1
|
Tahir F, Kamran A, Majeed MI, Alghamdi AA, Javed MR, Nawaz H, Iqbal MA, Tahir M, Tariq A, Rashid N, Shahid U, Hassan A, Shoukat US. Surface-Enhanced Raman Scattering (SERS) in Combination with PCA and PLS-DA for the Evaluation of Antibacterial Activity of 1-Isopentyl-3-pentyl-1 H-imidazole-3-ium Bromide against Bacillus subtilis. ACS OMEGA 2024; 9:6861-6872. [PMID: 38371792 PMCID: PMC10870359 DOI: 10.1021/acsomega.3c08196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 01/05/2024] [Accepted: 01/16/2024] [Indexed: 02/20/2024]
Abstract
In the current study, surface-enhanced Raman scattering (SERS) was performed to evaluate the antibacterial activity of lab-synthesized drug (1-isopentyl-3-pentyl-1H-imidazole-3-ium bromide salt) and commercial drug tinidazole againstBacillus subtilis. The changes in SERS spectral features were studied for unexposed bacillus and exposed one with various dosages of drug synthesized in the lab (1-isopentyl-3-pentyl-1H-imidazole-3-ium bromide salt), and SERS bands were assigned associated with the drug-induced biochemical alterations in bacteria. Multivariate data analysis tools including principal component analysis (PCA) and partial least-squares discriminant analysis (PLS-DA) have been utilized to analyze the antibacterial activity of the imidazole derivative (lab drug). PCA was employed in differentiating all the SERS spectral data sets associated with the various doses of the lab-synthesized drug. There is clear discrimination among the spectral data sets of a bacterial strain treated with different concentrations of the drug, which are analyzed by PLS-DA with 86% area under the curve in receiver operating curve (ROC), 99% sensitivity, 100% accuracy, and 98% specificity. Various dominant spectral features are observed with a gradual increase in the different concentrations of the applied drug including 715, 850, 1002, 1132, 1237, 1396, 1416, and 1453 cm-1, which indicate the possible biochemical changes caused in bacteria during the antibacterial activity of the lab-synthesized drug. Overall, the findings show that imidazole and imidazolium compounds generated from tinidazole with various alkyl lengths in the amide substitution can be effective antibacterial agents with low cytotoxicity in humans, and these results indicate the efficiency of SERS in pharmaceuticals and biomedical applications.
Collapse
Affiliation(s)
- Fatima Tahir
- Department
of Chemistry, University of Agriculture
Faisalabad, Faisalabad 38000, Pakistan
| | - Ali Kamran
- Department
of Chemistry, University of Agriculture
Faisalabad, Faisalabad 38000, Pakistan
| | - Muhammad Irfan Majeed
- Department
of Chemistry, University of Agriculture
Faisalabad, Faisalabad 38000, Pakistan
| | - Abeer Ahmed Alghamdi
- Department
of Physics, College of Science, Princess
Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Muhammad Rizwan Javed
- Department
of Bioinformatics and Biotechnology, Government
College University Faisalabad (GCUF), Faisalabad 38000, Pakistan
| | - Haq Nawaz
- Department
of Chemistry, University of Agriculture
Faisalabad, Faisalabad 38000, Pakistan
| | - Muhammad Adnan Iqbal
- Department
of Chemistry, University of Agriculture
Faisalabad, Faisalabad 38000, Pakistan
| | - Muhammad Tahir
- Department
of Chemistry, University of Agriculture
Faisalabad, Faisalabad 38000, Pakistan
| | - Anam Tariq
- Department
of Biochemistry, Government College University
Faisalabad (GCUF), Faisalabad 38000, Pakistan
| | - Nosheen Rashid
- Department
of Chemistry, University of Education, Faisalabad
Campus, Faisalabad 38000, Pakistan
| | - Urwa Shahid
- Department
of Chemistry, University of Agriculture
Faisalabad, Faisalabad 38000, Pakistan
| | - Ahmad Hassan
- Department
of Chemistry, University of Agriculture
Faisalabad, Faisalabad 38000, Pakistan
| | - Umar Sohail Shoukat
- Department
of Chemistry, University of Agriculture
Faisalabad, Faisalabad 38000, Pakistan
| |
Collapse
|
2
|
Li B, Zhang L, Wang L, Wei Y, Guan J, Mei Q, Hao N. Antimicrobial activity of yak beta-defensin 116 against Staphylococcus aureus and its role in gut homeostasis. Int J Biol Macromol 2023; 253:126761. [PMID: 37678688 DOI: 10.1016/j.ijbiomac.2023.126761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 08/24/2023] [Accepted: 09/04/2023] [Indexed: 09/09/2023]
Abstract
Staphylococcus aureus (S. aureus) is one of the most common food-borne poisoning microbial agent. However, the antimicrobial activity of β-defensin 116 in yak and its application in S. aureus-induced diarrheal disease have not been reported. In this study, 303 bp cDNA sequence of yak DEFB116 gene was obtained. In addition, the prokaryotic expression vector of DEFB116 protein with a molecular weight of 16 kDa was successfully constructed and expressed. The yak DEFB116 gene can encode 19 amino acids, the percentage of hydrophobic amino acids is 36 % and the total positive charge is 6, which has potential antibacterial potential. Sufficient DEFB116 protein concentration and time can destroy the integrity of the bacterial cell membrane, resulting in leakage of intracellular solutes and thus killing S. aureus. The intestinal histopathological features and the number of inflammatory cells were improved in the diarrhea mouse model under the action of DEFB116 protein. The decrease of goblet cells was reversed, the expression of mucoprotein was increased. DEFB116 protein increased the abundance of Lactobacillus johnsonii, Lactobacillus reuteri and Desulfovibrio, and inhibited the reproduction of pathogenic bacteria. These findings provide new insights into the potential future applications of yak β-defencins in the food industry and medical fields.
Collapse
Affiliation(s)
- Biao Li
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu 610041, China; Key Laboratory of Animal Science of State Ethnic Affairs Commission, Southwest Minzu University, Chengdu 610041, China
| | - Ling Zhang
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu 610041, China; Key Laboratory of Animal Science of State Ethnic Affairs Commission, Southwest Minzu University, Chengdu 610041, China
| | - Li Wang
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu 610041, China; Key Laboratory of Animal Science of State Ethnic Affairs Commission, Southwest Minzu University, Chengdu 610041, China.
| | - Yong Wei
- Animal Science Academy of Sichuan Province, Chengdu 610066, China
| | - Jiuqiang Guan
- Sichuan Academy of Grassland Sciences, Chengdu 610041, China
| | - Qundi Mei
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu 610041, China; Key Laboratory of Animal Science of State Ethnic Affairs Commission, Southwest Minzu University, Chengdu 610041, China
| | - Ninghao Hao
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu 610041, China; Key Laboratory of Animal Science of State Ethnic Affairs Commission, Southwest Minzu University, Chengdu 610041, China
| |
Collapse
|
3
|
Zheng Y, Zhao Y, Bai M, Gu H, Li X. Metal-organic frameworks as a therapeutic strategy for lung diseases. J Mater Chem B 2022; 10:5666-5695. [PMID: 35848605 DOI: 10.1039/d2tb00690a] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Lung diseases remain a global burden today. Lower respiratory tract infections alone cause more than 3 million deaths worldwide each year and are on the rise every year. In particular, with coronavirus disease raging worldwide since 2019, we urgently require a treatment for lung disease. Metal organic frameworks (MOFs) have a broad application prospect in the biomedical field due to their remarkable properties. The unique properties of MOFs allow them to be applied as delivery materials for different drugs; diversified structural design endows MOFs with diverse functions; and they can be designed as various MOF-drug synergistic systems. This review concentrates on the synthesis design and applications of MOF based drugs against lung diseases, and discusses the possibility of preparing MOF-based inhalable formulations. Finally, we discuss the chances and challenges of using MOFs for targeting lung diseases in clinical practice.
Collapse
Affiliation(s)
- Yu Zheng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Yuxin Zhao
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Mengting Bai
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Huang Gu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Xiaofang Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
4
|
Synergistic antibacterial effects of low-intensity ultrasound and peptide LCMHC against Staphylococcus aureus. Int J Food Microbiol 2022; 373:109713. [DOI: 10.1016/j.ijfoodmicro.2022.109713] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 04/28/2022] [Accepted: 05/05/2022] [Indexed: 11/20/2022]
|
5
|
Varshney K, Anaele B, Molaei M, Frasso R, Maio V. Risk Factors for Poor Outcomes Among Patients with Extensively Drug-Resistant Tuberculosis (XDR-TB): A Scoping Review. Infect Drug Resist 2021; 14:5429-5448. [PMID: 34938089 PMCID: PMC8687707 DOI: 10.2147/idr.s339972] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 11/09/2021] [Indexed: 11/23/2022] Open
Abstract
In recent years, there has been an upsurge in cases of drug-resistant TB, and strains of TB resistant to all forms of treatment have begun to emerge; the highest level of resistance is classified as extensively drug-resistant tuberculosis (XDR-TB). There is an urgent need to prevent poor outcomes (death/default/failed treatment) of XDR-TB, and knowing the risk factors can inform such efforts. The objective of this scoping review was to therefore identify risk factors for poor outcomes among XDR-TB patients. We searched three scientific databases, PubMed, Scopus, and ProQuest, and identified 25 articles that examined relevant risk factors. Across the included studies, the proportion of patients with poor outcomes ranged from 8.6 to 88.7%. We found that the most commonly reported risk factor for patients with XDR-TB developing poor outcomes was having a history of TB. Other risk factors were human immunodeficiency virus (HIV), a history of incarceration, low body mass, being a smoker, alcohol use, unemployment, being male, and being middle-aged. Knowledge and understanding of the risk factors associated with poor outcomes of XDR-TB can help policy makers and organizations in the process of designing and implementing effective programs.
Collapse
Affiliation(s)
- Karan Varshney
- College of Population Health, Thomas Jefferson University, Philadelphia, PA, USA
| | - Beverly Anaele
- College of Population Health, Thomas Jefferson University, Philadelphia, PA, USA
| | - Matthew Molaei
- College of Population Health, Thomas Jefferson University, Philadelphia, PA, USA
| | - Rosemary Frasso
- College of Population Health, Thomas Jefferson University, Philadelphia, PA, USA
| | - Vittorio Maio
- College of Population Health, Thomas Jefferson University, Philadelphia, PA, USA
| |
Collapse
|
6
|
Isolation and identification of novel antibacterial peptides produced by Lactobacillus fermentum SHY10 in Chinese pickles. Food Chem 2021; 348:129097. [PMID: 33515941 DOI: 10.1016/j.foodchem.2021.129097] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 01/07/2021] [Accepted: 01/10/2021] [Indexed: 11/23/2022]
Abstract
The aim of this study was to isolate and identify antibacterial peptides (ABPs) produced by lactic acid bacteria (LAB) in Chinese pickles. The cell-free supernatant collected from the culture of LAB with antibacterial activity against Staphylococcus aureus was used to purify ABPs. A total of 14 strains of LAB were found to have antibacterial activity. Among them, Lactobacillus fermentum (L. fermentum) SHY10 exhibited the most effective antibacterial activity. The antibacterial activity of cell-free supernatant reached the highest level after 20 h of L. fermentum SHY10 culture. Three novel ABPs were identified by liquid chromatography-tandem mass spectrometry (LC-MS/MS). In particular, the NQGPLGNAHR peptide showed antibacterial activity with an IC50 value of 0.957 mg/mL. In addition, molecular docking analysis revealed that this peptide interacted with DNA gyrase and dihydrofolate reductase by salt bridge formation, hydrogen bond interactions, and metal contact.
Collapse
|