1
|
Deng S, Tan S, Song X, Lin X, Yang K, Li X. Prediction of disease progression in individuals with subjective cognitive decline using brain network analysis. CNS Neurosci Ther 2024; 30:e14859. [PMID: 39009557 PMCID: PMC11250750 DOI: 10.1111/cns.14859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 06/25/2024] [Accepted: 07/01/2024] [Indexed: 07/17/2024] Open
Abstract
OBJECTIVE The objective of this study is to explore potential differences in brain functional networks at baseline between individuals with progressive subjective cognitive decline (P-SCD) and stable subjective cognitive decline (S-SCD), as well as to identify potential indicators that can effectively distinguish between P-SCD and S-SCD. METHODS Alzheimer's Disease Neuroimaging Initiative (ADNI) database was utilized to enroll SCD individuals with a follow-up period of over 3 years. This study included 39 individuals with S-SCD, 15 individuals with P-SCD, and 45 cognitively normal (CN) individuals. Brain functional networks were constructed based on the AAL template, and graph theory analysis was performed to determine the topological properties. RESULTS For global metric, the S-SCD group exhibited stronger small-worldness with reduced connectivity among nearby nodes and accelerated compensatory information transfer capacity. For nodal efficiency, the S-SCD group showed increased connectivity in bilateral posterior cingulate gyri (PCG). However, for nodal local efficiency, the P-SCD group exhibited significantly reduced connectivity in the right cerebellar Crus I compared with the S-SCD group. CONCLUSION There are differences in brain functional networks at baseline between P-SCD and S-SCD groups. Furthermore, the right cerebellar Crus I region may be a potentially useful brain area to distinguish between P-SCD and S-SCD.
Collapse
Affiliation(s)
- Simin Deng
- School of Public Health (Shenzhen)Shenzhen Campus of Sun Yat‐sen UniversityShenzhenGuangdongChina
- Department of Rehabilitation MedicineDongguan Eighth People's HospitalDongguanGuangdongChina
| | - Si Tan
- School of Public Health (Guangzhou)Sun Yat‐sen UniversityGuangzhouGuangdongChina
| | - Xiaojing Song
- School of Public Health (Guangzhou)Sun Yat‐sen UniversityGuangzhouGuangdongChina
| | - Xinyun Lin
- School of Public Health (Shenzhen)Shenzhen Campus of Sun Yat‐sen UniversityShenzhenGuangdongChina
| | - Kaize Yang
- School of Public Health (Shenzhen)Shenzhen Campus of Sun Yat‐sen UniversityShenzhenGuangdongChina
| | - Xiuhong Li
- School of Public Health (Shenzhen)Shenzhen Campus of Sun Yat‐sen UniversityShenzhenGuangdongChina
| | | |
Collapse
|
2
|
Collins HM, Greenfield S. Rodent Models of Alzheimer's Disease: Past Misconceptions and Future Prospects. Int J Mol Sci 2024; 25:6222. [PMID: 38892408 PMCID: PMC11172947 DOI: 10.3390/ijms25116222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/28/2024] [Accepted: 06/03/2024] [Indexed: 06/21/2024] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease with no effective treatments, not least due to the lack of authentic animal models. Typically, rodent models recapitulate the effects but not causes of AD, such as cholinergic neuron loss: lesioning of cholinergic neurons mimics the cognitive decline reminiscent of AD but not its neuropathology. Alternative models rely on the overexpression of genes associated with familial AD, such as amyloid precursor protein, or have genetically amplified expression of mutant tau. Yet transgenic rodent models poorly replicate the neuropathogenesis and protein overexpression patterns of sporadic AD. Seeding rodents with amyloid or tau facilitates the formation of these pathologies but cannot account for their initial accumulation. Intracerebral infusion of proinflammatory agents offer an alternative model, but these fail to replicate the cause of AD. A novel model is therefore needed, perhaps similar to those used for Parkinson's disease, namely adult wildtype rodents with neuron-specific (dopaminergic) lesions within the same vulnerable brainstem nuclei, 'the isodendritic core', which are the first to degenerate in AD. Site-selective targeting of these nuclei in adult rodents may recapitulate the initial neurodegenerative processes in AD to faithfully mimic its pathogenesis and progression, ultimately leading to presymptomatic biomarkers and preventative therapies.
Collapse
Affiliation(s)
- Helen M. Collins
- Neuro-Bio Ltd., Building F5 The Culham Campus, Abingdon OX14 3DB, UK;
| | | |
Collapse
|
3
|
Jin Z, Chen X, Jiang C, Feng X, Zou D, Lu Y, Li J, Ren Q, Zhou C. Predicting the cognitive impairment with multimodal ophthalmic imaging and artificial neural network for community screening. Br J Ophthalmol 2024:bjo-2023-323283. [PMID: 38697799 DOI: 10.1136/bjo-2023-323283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 04/18/2024] [Indexed: 05/05/2024]
Abstract
BACKGROUND/AIMS To investigate the comprehensive prediction ability for cognitive impairment in a general elder population using the combination of the multimodal ophthalmic imaging and artificial neural networks. METHODS Patients with cognitive impairment and cognitively healthy individuals were recruited. All subjects underwent medical history, blood pressure measurement, the Montreal Cognitive Assessment, medical optometry, intraocular pressure and custom-built multimodal ophthalmic imaging, which integrated pupillary light reaction, multispectral imaging, laser speckle contrast imaging and retinal oximetry. Multidimensional parameters were analysed by Student's t-test. Logistic regression analysis and back-propagation neural network (BPNN) were used to identify the predictive capability for cognitive impairment. RESULTS This study included 104 cognitive impairment patients (61.5% female; mean (SD) age, 68.3 (9.4) years), and 94 cognitively healthy age-matched and sex-matched subjects (56.4% female; mean (SD) age, 65.9 (7.6) years). The variation of most parameters including decreased pupil constriction amplitude (CA), relative CA, average constriction velocity, venous diameter, venous blood flow and increased centred retinal reflectance in 548 nm (RC548) in cognitive impairment was consistent with previous studies while the reduced flow acceleration index and oxygen metabolism were reported for the first time. Compared with the logistic regression model, BPNN had better predictive performance (accuracy: 0.91 vs 0.69; sensitivity: 93.3% vs 61.70%; specificity: 90.0% vs 68.66%). CONCLUSIONS This study demonstrates retinal spectral signature alteration, neurodegeneration and angiopathy occur concurrently in cognitive impairment. The combination of multimodal ophthalmic imaging and BPNN can be a useful tool for predicting cognitive impairment with high performance for community screening.
Collapse
Affiliation(s)
- Zi Jin
- Department of Biomedical Engineering, Peking University Shenzhen Graduate School, Shenzhen, China
- Department of Biomedical Engineering, Shenzhen Bay Laboratory, Shenzhen, China
| | - Xuhui Chen
- Department of Neurology, Peking University Shenzhen Hospital, Shenzhen, China
| | - Chunxia Jiang
- Department of Ophthalmology, Peking University Shenzhen Hospital, Shenzhen, China
| | - Ximeng Feng
- Department of Biomedical Engineering, Peking University Shenzhen Graduate School, Shenzhen, China
- Department of Biomedical Engineering, Shenzhen Bay Laboratory, Shenzhen, China
- Department of Biomedical Engineering, Peking University, Beijing, China
- Institute of Medical Technology, Peking University Health Science Centre, Beijing, China
| | - Da Zou
- Department of Biomedical Engineering, Peking University Shenzhen Graduate School, Shenzhen, China
- Department of Biomedical Engineering, Shenzhen Bay Laboratory, Shenzhen, China
- Department of Biomedical Engineering, Peking University, Beijing, China
- Institute of Medical Technology, Peking University Health Science Centre, Beijing, China
| | - Yanye Lu
- Department of Biomedical Engineering, Peking University, Beijing, China
- Institute of Medical Technology, Peking University Health Science Centre, Beijing, China
| | - Jinying Li
- Department of Ophthalmology, Peking University Shenzhen Hospital, Shenzhen, China
| | - Qiushi Ren
- Department of Biomedical Engineering, Peking University Shenzhen Graduate School, Shenzhen, China
- Department of Biomedical Engineering, Shenzhen Bay Laboratory, Shenzhen, China
- Department of Biomedical Engineering, Peking University, Beijing, China
- Institute of Medical Technology, Peking University Health Science Centre, Beijing, China
| | - Chuanqing Zhou
- College of Medical Instruments, Shanghai University of Medicine and Health Sciences, Shanghai, China
| |
Collapse
|
4
|
Gramkow MH, Clemmensen FK, Waldemar G, Hasselbalch SG, Frederiksen KS. Test-retest reliability and short-term variability of quantitative light reflex pupillometry in a mixed memory clinic cohort. J Neurol Sci 2024; 456:122856. [PMID: 38154247 DOI: 10.1016/j.jns.2023.122856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 12/18/2023] [Accepted: 12/18/2023] [Indexed: 12/30/2023]
Abstract
BACKGROUND Quantitative light reflex pupillometry (qLRP) may be a promising digital biomarker in neurodegenerative diseases such as Alzheimer's disease (AD), as neuropathological changes have been found in the midbrain structures governing the light reflex. Studies investigating test-retest reliability and short-term, intra-subject variability of qLRP in these patient groups are missing. Our objective was therefore to investigate the test-retest reliability and short-term, intra-subject variability of qLRP in a memory clinic setting, where patients with neurodegenerative disease are frequently evaluated. METHODS Test-retest reliability study. We recruited patients from a tertiary memory clinic and qLRP was carried out at a baseline visit and then repeated on day 3-14 and on day 21-35 using a hand-held pupillometer. We evaluated the test-retest reliability of qLRP by calculating intraclass correlation coefficients (ICCs) and intra-subject, short-term variability by fitting linear mixed models. We compared ICCs for subgroups based on age, sex, disease severity (MCI vs. mild dementia), AD diagnosis, and amount of neurodegeneration (cerebrospinal fluid-total tau levels). RESULTS In total, 40 patients (mean age 72 years, 15 female, 22 with mild dementia) were included in the study. We found good-excellent reliability (ICC range 0.86-0.93) for most qLRP parameters. qLRP parameters exhibited limited intra-subject variability and we found no large sources of variability when examining subgroups. CONCLUSION qLRP was found to have acceptable test-retest reliability and the study results pave the way for research using longitudinal or cross-sectional measurements to assess the construct in identifying and prognosticating neurodegenerative diseases.
Collapse
Affiliation(s)
- Mathias Holsey Gramkow
- Danish Dementia Research Centre, Department of Neurology, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark.
| | - Frederikke Kragh Clemmensen
- Danish Dementia Research Centre, Department of Neurology, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Gunhild Waldemar
- Danish Dementia Research Centre, Department of Neurology, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark; Dept. of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Steen Gregers Hasselbalch
- Danish Dementia Research Centre, Department of Neurology, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark; Dept. of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Kristian Steen Frederiksen
- Danish Dementia Research Centre, Department of Neurology, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark; Dept. of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| |
Collapse
|
5
|
Sparks S, Pinto J, Hayes G, Spitschan M, Bulte DP. The impact of Alzheimer's disease risk factors on the pupillary light response. Front Neurosci 2023; 17:1248640. [PMID: 37650103 PMCID: PMC10463762 DOI: 10.3389/fnins.2023.1248640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 07/31/2023] [Indexed: 09/01/2023] Open
Abstract
Alzheimer's disease (AD) is the leading cause of dementia, and its prevalence is increasing and is expected to continue to increase over the next few decades. Because of this, there is an urgent requirement to determine a way to diagnose the disease, and to target interventions to delay and ideally stop the onset of symptoms, specifically those impacting cognition and daily livelihood. The pupillary light response (PLR) is controlled by the sympathetic and parasympathetic branches of the autonomic nervous system, and impairments to the pupillary light response (PLR) have been related to AD. However, most of these studies that assess the PLR occur in patients who have already been diagnosed with AD, rather than those who are at a higher risk for the disease but without a diagnosis. Determining whether the PLR is similarly impaired in subjects before an AD diagnosis is made and before cognitive symptoms of the disease begin, is an important step before using the PLR as a diagnostic tool. Specifically, identifying whether the PLR is impaired in specific at-risk groups, considering both genetic and non-genetic risk factors, is imperative. It is possible that the PLR may be impaired in association with some risk factors but not others, potentially indicating different pathways to neurodegeneration that could be distinguished using PLR. In this work, we review the most common genetic and lifestyle-based risk factors for AD and identify established relationships between these risk factors and the PLR. The evidence here shows that many AD risk factors, including traumatic brain injury, ocular and intracranial hypertension, alcohol consumption, depression, and diabetes, are directly related to changes in the PLR. Other risk factors currently lack sufficient literature to make any conclusions relating directly to the PLR but have shown links to impairments in the parasympathetic nervous system; further research should be conducted in these risk factors and their relation to the PLR.
Collapse
Affiliation(s)
- Sierra Sparks
- Department of Engineering Science, Institute of Biomedical Engineering, University of Oxford, Oxford, United Kingdom
| | - Joana Pinto
- Department of Engineering Science, Institute of Biomedical Engineering, University of Oxford, Oxford, United Kingdom
| | - Genevieve Hayes
- Department of Engineering Science, Institute of Biomedical Engineering, University of Oxford, Oxford, United Kingdom
| | - Manuel Spitschan
- TUM Department of Sport and Health Sciences (TUM SG), Chronobiology and Health, Technical University of Munich, Munich, Germany
- TUM Institute for Advanced Study (TUM-IAS), Technical University of Munich, Garching, Germany
- Max Planck Institute for Biological Cybernetics, Translational Sensory and Circadian Neuroscience, Tübingen, Germany
| | - Daniel P. Bulte
- Department of Engineering Science, Institute of Biomedical Engineering, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
6
|
Bavarsad NH, Bagheri S, Kourosh-Arami M, Komaki A. Aromatherapy for the brain: Lavender's healing effect on epilepsy, depression, anxiety, migraine, and Alzheimer's disease: A review article. Heliyon 2023; 9:e18492. [PMID: 37554839 PMCID: PMC10404968 DOI: 10.1016/j.heliyon.2023.e18492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 07/17/2023] [Accepted: 07/19/2023] [Indexed: 08/10/2023] Open
Abstract
Neurological diseases affect the nervous system, including the brain, spinal cord, cranial nerves, nerve roots, autonomic nervous system, neuromuscular junctions, and muscles. Herbal medicine has long been used to cure these diseases. One of these plants is lavender, which is composed of various compounds, including terpenes, such as linalool, limonene, triterpenes, linalyl acetate, alcohols, ketones, polyphenols, coumarins, cineole, and flavonoids. In this review, the literature was searched using scientific search engines and databases (Google Scholar, Science Direct, Scopus, and PubMed) for papers published between 1982 and 2020 via keywords, including review, lavender, and neurological disorders. This plant exerts its healing effect on many diseases, such as anxiety and depression through an inhibitory effect on GABA. The anti-inflammatory effects of this plant have also been documented. It improves depression by regulating glutamate receptors and inhibiting calcium channels and serotonergic factors, such as SERT. Its antiepileptic mechanism is due to an increase in the inhibitory effect of GABA and potassium current and a decrease in sodium current. Therefore, many vegetable oils are also used in herbal medicine. In this review, the healing effect of lavender on several neurological disorders, including epilepsy, depression, anxiety, migraine, and Alzheimer's disease was investigated. All findings strongly support the traditional uses of lavender. More clinical studies are needed to investigate the effect of the plants' pharmacological active constituents on the treatment of life-threatening diseases in humans. The limitations of this study are the low quality and the limited number of clinical studies. Different administration methods of lavender are one of the limitations of this review.
Collapse
Affiliation(s)
- Nazanin Hatami Bavarsad
- Department of Neuroscience, School of Science and Advanced Technologies in Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Shokufeh Bagheri
- Department of Neuroscience, School of Science and Advanced Technologies in Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Masoumeh Kourosh-Arami
- Department of Neuroscience, School of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Alireza Komaki
- Department of Neuroscience, School of Science and Advanced Technologies in Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
7
|
Zheng L, Qin X, Wang J, Zhang M, An Q, Xu J, Qu X, Cao X, Niu B. Discovery of MAO-B Inhibitor with Machine Learning, Topomer CoMFA, Molecular Docking and Multi-Spectroscopy Approaches. Biomolecules 2022; 12:biom12101470. [PMID: 36291679 PMCID: PMC9599443 DOI: 10.3390/biom12101470] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/20/2022] [Accepted: 09/28/2022] [Indexed: 12/05/2022] Open
Abstract
Alzheimer’s disease (AD) is the most common type of dementia and is a serious disruption to normal life. Monoamine oxidase-B (MAO-B) is an important target for the treatment of AD. In this study, machine learning approaches were applied to investigate the identification model of MAO-B inhibitors. The results showed that the identification model for MAO-B inhibitors with K-nearest neighbor(KNN) algorithm had a prediction accuracy of 94.1% and 88.0% for the 10-fold cross-validation test and the independent test set, respectively. Secondly, a quantitative activity prediction model for MAO-B was investigated with the Topomer CoMFA model. Two separate cutting mode approaches were used to predict the activity of MAO-B inhibitors. The results showed that the cut model with q2 = 0.612 (cross-validated correlation coefficient) and r2 = 0.824 (non-cross-validated correlation coefficient) were determined for the training and test sets, respectively. In addition, molecular docking was employed to analyze the interaction between MAO-B and inhibitors. Finally, based on our proposed prediction model, 1-(4-hydroxyphenyl)-3-(2,4,6-trimethoxyphenyl)propan-1-one (LB) was predicted as a potential MAO-B inhibitor and was validated by a multi-spectroscopic approach including fluorescence spectra and ultraviolet spectrophotometry.
Collapse
Affiliation(s)
- Linfeng Zheng
- School of Life Science, Shanghai University, Shanghai 200444, China
- Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Xiangyang Qin
- Department of Chemistry, School of Pharmacy, Air Force Medical University, Xi’an 710032, China
| | - Jiao Wang
- School of Life Science, Shanghai University, Shanghai 200444, China
| | - Mengying Zhang
- School of Life Science, Shanghai University, Shanghai 200444, China
| | - Quanlin An
- Institute of Clinical Science, Zhongshan Hospital, Shanghai Medical College, Fudan University, Shanghai 200444, China
| | - Jinzhi Xu
- Institute of Clinical Science, Zhongshan Hospital, Shanghai Medical College, Fudan University, Shanghai 200444, China
| | - Xiaosheng Qu
- National Engineering Laboratory of Southwest Endangered Medicinal Resources Development, Guangxi Botanical Garden of Medicinal Plants, Nanning 530023, China
| | - Xin Cao
- Institute of Clinical Science, Zhongshan Hospital, Shanghai Medical College, Fudan University, Shanghai 200444, China
- Correspondence: (X.C.); (B.N.)
| | - Bing Niu
- School of Life Science, Shanghai University, Shanghai 200444, China
- Correspondence: (X.C.); (B.N.)
| |
Collapse
|
8
|
Lustig-Barzelay Y, Sher I, Sharvit-Ginon I, Feldman Y, Mrejen M, Dallasheh S, Livny A, Schnaider Beeri M, Weller A, Ravona-Springer R, Rotenstreich Y. Machine learning for comprehensive prediction of high risk for Alzheimer's disease based on chromatic pupilloperimetry. Sci Rep 2022; 12:9945. [PMID: 35705601 PMCID: PMC9200977 DOI: 10.1038/s41598-022-13999-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 05/13/2022] [Indexed: 11/30/2022] Open
Abstract
Currently there are no reliable biomarkers for early detection of Alzheimer's disease (AD) at the preclinical stage. This study assessed the pupil light reflex (PLR) for focal red and blue light stimuli in central and peripheral retina in 125 cognitively normal middle age subjects (45-71 years old) at high risk for AD due to a family history of the disease (FH+), and 61 age-similar subjects with no family history of AD (FH-) using Chromatic Pupilloperimetry coupled with Machine Learning (ML). All subjects had normal ophthalmic assessment, and normal retinal and optic nerve thickness by optical coherence tomography. No significant differences were observed between groups in cognitive function and volumetric brain MRI. Chromatic pupilloperimetry-based ML models were highly discriminative in differentiating subjects with and without AD family history, using transient PLR for focal red (primarily cone-mediated), and dim blue (primarily rod-mediated) light stimuli. Features associated with transient pupil response latency (PRL) achieved Area Under the Curve Receiver Operating Characteristic (AUC-ROC) of 0.90 ± 0.051 (left-eye) and 0.87 ± 0.048 (right-eye). Parameters associated with the contraction arm of the rod and cone-mediated PLR were more discriminative compared to parameters associated with the relaxation arm and melanopsin-mediated PLR. Significantly shorter PRL for dim blue light was measured in the FH+ group in two test targets in the temporal visual field in right eye that had highest relative weight in the ML algorithm (mean ± standard error, SE 0.449 s ± 0.007 s vs. 0.478 s ± 0.010 s, p = 0.038). Taken together our study suggests that subtle focal changes in pupil contraction latency may be detected in subjects at high risk to develop AD, decades before the onset of AD clinical symptoms. The dendrites of melanopsin containing retinal ganglion cells may be affected very early at the preclinical stages of AD.
Collapse
Affiliation(s)
- Yael Lustig-Barzelay
- Goldschleger Eye Institute, Sheba Medical Center, 52621, Tel-Hashomer, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ifat Sher
- Goldschleger Eye Institute, Sheba Medical Center, 52621, Tel-Hashomer, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- The Nehemia Rubin Excellence in Biomedical Research, TELEM Program, Sheba Medical Center, Tel Hashomer, Israel
| | - Inbal Sharvit-Ginon
- The Joseph Sagol Neuroscience Center, Sheba Medical Center, Tel Hashomer, Israel
- Department of Psychology, Bar-Ilan University, Ramat Gan, Israel
| | - Yael Feldman
- Goldschleger Eye Institute, Sheba Medical Center, 52621, Tel-Hashomer, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Michael Mrejen
- Condensed Matter Physics Department, School of Physics and Astronomy, Tel-Aviv University, Tel Aviv, Israel
| | - Shada Dallasheh
- Goldschleger Eye Institute, Sheba Medical Center, 52621, Tel-Hashomer, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Abigail Livny
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- The Nehemia Rubin Excellence in Biomedical Research, TELEM Program, Sheba Medical Center, Tel Hashomer, Israel
- Department of Diagnostic Imaging, Sheba Medical Center, Tel Hashomer, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Michal Schnaider Beeri
- The Joseph Sagol Neuroscience Center, Sheba Medical Center, Tel Hashomer, Israel
- Department of Psychiatry, The Icahn School of Medicine at Mount Sinai, New York, USA
| | - Aron Weller
- Department of Psychology, Bar-Ilan University, Ramat Gan, Israel
- Gonda Brain Research Center, Bar Ilan University, Ramat Gan, Israel
| | - Ramit Ravona-Springer
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- The Joseph Sagol Neuroscience Center, Sheba Medical Center, Tel Hashomer, Israel
- Memory Clinic, Sheba Medical Center, Tel Hashomer, Israel
| | - Ygal Rotenstreich
- Goldschleger Eye Institute, Sheba Medical Center, 52621, Tel-Hashomer, Israel.
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
9
|
Baruah P, Paul D, Doshi J, Mitra S. Elevated Fibrinogen Level Reduces Therapeutic Efficiency of AD Drugs: Biophysical Insights into the Interaction of FDA-Approved Cholinesterase Inhibitors with Human Fibrinogen. J Phys Chem B 2021; 126:30-43. [PMID: 34964643 DOI: 10.1021/acs.jpcb.1c07495] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Despite being the second most abundant protein in blood plasma, reports on the interaction of drugs with fibrinogen (FIB) are relatively scarce. The effect of FIB on the therapeutic potency of four FDA-approved Alzheimer's disease drugs, namely, tacrine (TAC), donepezil (DON), eserine (ESE), and huperzine (HUP), was investigated through a combination of different in vitro and in silico experiments. The efficiency of the drugs in inhibiting the activity of acetylcholinesterase (AChE) was significantly reduced in the presence of FIB. This effect was even found to be more substantial than that for the most abundant plasma protein, human serum albumin (HSA). For example, the relative change in IC50 for TAC was found to be 65% in 10 μM FIB as opposed to 43% in the presence of 250 μM HSA. The relative trend of modulation in AChE activity showed consistency with the binding efficiency of the drugs and FIB. The sequestration of drugs in FIB, therefore reducing the availability of free drugs in solution, was identified to be the primary cause for the decrease in the AChE inhibition potency. This study aims to establish FIB as a vital component, while considering the therapeutic effectiveness of different newly developed AChE inhibitors.
Collapse
Affiliation(s)
- Prayasee Baruah
- Department of Chemistry, North-Eastern Hill University, Shillong 793022, India
| | - Debojit Paul
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | - Jitesh Doshi
- BioInsight Solutions (OPC) Pvt. Ltd, Navi Mumbai 410210, India
| | - Sivaprasad Mitra
- Department of Chemistry, North-Eastern Hill University, Shillong 793022, India
| |
Collapse
|
10
|
Vieira MV, Turkiewicz IP, Tkacz K, Fuentes-Grünewald C, Pastrana LM, Fuciños P, Wojdyło A, Nowicka P. Microalgae as a Potential Functional Ingredient: Evaluation of the Phytochemical Profile, Antioxidant Activity and In-Vitro Enzymatic Inhibitory Effect of Different Species. Molecules 2021; 26:7593. [PMID: 34946676 PMCID: PMC8707863 DOI: 10.3390/molecules26247593] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 12/09/2021] [Accepted: 12/10/2021] [Indexed: 11/16/2022] Open
Abstract
The functional food market has been in a state of constant expansion due to the increasing awareness of the impact of the diet on human health. In the search for new natural resources that could act as a functional ingredient for the food industry, microalgae represent a promising alternative, considering their high nutritional value and biosynthesis of numerous bioactive compounds with reported biological properties. In the present work, the phytochemical profile, antioxidant activity, and enzymatic inhibitory effect aiming at different metabolic disorders (Alzheimer's disease, Type 2 diabetes, and obesity) were evaluated for the species Porphyridium purpureum, Chlorella vulgaris, Arthorspira platensis, and Nannochloropsis oculata. All the species presented bioactive diversity and important antioxidant activity, demonstrating the potential to be used as functional ingredients. Particularly, P. purpureum and N. oculata exhibited higher carotenoid and polyphenol content, which was reflected in their superior biological effects. Moreover, the species P. purpureum exhibited remarkable enzymatic inhibition for all the analyses.
Collapse
Affiliation(s)
- Marta Vinha Vieira
- Department of Fruit, Vegetable and Nutraceutical Plant Technology, Faculty of Biotechnology and Food Science, Wrocław University of Environmental and Life Sciences, 37 Chełmonskiego Street, 51-630 Wrocław, Poland; (M.V.V.); (I.P.T.); (K.T.)
- International Iberian Nanotechnology Laboratory, Food Processing and Nutrition Research Group, Av. Mestre José Veiga s/n, 4715-330 Braga, Portugal; (L.M.P.); (P.F.)
| | - Igor Piotr Turkiewicz
- Department of Fruit, Vegetable and Nutraceutical Plant Technology, Faculty of Biotechnology and Food Science, Wrocław University of Environmental and Life Sciences, 37 Chełmonskiego Street, 51-630 Wrocław, Poland; (M.V.V.); (I.P.T.); (K.T.)
| | - Karolina Tkacz
- Department of Fruit, Vegetable and Nutraceutical Plant Technology, Faculty of Biotechnology and Food Science, Wrocław University of Environmental and Life Sciences, 37 Chełmonskiego Street, 51-630 Wrocław, Poland; (M.V.V.); (I.P.T.); (K.T.)
| | | | - Lorenzo M. Pastrana
- International Iberian Nanotechnology Laboratory, Food Processing and Nutrition Research Group, Av. Mestre José Veiga s/n, 4715-330 Braga, Portugal; (L.M.P.); (P.F.)
| | - Pablo Fuciños
- International Iberian Nanotechnology Laboratory, Food Processing and Nutrition Research Group, Av. Mestre José Veiga s/n, 4715-330 Braga, Portugal; (L.M.P.); (P.F.)
| | - Aneta Wojdyło
- Department of Fruit, Vegetable and Nutraceutical Plant Technology, Faculty of Biotechnology and Food Science, Wrocław University of Environmental and Life Sciences, 37 Chełmonskiego Street, 51-630 Wrocław, Poland; (M.V.V.); (I.P.T.); (K.T.)
| | - Paulina Nowicka
- Department of Fruit, Vegetable and Nutraceutical Plant Technology, Faculty of Biotechnology and Food Science, Wrocław University of Environmental and Life Sciences, 37 Chełmonskiego Street, 51-630 Wrocław, Poland; (M.V.V.); (I.P.T.); (K.T.)
| |
Collapse
|
11
|
Preethy HA, Rajendran K, Mishra A, Karthikeyan A, Chellappan DR, Ramakrishnan V, Krishnan UM. Towards understanding the mechanism of action of a polyherbal formulation using a multi-pronged strategy. Comput Biol Med 2021; 141:104999. [PMID: 34862035 DOI: 10.1016/j.compbiomed.2021.104999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/22/2021] [Accepted: 10/26/2021] [Indexed: 11/16/2022]
Abstract
Herein, we investigate the cognitive effects of a traditional polyherbal formulation, Brahmi Nei (BN) for its effect on cognitive health. Network pharmacological analysis of the bioactives reported in the phytoconstituents of BN was performed by retrieving information from various databases. The in-silico predictions were experimentally validated using in vitro and in vivo models through a combination of biochemical, behavioural and molecular studies. The network pharmacological analysis of the key molecules in BN revealed their ability to modulate molecular targets implicated in memory, cognition, neuronal survival, proliferation, regulation of cellular bioenergetics and oxidative stress. Behavioral studies performed on normal adult rats administered with BN showed a significant improvement in their cognitive performance. Microarray analysis of their brain tissues exhibited an up-regulation of genes involved in oxidative phosphorylation, learning, neuronal differentiation, extension, regeneration and survival while pro-inflammatory and pro-degenerative genes were down-regulated. The oxygen consumption rate in BN-treated hippocampal cells showed a significant improvement in the bioenergetic health index when compared to untreated cells due to the mitochondrial membrane fortifying effect and anti-inflammatory property of the BN constituents. The neuroregenerative potential of BN was manifested in increase in axonal length and neurite outgrowth. Western blots and 2D gel electrophoresis revealed a reduction in pro-apoptotic proteins while increasing Akt and cyclophilin proteins. Taken together, our data reveal that BN, although traditionally used to treat anxiolytic disorders can be explored as a nutraceutical to improve neuronal health as well as a therapeutic option to treat cognitive disorders.
Collapse
Affiliation(s)
- H Agnes Preethy
- Centre for Nanotechnology& Advanced Biomaterials (CeNTAB), SASTRA Deemed University, Thanjavur, 613 401, Tamil Nadu, India; School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, 613 401, Tamil Nadu, India
| | - Kayalvizhi Rajendran
- Centre for Nanotechnology& Advanced Biomaterials (CeNTAB), SASTRA Deemed University, Thanjavur, 613 401, Tamil Nadu, India; School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, 613 401, Tamil Nadu, India
| | - Abhilipsha Mishra
- School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, 613 401, Tamil Nadu, India
| | - Akhilasree Karthikeyan
- School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, 613 401, Tamil Nadu, India
| | - David Raj Chellappan
- School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, 613 401, Tamil Nadu, India
| | - Vigneshwar Ramakrishnan
- School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, 613 401, Tamil Nadu, India
| | - Uma Maheswari Krishnan
- Centre for Nanotechnology& Advanced Biomaterials (CeNTAB), SASTRA Deemed University, Thanjavur, 613 401, Tamil Nadu, India; School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, 613 401, Tamil Nadu, India; School of Arts, Science & Humanities, SASTRA Deemed University, Thanjavur, 613 401, Tamil Nadu, India.
| |
Collapse
|
12
|
Vilela AFL, Narciso Dos Reis VE, Cardoso CL. Co-Immobilized Capillary Enzyme Reactor Based on Beta-Secretase1 and Acetylcholinesterase: A Model for Dual-Ligand Screening. Front Chem 2021; 9:708374. [PMID: 34307303 PMCID: PMC8295500 DOI: 10.3389/fchem.2021.708374] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 06/23/2021] [Indexed: 11/13/2022] Open
Abstract
We have developed a dual enzymatic system assay involving liquid chromatography-mass spectrometry (LC–MS) to screen AChE and BACE1 ligands. A fused silica capillary (30 cm × 0.1 mm i.d. × 0.362 mm e.d.) was used as solid support. The co-immobilization procedure encompassed two steps and random immobilization. The resulting huAChE+BACE1-ICER/MS was characterized by using acetylcholine (ACh) and JMV2236 as substrates. The best conditions for the dual enzymatic system assay were evaluated and compared to the conditions of the individual enzymatic system assays. Analysis was performed in series for each enzyme. The kinetic parameters (KMapp) and inhibition assays were evaluated. To validate the system, galantamine and a β-secretase inhibitor were employed as standard inhibitors, which confirmed that the developed screening assay was able to identify reference ligands and to provide quantitative parameters. The combination of these two enzymes in a single on-line system allowed possible multi-target inhibitors to be screened and identified. The innovative huAChE+BACE1-ICER/MS dual enzymatic system reported herein proved to be a reliable tool to identify and to characterize hit ligands for AChE and BACE1 in an enzymatic competitive environment. This innovative system assay involved lower costs; measured the product from enzymatic hydrolysis directly by MS; enabled immediate recovery of the enzymatic activity; showed specificity, selectivity, and sensitivity; and mimicked the cellular process.
Collapse
Affiliation(s)
- Adriana Ferreira Lopes Vilela
- Departamento de Química, Grupo de Cromatografia de Bioafinidade e Produtos Naturais, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Vitor Eduardo Narciso Dos Reis
- Departamento de Química, Grupo de Cromatografia de Bioafinidade e Produtos Naturais, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Carmen Lúcia Cardoso
- Departamento de Química, Grupo de Cromatografia de Bioafinidade e Produtos Naturais, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|
13
|
Xu W, Rao J, Song Y, Chen S, Xue C, Hu G, Lin X, Chen J. Altered Functional Connectivity of the Basal Nucleus of Meynert in Subjective Cognitive Impairment, Early Mild Cognitive Impairment, and Late Mild Cognitive Impairment. Front Aging Neurosci 2021; 13:671351. [PMID: 34248603 PMCID: PMC8267913 DOI: 10.3389/fnagi.2021.671351] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 05/11/2021] [Indexed: 01/10/2023] Open
Abstract
Background: The spectrum of early Alzheimer's disease (AD) is thought to include subjective cognitive impairment, early mild cognitive impairment (eMCI), and late mild cognitive impairment (lMCI). Choline dysfunction affects the early progression of AD, in which the basal nucleus of Meynert (BNM) is primarily responsible for cortical cholinergic innervation. The aims of this study were to determine the abnormal patterns of BNM-functional connectivity (BNM-FC) in the preclinical AD spectrum (SCD, eMCI, and lMCI) and further explore the relationships between these alterations and neuropsychological measures. Methods: Resting-state functional magnetic resonance imaging (rs-fMRI) was used to investigate FC based on a seed mask (BNM mask) in 28 healthy controls (HC), 30 SCD, 24 eMCI, and 25 lMCI patients. Furthermore, the relationship between altered FC and neurocognitive performance was examined by a correlation analysis. The receiver operating characteristic (ROC) curve of abnormal BNM-FC was used to specifically determine the classification ability to differentiate the early AD disease spectrum relative to HC (SCD and HC, eMCI and HC, lMCI and HC) and pairs of groups in the AD disease spectrum (eMCI and SCD, lMCI and SCD, eMCI and lMCI). Results: Compared with HC, SCD patients showed increased FC in the bilateral SMA and decreased FC in the bilateral cerebellum and middle frontal gyrus (MFG), eMCI patients showed significantly decreased FC in the bilateral precuneus, and lMCI individuals showed decreased FC in the right lingual gyrus. Compared with the SCD group, the eMCI group showed decreased FC in the right superior frontal gyrus (SFG), while the lMCI group showed decreased FC in the left middle temporal gyrus (MTG). Compared with the eMCI group, the lMCI group showed decreased FC in the right hippocampus. Interestingly, abnormal FC was associated with certain cognitive domains and functions including episodic memory, executive function, information processing speed, and visuospatial function in the disease groups. BNM-FC of SFG in distinguishing eMCI from SCD; BNM-FC of MTG in distinguishing lMCI from SCD; BNM-FC of the MTG, hippocampus, and cerebellum in distinguishing SCD from HC; and BNM-FC of the hippocampus and MFG in distinguishing eMCI from lMCI have high sensitivity and specificity. Conclusions: The abnormal BNM-FC patterns can characterize the early disease spectrum of AD (SCD, eMCI, and lMCI) and are closely related to the cognitive domains. These new and reliable findings will provide a new perspective in identifying the early disease spectrum of AD and further strengthen the role of cholinergic theory in AD.
Collapse
Affiliation(s)
- Wenwen Xu
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Jiang Rao
- Department of Rehabilitation, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Yu Song
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Shanshan Chen
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Chen Xue
- Department of Radiology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Guanjie Hu
- Institute of Neuropsychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China.,Institute of Brain Functional Imaging, Nanjing Medical University, Nanjing, China
| | - Xingjian Lin
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Jiu Chen
- Institute of Neuropsychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China.,Institute of Brain Functional Imaging, Nanjing Medical University, Nanjing, China
| |
Collapse
|
14
|
Wu SZ, Masurkar AV, Balcer LJ. Afferent and Efferent Visual Markers of Alzheimer's Disease: A Review and Update in Early Stage Disease. Front Aging Neurosci 2020; 12:572337. [PMID: 33061906 PMCID: PMC7518395 DOI: 10.3389/fnagi.2020.572337] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Accepted: 08/20/2020] [Indexed: 01/06/2023] Open
Abstract
Vision, which requires extensive neural involvement, is often impaired in Alzheimer's disease (AD). Over the last few decades, accumulating evidence has shown that various visual functions and structures are compromised in Alzheimer's dementia and when measured can detect those with dementia from those with normal aging. These visual changes involve both the afferent and efferent parts of the visual system, which correspond to the sensory and eye movement aspects of vision, respectively. There are fewer, but a growing number of studies, that focus on the detection of predementia stages. Visual biomarkers that detect these stages are paramount in the development of successful disease-modifying therapies by identifying appropriate research participants and in identifying those who would receive future therapies. This review provides a summary and update on common afferent and efferent visual markers of AD with a focus on mild cognitive impairment (MCI) and preclinical disease detection. We further propose future directions in this area. Given the ease of performing visual tests, the accessibility of the eye, and advances in ocular technology, visual measures have the potential to be effective, practical, and non-invasive biomarkers of AD.
Collapse
Affiliation(s)
- Shirley Z. Wu
- Department of Neurology, New York University Grossman School of Medicine, New York, NY, United States
- Department of Ophthalmology, New York University Grossman School of Medicine, New York, NY, United States
| | - Arjun V. Masurkar
- Department of Neurology, New York University Grossman School of Medicine, New York, NY, United States
| | - Laura J. Balcer
- Department of Neurology, New York University Grossman School of Medicine, New York, NY, United States
- Department of Ophthalmology, New York University Grossman School of Medicine, New York, NY, United States
- Department of Population Health, New York University Grossman School of Medicine, New York, NY, United States
| |
Collapse
|
15
|
In silico, in vitro and in vivo studies indicate resveratrol analogue as a potential alternative for neuroinflammatory disorders. Life Sci 2020; 249:117538. [DOI: 10.1016/j.lfs.2020.117538] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Revised: 03/03/2020] [Accepted: 03/08/2020] [Indexed: 12/18/2022]
|
16
|
Oh AJ, Amore G, Sultan W, Asanad S, Park JC, Romagnoli M, La Morgia C, Karanjia R, Harrington MG, Sadun AA. Pupillometry evaluation of melanopsin retinal ganglion cell function and sleep-wake activity in pre-symptomatic Alzheimer's disease. PLoS One 2019; 14:e0226197. [PMID: 31821378 PMCID: PMC6903762 DOI: 10.1371/journal.pone.0226197] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 11/21/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Melanopsin-expressing retinal ganglion cells (mRGCs), intrinsically photosensitive RGCs, mediate the light-based pupil response and the light entrainment of the body's circadian rhythms through their connection to the pretectal nucleus and hypothalamus, respectively. Increased awareness of circadian rhythm dysfunction in neurological conditions including Alzheimer's disease (AD), has led to a wave of research focusing on the role of mRGCs in these diseases. Postmortem retinal analyses in AD patients demonstrated a significant loss of mRGCs, and in vivo measurements of mRGC function with chromatic pupillometry may be a potential biomarker for early diagnosis and progression of AD. METHODS We performed a prospective case-control study in 20 cognitively healthy study participants: 10 individuals with pre-symptomatic AD pathology (pre-AD), identified by the presence of abnormal levels of amyloid β42 and total Tau proteins in the cerebrospinal fluid, and 10 age-matched controls with normal CSF amyloid β42 and Tau levels. To evaluate mRGC function, we used a standardized protocol of chromatic pupillometry on a Ganzfeld system using red (640 nm) and blue (450 nm) light stimuli and measured the pupillary light response (PLR). Non-invasive wrist actigraphy and standardized sleep questionnaires were also completed to evaluate rest-activity circadian rhythm. RESULTS Our results did not demonstrate a significant difference of the PLR between pre-AD and controls but showed a variability of the PLR in the pre-AD group compared with controls on chromatic pupillometry. Wrist actigraphy showed variable sleep-wake patterns and irregular circadian rhythms in the pre-AD group compared with controls. CONCLUSIONS The variability seen in measurements of mRGC function and sleep-wake cycle in the pre-AD group suggests that mRGC dysfunction occurs in the pre-symptomatic AD stages, preceding cognitive decline. Future longitudinal studies following progression of these participants can help in elucidating the relationship between mRGCs and circadian rhythm dysfunction in AD.
Collapse
Affiliation(s)
- Angela J. Oh
- Doheny Eye institute, UCLA Stein Eye Institute, University of California, Los Angeles, Department of Ophthalmology, Los Angeles, California, United States of America
- * E-mail:
| | - Giulia Amore
- Doheny Eye institute, UCLA Stein Eye Institute, University of California, Los Angeles, Department of Ophthalmology, Los Angeles, California, United States of America
- IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Clinica Neurologica, Bologna, Italy
| | - William Sultan
- Doheny Eye institute, UCLA Stein Eye Institute, University of California, Los Angeles, Department of Ophthalmology, Los Angeles, California, United States of America
| | - Samuel Asanad
- Doheny Eye institute, UCLA Stein Eye Institute, University of California, Los Angeles, Department of Ophthalmology, Los Angeles, California, United States of America
| | - Jason C. Park
- Columbia University, Department of Psychology, New York, New York, United States of America
| | - Martina Romagnoli
- IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Clinica Neurologica, Bologna, Italy
| | - Chiara La Morgia
- IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Clinica Neurologica, Bologna, Italy
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy
| | - Rustum Karanjia
- Doheny Eye institute, UCLA Stein Eye Institute, University of California, Los Angeles, Department of Ophthalmology, Los Angeles, California, United States of America
- University of Ottawa Eye Institute, Department of Ophthalmology, Ottawa, Ontario, Canada
| | - Michael G. Harrington
- The Huntington Medical Research Institutes and Molecular Neurology Program, Pasadena, California, United States of America
| | - Alfredo A. Sadun
- Doheny Eye institute, UCLA Stein Eye Institute, University of California, Los Angeles, Department of Ophthalmology, Los Angeles, California, United States of America
| |
Collapse
|
17
|
Kaltsatou A, Hadjigeorgiou GM, Grigoriou SS, Karatzaferi C, Giannaki CD, Lavdas E, Fotiou D, Kouidi E, Patramani G, Vogiatzi C, Pappas A, Stefanidis I, Sakkas GK. Cardiac autonomic function during intradialytic exercise training. Postgrad Med 2019; 131:539-545. [DOI: 10.1080/00325481.2019.1663707] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Antonia Kaltsatou
- Department of Physical Education & Sport Science, University of Thessaly, Trikala, Greece
| | | | - Stefania S. Grigoriou
- Department of Physical Education & Sport Science, University of Thessaly, Trikala, Greece
| | - Christina Karatzaferi
- Department of Physical Education & Sport Science, University of Thessaly, Trikala, Greece
| | | | - Eleftherios Lavdas
- Department of Radiology and Radiotherapy, Technological Educational Institute of Athens, Athens, Greece
| | - Dimitris Fotiou
- School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Evangelia Kouidi
- School of Physical Education & Sport Science, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | | | | | - Aggelos Pappas
- Department of Physical Education & Sport Science, University of Thessaly, Trikala, Greece
| | | | - Giorgos K. Sakkas
- Department of Physical Education & Sport Science, University of Thessaly, Trikala, Greece
- Cardiff Metropolitan University, Cardiff, UK
| |
Collapse
|
18
|
Bueno APA, Sato JR, Hornberger M. Eye tracking - The overlooked method to measure cognition in neurodegeneration? Neuropsychologia 2019; 133:107191. [PMID: 31521634 DOI: 10.1016/j.neuropsychologia.2019.107191] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 08/26/2019] [Accepted: 09/08/2019] [Indexed: 12/11/2022]
Abstract
Eye tracking (ET) studies are becoming increasingly popular due to rapid methodological and technological advances as well as the development of cost efficient and portable eye trackers. Although historically ET has been mostly employed in psychophysics or developmental cognition studies, there is also promising scope to use ET for movement disorders and measuring cognitive processes in neurodegeneration. Particularly, ET can be a powerful tool for cognitive and neuropsychological assessments of patients with pathologies affecting motor and verbal abilities, as tasks can be adapted without requiring motor (except eye movements) or verbal responses. In this review, we will examine the existing evidence of ET methods in neurodegenerative conditions and its potential clinical impact for cognitive assessment. We highlight that current evidence for ET is mostly focused on diagnostics of cognitive impairments in neurodegenerative disorders, where it is debatable whether it has any more sensitivity or specificity than existing cognitive assessments. By contrast, there is currently a lack of ET studies in more advanced disease stages, when patients' motor and verbal functions can be significantly affected, and standard cognitive assessments are challenging or often not possible. We conclude that ET is a promising method not only for cognitive diagnostics but more importantly, for potential cognitive disease tracking in progressive neurodegenerative conditions.
Collapse
Affiliation(s)
- A P A Bueno
- - Center of Mathematics, Computing and Cognition, Universidade Federal do ABC, Santo André, Brazil; - Department of Medicine, Norwich Medical School, University of East Anglia, Norwich, UK.
| | - J R Sato
- - Center of Mathematics, Computing and Cognition, Universidade Federal do ABC, Santo André, Brazil
| | - M Hornberger
- - Department of Medicine, Norwich Medical School, University of East Anglia, Norwich, UK; - Norfolk and Suffolk NHS Foundation Trust, Norwich, UK
| |
Collapse
|
19
|
Liu PP, Xie Y, Meng XY, Kang JS. History and progress of hypotheses and clinical trials for Alzheimer's disease. Signal Transduct Target Ther 2019; 4:29. [PMID: 31637009 PMCID: PMC6799833 DOI: 10.1038/s41392-019-0063-8] [Citation(s) in RCA: 346] [Impact Index Per Article: 69.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 07/07/2019] [Accepted: 07/17/2019] [Indexed: 12/20/2022] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease characterized by progressive memory loss along with neuropsychiatric symptoms and a decline in activities of daily life. Its main pathological features are cerebral atrophy, amyloid plaques, and neurofibrillary tangles in the brains of patients. There are various descriptive hypotheses regarding the causes of AD, including the cholinergic hypothesis, amyloid hypothesis, tau propagation hypothesis, mitochondrial cascade hypothesis, calcium homeostasis hypothesis, neurovascular hypothesis, inflammatory hypothesis, metal ion hypothesis, and lymphatic system hypothesis. However, the ultimate etiology of AD remains obscure. In this review, we discuss the main hypotheses of AD and related clinical trials. Wealthy puzzles and lessons have made it possible to develop explanatory theories and identify potential strategies for therapeutic interventions for AD. The combination of hypometabolism and autophagy deficiency is likely to be a causative factor for AD. We further propose that fluoxetine, a selective serotonin reuptake inhibitor, has the potential to treat AD.
Collapse
Affiliation(s)
- Pei-Pei Liu
- Clinical Systems Biology Laboratories, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 Henan China
| | - Yi Xie
- Clinical Systems Biology Laboratories, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 Henan China
| | - Xiao-Yan Meng
- Clinical Systems Biology Laboratories, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 Henan China
| | - Jian-Sheng Kang
- Clinical Systems Biology Laboratories, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 Henan China
| |
Collapse
|
20
|
Chougule PS, Najjar RP, Finkelstein MT, Kandiah N, Milea D. Light-Induced Pupillary Responses in Alzheimer's Disease. Front Neurol 2019; 10:360. [PMID: 31031692 PMCID: PMC6473037 DOI: 10.3389/fneur.2019.00360] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 03/25/2019] [Indexed: 12/25/2022] Open
Abstract
The impact of Alzheimer's disease (AD) on the pupillary light response (PLR) is controversial, being dependent on the stage of the disease and on the experimental pupillometric protocols. The main hypothesis driving pupillometry research in AD is based on the concept that the AD-related neurodegeneration affects both the parasympathetic and the sympathetic arms of the PLR (cholinergic and noradrenergic theory), combined with additional alterations of the afferent limb, involving the melanopsin expressing retinal ganglion cells (mRGCs), subserving the PLR. Only a few studies have evaluated the value of pupillometry as a potential biomarker in AD, providing various results compatible with parasympathetic dysfunction, displaying increased latency of pupillary constriction to light, decreased constriction amplitude, faster redilation after light offset, decreased maximum velocity of constriction (MCV) and maximum constriction acceleration (MCA) compared to controls. Decreased MCV and MCA appeared to be the most accurate of all PLR parameters allowing differentiation between AD and healthy controls while increased post-illumination pupillary response was the most consistent feature, however, these results could not be replicated by more recent studies, focusing on early and pre-clinical stages of the disease. Whether static or dynamic pupillometry yields useful biomarkers for AD screening or diagnosis remains unclear. In this review, we synopsize the current knowledge on pupillometric features in AD and other neurodegenerative diseases, and discuss potential roles of pupillometry in AD detection, diagnosis and monitoring, alone or in combination with additional biomarkers.
Collapse
Affiliation(s)
- Pratik S Chougule
- Department of Visual Neurosciences, Singapore Eye Research Institute, Singapore, Singapore
| | - Raymond P Najjar
- Department of Visual Neurosciences, Singapore Eye Research Institute, Singapore, Singapore.,The Ophthalmology & Visual Sciences ACP, Duke-National University of Singapore (NUS) Medical School, Singapore, Singapore
| | - Maxwell T Finkelstein
- Department of Visual Neurosciences, Singapore Eye Research Institute, Singapore, Singapore
| | - Nagaendran Kandiah
- Department of Neurology, National Neuroscience Institute, Singapore, Singapore.,Duke-National University of Singapore (NUS), Singapore, Singapore
| | - Dan Milea
- Department of Visual Neurosciences, Singapore Eye Research Institute, Singapore, Singapore.,The Ophthalmology & Visual Sciences ACP, Duke-National University of Singapore (NUS) Medical School, Singapore, Singapore.,Singapore National Eye Centre, Singapore, Singapore
| |
Collapse
|
21
|
Bonesi M, Tenuta MC, Loizzo MR, Sicari V, Tundis R. Potential Application of Prunus armeniaca L. and P. domestica L. Leaf Essential Oils as Antioxidant and of Cholinesterases Inhibitors. Antioxidants (Basel) 2018; 8:antiox8010002. [PMID: 30577585 PMCID: PMC6356404 DOI: 10.3390/antiox8010002] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 12/11/2018] [Accepted: 12/16/2018] [Indexed: 11/16/2022] Open
Abstract
The aim of this work is to investigate the in vitro acetylcholinesterase (AChE) and butyrycholinesterase (BChE) inhibitory activities of essential oils obtained by hydrodistillation from the leaves of Prunus armeniaca and P. domestica in relation to their composition, analysed by Gas Chromatography–Flame Ionization Detector (GC-FID) and Gas Chromatography-Mass Spectrometry (GC-MS) analyses, at different times. Moreover, considering the role of free radicals in the progression of neurodegenerative disorders, the antioxidant properties of essential oils were investigated by using, 2’-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS), 2,2-diphenyl-1-picrylhydrazyl (DPPH), and β-carotene bleaching tests. The relative antioxidant capacity index (RACI) was used to achieve more comprehensive comparison between analysed antioxidant effects of essential oils. P. armeniaca oils were more active than P. domestica oils against AChE. Against BChE, the most active was the essential oil from P. domestica leaves collected in August with an IC50 value of 95.80 μg/mL. This oil exerted the highest inhibitory activity of lipid peroxidation with IC50 values of 11.15 and 11.39 μg/mL after 30 and 60 min of incubation, respectively. All samples demonstrated a remarkable ABTS radicals scavenging activity, with IC50 values in the range 0.45–0.57 μg/mL in comparison to the positive control, ascorbic acid.
Collapse
Affiliation(s)
- Marco Bonesi
- Department of Pharmacy, Health Science and Nutrition, University of Calabria, Via Pietro Bucci, 87036 Arcavacata di Rende (CS), Italy.
| | - Maria Concetta Tenuta
- Department of Pharmacy, Health Science and Nutrition, University of Calabria, Via Pietro Bucci, 87036 Arcavacata di Rende (CS), Italy.
| | - Monica R Loizzo
- Department of Pharmacy, Health Science and Nutrition, University of Calabria, Via Pietro Bucci, 87036 Arcavacata di Rende (CS), Italy.
| | - Vincenzo Sicari
- Department of Agricultural Science, Mediterranean University of Reggio Calabria, Via Graziella, Feo di Vito, 89123 Reggio Calabria, Italy.
| | - Rosa Tundis
- Department of Pharmacy, Health Science and Nutrition, University of Calabria, Via Pietro Bucci, 87036 Arcavacata di Rende (CS), Italy.
| |
Collapse
|
22
|
Lee J, Kwon H, Yu J, Cho E, Jeon J, Lee S, Ryu JH, Lee YC, Kim DH, Jung JW. The enhancing effect of Aubang Gahl Soo on the hippocampal synaptic plasticity and memory through enhancing cholinergic system in mice. JOURNAL OF ETHNOPHARMACOLOGY 2018; 224:91-99. [PMID: 29842961 DOI: 10.1016/j.jep.2018.05.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 04/13/2018] [Accepted: 05/13/2018] [Indexed: 06/08/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Aubang Gahl Soo (AGS) is a Korean traditional drink manufactured from medicinal plants and fruits using sugar or honey. Although traditional old book stated its effects on body, there is no scientific evidence yet. Therefore, in the present study, we tested AGS on brain functions. AIM OF THIS STUDY In this study, we tried to uncover the effect of on brain functions. To do this we examined the action of AGS on the hippocampal synaptic function and memory in mice. MATERIALS AND METHODS To examine the effect of AGS on synaptic plasticity, we observed input-output curves (I/O curve), paired-pulse facilitation (PPF), and long-term potentiation (LTP) using mouse hippocampal slices. Moreover, to investigate the functional relevance of the effect of AGS on synaptic plasticity, we conducted passive avoidance, Y-maze and Morris water maze tests. To examine relevant mechanism, acetylcholinesterase (AChE) activity and acetylcholine (ACh) level assay were also conducted. RESULTS In the basal synaptic transmission study, we found that AGS did not affect I/O curves and PPF. However, AGS facilitated hippocampal LTP in a concentration-dependent manner. Moreover, AGS blocked AChE activity (IC50 = 485 μg/ml). Moreover, ACh level was increased by AGS (100 μg/ml) treatment. Along with this, facilitating effect of AGS on hippocampal LTP also blocked by scopolamine, a muscarinic acetylcholine receptor antagonist. Moreover, AGS also ameliorated memory impairments induced by scopolamine in passive avoidance, Y-maze, and Morris water maze tests. CONCLUSIONS These results suggest that AGS facilitates hippocampal LTP through activating cholinergic system and ameliorates cholinergic dysfunction-induced memory deficit.
Collapse
Affiliation(s)
- Jihye Lee
- Division of Endocrinology, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea.
| | - Huiyoung Kwon
- Department of Medicinal Biotechnology, College of Health Sciences, Dong-A University, Busan 49315, Republic of Korea.
| | - Jimin Yu
- Department of Medicinal Biotechnology, College of Health Sciences, Dong-A University, Busan 49315, Republic of Korea.
| | - Eunbi Cho
- Department of Medicinal Biotechnology, College of Health Sciences, Dong-A University, Busan 49315, Republic of Korea.
| | - Jieun Jeon
- Department of Medicinal Biotechnology, College of Health Sciences, Dong-A University, Busan 49315, Republic of Korea.
| | - Seungheon Lee
- Department of Aquatic Biomedical Sciences, School of Marine Biomedical Science, College of Ocean Science, Jeju National University, Jeju 63243, Republic of Korea.
| | - Jong Hoon Ryu
- Department of Life and Nanopharmaceutical Science, Kyung Hee University, Hoeki-dong, Dongdaemoon-Ku, Seoul 02447, Republic of Korea; Department of Oriental Pharmaceutical Science, College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea; Kyung Hee East-West Pharmaceutical Research Institute, College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea.
| | - Young Choon Lee
- Department of Medicinal Biotechnology, College of Health Sciences, Dong-A University, Busan 49315, Republic of Korea; Institute of Convergence Bio-Health, Dong-A University, Busan 49315, Republic of Korea.
| | - Dong Hyun Kim
- Department of Medicinal Biotechnology, College of Health Sciences, Dong-A University, Busan 49315, Republic of Korea; Institute of Convergence Bio-Health, Dong-A University, Busan 49315, Republic of Korea.
| | - Ji Wook Jung
- Division of Bio-technology and Convergence, College of Bio-industry, Daegu Haany University, Kyungsan 38578, Republic of Korea.
| |
Collapse
|
23
|
CHAT gene polymorphism rs3810950 is associated with the risk of Alzheimer's disease in the Czech population. J Biomed Sci 2018; 25:41. [PMID: 29759072 PMCID: PMC5950140 DOI: 10.1186/s12929-018-0444-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 05/07/2018] [Indexed: 12/24/2022] Open
Abstract
Background Cholinergic hypothesis of Alzheimer’s disease (AD) is based on the findings that a reduced and/or perturbed cholinergic activity in the central nervous system correlates with cognitive decline in patients with Alzheimer’s disease. The hypothesis resulted in the development of centrally-acting agents potentiating cholinergic neurotransmission; these drugs, however, only slowed down the cognitive decline and could not prevent it. Consequently, the perturbation of the central cholinergic signalling has been accepted as a part of the Alzheimer’s aetiology but not necessarily the primary cause of the disease. In the present study we have focused on the rs3810950 polymorphism of ChAT (choline acetyltransferase) gene that has not been studied in Czech population before. Methods We carried out an association study to test for a relationship between the rs3810950 polymorphism and Alzheimer’s disease in a group of 1186 persons; 759 patients with Alzheimer’s disease and 427 control subjects. Furthermore, we performed molecular modelling of the terminal domain (1st-126th amino acid residue) of one of the ChAT isoforms (M) to visualise in silico whether the rs3810950 polymorphism (A120T) can change any features of the tertiary structure of the protein which would have a potential to alter its function. Results The AA genotype of CHAT was associated with a 1.25 times higher risk of AD (p < 0.002) thus demonstrating that the rs3810950 polymorphism can have a modest but statistically significant effect on the risk of AD in the Czech population. Furthermore, the molecular modelling indicated that the polymorphism is likely to be associated with significant variations in the tertiary structure of the protein molecule which may impact its enzyme activity. Conclusions Our findings are consistent with the results of the meta-analytical studies of the relationship between rs3810950 polymorphism and AD and provide further material evidence for a direct (primary) involvement of cholinergic mechanisms in the etiopathogenesis of AD, particularly as a factor in cognitive decline and perturbed conscious awareness commonly observed in patients with AD.
Collapse
|
24
|
Palanimuthu D, Poon R, Sahni S, Anjum R, Hibbs D, Lin HY, Bernhardt PV, Kalinowski DS, Richardson DR. A novel class of thiosemicarbazones show multi-functional activity for the treatment of Alzheimer's disease. Eur J Med Chem 2017; 139:612-632. [DOI: 10.1016/j.ejmech.2017.08.021] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 07/07/2017] [Accepted: 08/07/2017] [Indexed: 12/21/2022]
|
25
|
Otero C, Aldaba M, Ferrer O, Gascón A, Ondategui-Parra JC, Pujol J. Suitability of open-field autorefractors as pupillometers and instrument design effects. Int J Ophthalmol 2017; 10:567-572. [PMID: 28503429 DOI: 10.18240/ijo.2017.04.11] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 02/14/2017] [Indexed: 11/23/2022] Open
Abstract
AIM To determine the agreement and repeatability of the pupil measurement obtained with VIP-200 (Neuroptics), PowerRef II (Plusoptix), WAM-5500 (Grand Seiko) and study the effects of instrument design on pupillometry. METHODS Forty patients were measured twice in low, mid and high mesopic. Repeatability was analyzed with the within-subject standard deviation (Sw) and paired t-tests. Agreement was studied with Bland-Altman plots and repeated measures ANOVA. Instrument design analysis consisted on measuring pupil size with PowerRef II simulating monocular and binocular conditions as well as with proximity cues and without proximity cues. RESULTS The mean difference (±standard deviation) between test-retest for low, mid and high mesopic conditions were, respectively: -0.09 (±0.16), -0.05 (±0.18) and -0.08 (±0.23) mm for Neuroptics, -0.05 (±0.17), -0.12 (±0.23) and -0.17 (±0.34) mm for WAM-5500, -0.04 (±0.27), -0.13 (±0.37) and -0.11 (±0.28) mm for PowerRef II. Regarding agreement with Neuroptics, the mean difference for low, mid and high mesopic conditions were, respectively: -0.48 (±0.35), -0.83 (±0.52) and -0.38 (±0.56) mm for WAM-5500, -0.28 (±0.56), -0.70 (±0.55) and -0.61 (±0.54) mm for PowerRef II. The mean difference of binocular minus monocular pupil measurements was: -0.83 (±0.87) mm; and with proximity cues minus without proximity cues was: -0.30 (±0.77) mm. CONCLUSION All the instruments show similar repeat-ability. In all illumination conditions, agreement of Neuroptics with WAM-5500 and PowerRef II is not good enough, which can be partially induced due to their open field design.
Collapse
Affiliation(s)
- Carles Otero
- Davalor Research Center, Technical University of Catalonia, Terrassa 08222, Spain
| | - Mikel Aldaba
- Davalor Research Center, Technical University of Catalonia, Terrassa 08222, Spain
| | - Oriol Ferrer
- Davalor Research Center, Technical University of Catalonia, Terrassa 08222, Spain
| | - Andrea Gascón
- Davalor Research Center, Technical University of Catalonia, Terrassa 08222, Spain
| | | | - Jaume Pujol
- Davalor Research Center, Technical University of Catalonia, Terrassa 08222, Spain
| |
Collapse
|