1
|
Bai X, Sönnerborg A, Nowak P. Elite controllers microbiome: unraveling the mystery of association and causation. Curr Opin HIV AIDS 2024; 19:261-267. [PMID: 38874425 DOI: 10.1097/coh.0000000000000867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
PURPOSE OF REVIEW To unravel the current knowledge and possible link between the gut microbiome and HIV-1 virological control in elite controllers (EC), who can suppress viral replication in the absence of antiretroviral therapy. In addition, to discuss the limitations of current research and propose future research directions. RECENT FINDINGS EC possess a different gut bacterial microbiota profile in composition and functionality from that of treatment-naive HIV-1 viremic progressors (VP). Specifically, EC have a richer bacterial microbiota as compared to VP, which closely resembles the microbiota in HIV-1 negative healthy controls (HC). Differentially abundant bacteria are found between EC and VP or HC, though results vary among the few existing studies. These data imply that the gut microbiome could contribute to the natural suppression of HIV-1 infection. SUMMARY An association between the gut microbiome and HIV-1 virological control is evidenced by recent studies. Yet, there are substantial knowledge gaps, and the underlying mechanism of how the microbiome influences the EC phenotype is far from clarified. Future research should consider diverse microbial communities, the complex microbe-host interactions, as well as yet-unidentified causal links between microbiome alterations and HIV-1 disease progression.
Collapse
Affiliation(s)
- Xiangning Bai
- Department of Microbiology, Division of Laboratory Medicine, Oslo University Hospital, Oslo, Norway
- Division of Infectious Diseases, Department of Medicine Huddinge, Karolinska Institutet, Stockholm
| | - Anders Sönnerborg
- Division of Infectious Diseases, Department of Medicine Huddinge, Karolinska Institutet, Stockholm
- Department of Infectious Diseases, Karolinska University Hospital, Huddinge, Sweden
| | - Piotr Nowak
- Division of Infectious Diseases, Department of Medicine Huddinge, Karolinska Institutet, Stockholm
- Department of Infectious Diseases, Karolinska University Hospital, Huddinge, Sweden
| |
Collapse
|
2
|
Di Girolamo L, Ferrara M, Trevisan G, Longo BM, Allice T, Burdino E, Alladio F, Fantino S, Di Perri G, Calcagno A, Bonora S. Transient plasma viral rebound after SARS-CoV-2 vaccination in an exceptional HIV-1 elite controller woman. Virol J 2023; 20:123. [PMID: 37312093 DOI: 10.1186/s12985-023-02086-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 05/28/2023] [Indexed: 06/15/2023] Open
Abstract
BACKGROUND Elite controllers are able to control viral replication without antiretroviral therapy. Exceptional elite controllers do not show disease progression for more than 25 years. Different mechanisms have been proposed and several elements of both innate and adaptive immunity are implicated. Vaccines are immune stimulating agents that can promote HIV-RNA transcription; transient plasma HIV-RNA detectability has been described within 7-14 days after different vaccinations. The most reliable mechanism involved in virosuppressed people living with HIV is a generalized inflammatory response that activates bystander cells harboring latent HIV. So far no data about viral load increase in elite controllers after SARS-CoV-2 vaccination are reported in literature. CASE PRESENTATION We report the case of a 65-year-old woman of European ancestry, diagnosed with HIV-1/HCV co-infection more than 25 years ago. Since then, HIV-RNA remained undetectable and she never received ARV therapy. In 2021 she was vaccinated with mRNA-BNT162b2 vaccine (Pfizer-BioNTech®). She was administered with three doses in June, July and October 2021, respectively. The last available viral load was undetectable in March 2021. We observed an increase of VL at 32 cp/ml and 124 cp/mL, two and seven months after the second vaccine dose, respectively. During monthly follow-up, HIV-RNA gradually and spontaneously dropped becoming undetectable without ARV intervention. COVID-19 serology was positive with IgG 535 BAU/mL, showing response to vaccination. We measured total HIV-DNA at different time-points and we found it detectable both at the time of the higher plasma HIV-RNA (30 cp/10^6 PBMCs) and when it was undetectable (13 cp/10^6 PBMCs), in reduction. CONCLUSIONS This case is the first report, to our knowledge, describing a rebound of plasma HIV-RNA in an elite controller after three doses of mRNA-BNT162b2 vaccine for SARS-CoV-2. Concomitantly with a spontaneous reduction of plasma HIV-RNA ten months after the third dose of mRNA-BNT162b2 vaccine (Pfizer-BioNTech®) without antiretroviral therapy intervention, we observed a reduction of total HIV-DNA in peripheral mononuclear cells. The potential role of vaccinations in altering HIV reservoir, even in elite controllers when plasma HIV-RNA is undetectable, could be a valuable aspect to take into account for the future HIV eradication interventions.
Collapse
Affiliation(s)
- L Di Girolamo
- Unit of Infectious Diseases, Department of Medical Sciences, University of Torino, Corso Svizzera 164, Turin, 10149, Italy
| | - M Ferrara
- Unit of Infectious Diseases, Department of Medical Sciences, University of Torino, Corso Svizzera 164, Turin, 10149, Italy.
| | - G Trevisan
- Unit of Infectious Diseases, Department of Medical Sciences, University of Torino, Corso Svizzera 164, Turin, 10149, Italy
| | - B M Longo
- Unit of Infectious Diseases, Department of Medical Sciences, University of Torino, Corso Svizzera 164, Turin, 10149, Italy
| | - T Allice
- Laboratory of Microbiology and Virology, Amedeo di Savoia Hospital ASL Città di Torino, Turin, Italy
| | - E Burdino
- Laboratory of Microbiology and Virology, Amedeo di Savoia Hospital ASL Città di Torino, Turin, Italy
| | - F Alladio
- Unit of Infectious Diseases, Department of Medical Sciences, University of Torino, Corso Svizzera 164, Turin, 10149, Italy
| | - S Fantino
- Unit of Infectious Diseases, Department of Medical Sciences, University of Torino, Corso Svizzera 164, Turin, 10149, Italy
| | - G Di Perri
- Unit of Infectious Diseases, Department of Medical Sciences, University of Torino, Corso Svizzera 164, Turin, 10149, Italy
| | - A Calcagno
- Unit of Infectious Diseases, Department of Medical Sciences, University of Torino, Corso Svizzera 164, Turin, 10149, Italy
| | - S Bonora
- Unit of Infectious Diseases, Department of Medical Sciences, University of Torino, Corso Svizzera 164, Turin, 10149, Italy
| |
Collapse
|
3
|
Madrid-Elena N, Serrano-Villar S, Gutiérrez C, Sastre B, Morín M, Luna L, Martín L, Santoyo-López J, López-Huertas MR, Moreno E, García-Bermejo ML, Moreno-Pelayo MÁ, Moreno S. Selective miRNA inhibition in CD8 + cytotoxic T lymphocytes enhances HIV-1 specific cytotoxic responses. Front Immunol 2022; 13:998368. [PMID: 36225912 PMCID: PMC9549323 DOI: 10.3389/fimmu.2022.998368] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 09/09/2022] [Indexed: 11/13/2022] Open
Abstract
miRNAs dictate relevant virus-host interactions, offering new avenues for interventions to achieve an HIV remission. We aimed to enhance HIV-specific cytotoxic responses-a hallmark of natural HIV control- by miRNA modulation in T cells. We recruited 12 participants six elite controllers and six patients with chronic HIV infection on long-term antiretroviral therapy ("progressors"). Elite controllers exhibited stronger HIV-specific cytotoxic responses than the progressors, and their CD8+T cells showed a miRNA (hsa-miR-10a-5p) significantly downregulated. When we transfected ex vivo CD8+ T cells from progressors with a synthetic miR-10a-5p inhibitor, miR-10a-5p levels decreased in 4 out of 6 progressors, correlating with an increase in HIV-specific cytotoxic responses. The effects of miR-10a-5p inhibition on HIV-specific CTL responses were modest, short-lived, and occurred before day seven after modulation. IL-4 and TNF-α levels strongly correlated with HIV-specific cytotoxic capacity. Thus, inhibition of miR-10a-5p enhanced HIV-specific CD8+ T cell capacity in progressors. Our pilot study proves the concept that miRNA modulation is a feasible strategy to combat HIV persistence by enhancing specific cytotoxic immune responses, which will inform new approaches for achieving an antiretroviral therapy-free HIV remission.
Collapse
Affiliation(s)
- Nadia Madrid-Elena
- Department of Infectious Diseases, Hospital Universitario Ramón y Cajal and Instituto de Investigación Sanitaria Ramón y Cajal (IRYCIS), Madrid, Spain
- Centro de Investigación en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (IRYCIS), Madrid, Spain
| | - Sergio Serrano-Villar
- Department of Infectious Diseases, Hospital Universitario Ramón y Cajal and Instituto de Investigación Sanitaria Ramón y Cajal (IRYCIS), Madrid, Spain
- Centro de Investigación en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (IRYCIS), Madrid, Spain
- Department of Medicine, University of California San Francisco, San Francisco, CA, United States
| | - Carolina Gutiérrez
- Department of Infectious Diseases, Hospital Universitario Ramón y Cajal and Instituto de Investigación Sanitaria Ramón y Cajal (IRYCIS), Madrid, Spain
- Centro de Investigación en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (IRYCIS), Madrid, Spain
| | - Beatriz Sastre
- Department of Immunology, Instituto de Investigación Sanitaria (IIS)-Fundación Jiménez Díaz, Madrid, Spain
- Centro de Investigación Biomédica en Red (CIBER) de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
| | - Matías Morín
- Department of Genetics, Hospital Universitario Ramón y Cajal and Instituto de Investigación Sanitaria Ramón y Cajal, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - Laura Luna
- Department of Infectious Diseases, Hospital Universitario Ramón y Cajal and Instituto de Investigación Sanitaria Ramón y Cajal (IRYCIS), Madrid, Spain
- Centro de Investigación en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (IRYCIS), Madrid, Spain
| | - Laura Martín
- Biomarkers and Therapeutic Targets Group and Core Facility, Instituto Ramón y Cajal de Investigación Sanitaria (Instituto de Investigación Sanitaria Ramón y Cajal), Spanish Renal Research Network (REDinREN), Madrid, Spain
| | | | - María Rosa López-Huertas
- Immunopathology Unit, National Center of Microbiology, Instituto de Salud Carlos III, Madrid, Spain
| | - Elena Moreno
- Department of Infectious Diseases, Hospital Universitario Ramón y Cajal and Instituto de Investigación Sanitaria Ramón y Cajal (IRYCIS), Madrid, Spain
- Centro de Investigación en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (IRYCIS), Madrid, Spain
| | - María Laura García-Bermejo
- Biomarkers and Therapeutic Targets Group and Core Facility, Instituto Ramón y Cajal de Investigación Sanitaria (Instituto de Investigación Sanitaria Ramón y Cajal), Spanish Renal Research Network (REDinREN), Madrid, Spain
| | - Miguel Ángel Moreno-Pelayo
- Department of Genetics, Hospital Universitario Ramón y Cajal and Instituto de Investigación Sanitaria Ramón y Cajal, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - Santiago Moreno
- Department of Infectious Diseases, Hospital Universitario Ramón y Cajal and Instituto de Investigación Sanitaria Ramón y Cajal (IRYCIS), Madrid, Spain
- Centro de Investigación en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (IRYCIS), Madrid, Spain
- Department of Medicine, Alcalá University, Alcalá de Henares, Spain
| |
Collapse
|
4
|
Reeves I, Cromarty B, Deayton J, Dhairyawan R, Kidd M, Taylor C, Thornhill J, Tickell-Painter M, van Halsema C. British HIV Association guidelines for the management of HIV-2 2021. HIV Med 2021; 22 Suppl 4:1-29. [PMID: 34927347 DOI: 10.1111/hiv.13204] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Iain Reeves
- Consultant in HIV Medicine, Homerton University Hospital NHS Trust, London, UK
| | | | - Jane Deayton
- Clinical Senior Lecturer in HIV, Barts and the London, Queen Mary University of London, London, UK
| | - Rageshri Dhairyawan
- Consultant in Sexual Health and HIV Medicine, Barts Health NHS Trust, London, UK
| | - Mike Kidd
- Consultant Virologist, National Infection Service, Public Health England, UK
| | - Chris Taylor
- Consultant Physician Sexual Health and HIV, Kings College Hospital, London, UK
| | - John Thornhill
- Consultant in Sexual Health and HIV Medicine, Barts Health NHS Trust, London, UK
| | - Maya Tickell-Painter
- Specialist Registrar in Infectious Diseases and Microbiology, Manchester University NHS Foundation Trust, Manchester, UK
| | - Clare van Halsema
- Consultant in Infectious Diseases, North Manchester General Hospital, Manchester, UK
| |
Collapse
|
5
|
HIV Proviral Burden, Genetic Diversity, and Dynamics in Viremic Controllers Who Subsequently Initiated Suppressive Antiretroviral Therapy. mBio 2021; 12:e0249021. [PMID: 34781741 PMCID: PMC8693448 DOI: 10.1128/mbio.02490-21] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Curing HIV will require eliminating the reservoir of integrated, replication-competent proviruses that persist despite antiretroviral therapy (ART). Understanding the burden, genetic diversity, and longevity of persisting proviruses in diverse individuals with HIV is critical to this goal, but these characteristics remain understudied in some groups. Among them are viremic controllers—individuals who naturally suppress HIV to low levels but for whom therapy is nevertheless recommended. We reconstructed within-host HIV evolutionary histories from longitudinal single-genome amplified viral sequences in four viremic controllers who eventually initiated ART and used this information to characterize the age and diversity of proviruses persisting on therapy. We further leveraged these within-host proviral age distributions to estimate rates of proviral turnover prior to ART. This is an important yet understudied metric, since pre-ART proviral turnover dictates reservoir composition at ART initiation (and thereafter), which is when curative interventions, once developed, would be administered. Despite natural viremic control, all participants displayed significant within-host HIV evolution pretherapy, where overall on-ART proviral burden and diversity broadly reflected the extent of viral replication and diversity pre-ART. Consistent with recent studies of noncontrollers, the proviral pools of two participants were skewed toward sequences that integrated near ART initiation, suggesting dynamic proviral turnover during untreated infection. In contrast, proviruses recovered from the other two participants dated to time points that were more evenly spread throughout infection, suggesting slow or negligible proviral decay following deposition. HIV cure strategies will need to overcome within-host proviral diversity, even in individuals who naturally controlled HIV replication before therapy.
Collapse
|
6
|
Ikeda T, Yue Y, Shimizu R, Nasser H. Potential Utilization of APOBEC3-Mediated Mutagenesis for an HIV-1 Functional Cure. Front Microbiol 2021; 12:686357. [PMID: 34211449 PMCID: PMC8239295 DOI: 10.3389/fmicb.2021.686357] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 05/10/2021] [Indexed: 11/13/2022] Open
Abstract
The introduction of combination antiretroviral therapy (cART) has managed to control the replication of human immunodeficiency virus type 1 (HIV-1) in infected patients. However, a complete HIV-1 cure, including a functional cure for or eradication of HIV-1, has yet to be achieved because of the persistence of latent HIV-1 reservoirs in adherent patients. The primary source of these viral reservoirs is integrated proviral DNA in CD4+ T cells and other non-T cells. Although a small fraction of this proviral DNA is replication-competent and contributes to viral rebound after the cessation of cART, >90% of latent viral reservoirs are replication-defective and some contain high rates of G-to-A mutations in proviral DNA. At least in part, these high rates of G-to-A mutations arise from the APOBEC3 (A3) family proteins of cytosine deaminases. A general model has shown that the HIV-1 virus infectivity factor (Vif) degrades A3 family proteins by proteasome-mediated pathways and inactivates their antiviral activities. However, Vif does not fully counteract the HIV-1 restriction activity of A3 family proteins in vivo, as indicated by observations of A3-mediated G-to-A hypermutation in the proviral DNA of HIV-1-infected patients. The frequency of A3-mediated hypermutation potentially contributes to slower HIV-1/AIDS disease progression and virus evolution including the emergence of cytotoxic T lymphocyte escape mutants. Therefore, combined with other strategies, the manipulation of A3-mediated mutagenesis may contribute to an HIV-1 functional cure aimed at cART-free remission. In this mini-review, we discuss the possibility of an HIV-1 functional cure arising from manipulation of A3 mutagenic activity.
Collapse
Affiliation(s)
- Terumasa Ikeda
- Division of Molecular Virology and Genetics, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
| | - Yuan Yue
- Division of Molecular Virology and Genetics, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan.,Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Ryo Shimizu
- Division of Molecular Virology and Genetics, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan.,Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Hesham Nasser
- Division of Molecular Virology and Genetics, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
7
|
Affiliation(s)
- Michael S Saag
- From the University of Alabama at Birmingham, Birmingham
| |
Collapse
|
8
|
Mullis C, Swartz TH. NLRP3 Inflammasome Signaling as a Link Between HIV-1 Infection and Atherosclerotic Cardiovascular Disease. Front Cardiovasc Med 2020; 7:95. [PMID: 32596261 PMCID: PMC7301651 DOI: 10.3389/fcvm.2020.00095] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 05/06/2020] [Indexed: 01/06/2023] Open
Abstract
36.9 million people worldwide are living with HIV-1. The disease remains incurable and HIV-infected patients have increased risk of atherosclerosis. Inflammation is a key driver of atherosclerosis, but no targeted molecular therapies have been developed to reduce cardiovascular risk in people with HIV-1 (PWH). While the mechanism is unknown, there are several important inflammatory signaling events that are implicated in the development of chronic inflammation in PWH and in the inflammatory changes that lead to atherosclerosis. Here we describe the pro-inflammatory state of HIV-1 infection that leads to increased risk of cardiovascular disease, the role of the NLR Family Pyrin Domain Containing 3 (NLRP3) inflammasome in HIV-1 infection, the role of the NLRP3 inflammasome in cardiovascular disease (CVD), and outline a model whereby HIV-1 infection can lead to atherosclerotic disease through NLRP3 inflammasome activation. Our discussion highlights the literature supporting HIV-1 infection as a stimulator of the NLRP3 inflammasome as a driver of atherosclerosis.
Collapse
Affiliation(s)
- Caroline Mullis
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Talia H Swartz
- Division of Infectious Diseases, Department of Medicine, Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|