, Cairo University, Cairo 11553, Egypt
| |
Collapse
|
9
|
Koopaie M. Scaffolds for gingival tissues. HANDBOOK OF TISSUE ENGINEERING SCAFFOLDS: VOLUME ONE 2019:521-543. [DOI: 10.1016/b978-0-08-102563-5.00025-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|