1
|
Leidens LM, Michels AF, Machado G, Alvarez F, Smirnov AI, Krim J, Figueroa CA. Illuminating Pathways to Dynamic Nanotribology: Light-Mediated Active Control of Interfacial Friction with Nanosuspensions. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2404268. [PMID: 39011945 DOI: 10.1002/smll.202404268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 06/27/2024] [Indexed: 07/17/2024]
Abstract
Active control of nanotribological properties is a challenge. Materials responsive to external stimuli may catalyze this paradigm shift. Recently, the nanofriction of a thin film is modulated by light, ushering in phototribology. This frontier is expanded here, by investigating photoactive nanoparticles in lubricants to confer similar functionality to passive surfaces. Quartz-crystal microbalance (QCM) is employed to assess the phototribological behavior of aqueous suspensions of titanium dioxide nanoparticles. A comparison of dark and illuminated conditions provides the first demonstration of tuning the interfacial friction in solid-nanosuspension interfaces by light. Cyclic tests reveal reversible transitions between higher (dark) and lower friction (illuminated) regimes. These transitions are underpinned by transient states with surface charge variations, as confirmed by Zeta potential measurements. The accumulated surface charge increases repulsion within the system and favors sliding. Upon cessation of illumination, the system returns to its prior equilibrium state. These findings impact not only nanotribology but nanofluidics and nanorheology. Furthermore, the results underscore the need to consider light-induced effects in other scenarios, including the calculation of activity coefficients of photoactive suspensions. This multifaceted study introduces a new dimension to in operando frictional tuning, beckoning a myriad of applications and fundamental insights at the nanoscale.
Collapse
Affiliation(s)
- Leonardo M Leidens
- PPGMAT, University of Caxias do Sul, Caxias do Sul, RS, 95070-560, Brazil
- Instituto de Física "Gleb Wataghin", Universidade Estadual de Campinas, Campinas, SP, 13083-970, Brazil
| | | | - Giovanna Machado
- Laboratory of Microscope and Microanalysis, Northeast Center for Strategic Technologies (CETENE), Recife, PE, 50740-545, Brazil
| | - Fernando Alvarez
- Instituto de Física "Gleb Wataghin", Universidade Estadual de Campinas, Campinas, SP, 13083-970, Brazil
| | - Alex I Smirnov
- Department of Chemistry, North Carolina State University, Raleigh, NC, 27695, USA
| | - Jacqueline Krim
- Department of Physics, North Carolina State University, Raleigh, NC, 27695, USA
| | - Carlos A Figueroa
- PPGMAT, University of Caxias do Sul, Caxias do Sul, RS, 95070-560, Brazil
| |
Collapse
|
2
|
Kikkawa Y, Tsuzuki S. Stability of n-alkanes and n-perfluoroalkanes against horizontal displacement on a graphite surface. Phys Chem Chem Phys 2024; 26:24314-24321. [PMID: 39257182 DOI: 10.1039/d4cp02418d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
The stability of adsorbed molecules on surfaces is fundamental and important for various applications, such as coating, lubrication, friction, and self-assembled structure formation. In this study, we investigated the structures and interaction energies (Eint) of propane, n-pentane, n-heptane, perfluoropropane, n-perfluoropentane, and n-perfluoroheptane adsorbed on the surface of C96H24 (a model surface of graphite). The changes in Eint (ΔEint = Eint - Eint(0)) associated with the horizontal displacement from the stable position were calculated using dispersion-corrected density functional theory (DFT; B3LYP-D3), where Eint(0) is the Eint at the stable position. The maximum value of ΔEint (ΔEint(max)) associated with the horizontal displacement increased as the chain length increased. The ΔEint(max) for the three n-alkanes were 1.10, 1.82, and 2.35 kcal mol-1, respectively. The values for n-perfluoroalkanes were 0.57, 0.83, and 1.04 kcal mol-1, respectively. The ΔEint(max) values for the n-alkanes were significantly larger than those for the corresponding n-perfluoroalkanes. The Eint(max) value per carbon atom of the n-alkanes (ca. 0.30 kcal mol-1) is approximately 2.5 times as large as that of n-perfluoroalkanes (ca. 0.12 kcal mol-1). The ΔEint associated with the horizontal displacement of propane and perfluoropropane on circumcoronene (C54H18) obtained by the B3LYP-D3 calculations are close to those obtained by the second order Møller-Plesset (MP2) and dispersion-corrected double hybrid DFT calculations, suggesting the sufficient accuracy of the ΔEint obtained by the B3LYP-D3. Thus, our quantitative analysis revealed the higher stability of n-alkanes against horizontal displacement on a graphite surface than that of n-perfluoroalkanes.
Collapse
Affiliation(s)
- Yoshihiro Kikkawa
- National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan.
| | - Seiji Tsuzuki
- Department of Applied Physics, The University of Tokyo, Tokyo 113-8656, Japan.
| |
Collapse
|
3
|
Hao Y, Sun TY, Ye JT, Huang LF, Wang LP. Accurate Simulation for 2D Lubricating Materials in Realistic Environments: From Classical to Quantum Mechanical Methods. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2312429. [PMID: 38655823 DOI: 10.1002/adma.202312429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 02/17/2024] [Indexed: 04/26/2024]
Abstract
2D materials such as graphene, MoS2, and hexagonal BN are the most advanced solid lubricating materials with superior friction and anti-wear performance. However, as a typical surface phenomenon, the lubricating properties of 2D materials are largely dependent on the surrounding environment, such as temperature, stress, humidity, oxygen, and other environmental substances. Given the technical challenges in experiment for real-time and in situ detection of microscopic environment-material interaction, recent years have witnessed the acceleration of computational research on the lubrication behavior of 2D materials in realistic environments. This study reviews the up-to-date computational studies for the effect of environmental factors on the lubrication performance of 2D materials, summarizes the theoretical methods in lubrication from classical to quantum-mechanics ones, and emphasizes the importance of quantum method in revealing the lubrication mechanism at atomic and electronic level. An effective simulation method based on ab initio molecular dynamics is also proposed to try to provide more ways to accurately reveal the friction mechanisms and reliably guide the lubricating material design. On the basis of current development, future prospects, and challenges for the simulation and modeling in lubrication with realistic environment are outlined.
Collapse
Affiliation(s)
- Yu Hao
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- Research Center for Advanced Interdisciplinary Sciences, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| | - Tian-Yu Sun
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- Research Center for Advanced Interdisciplinary Sciences, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| | - Jin-Tao Ye
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- Research Center for Advanced Interdisciplinary Sciences, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| | - Liang-Feng Huang
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- Research Center for Advanced Interdisciplinary Sciences, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| | - Li-Ping Wang
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| |
Collapse
|
4
|
Monteiro RRC, de Melo Neta MMF, Rocha WS, Soares JB, de Luna FMT, Fernandez-Lafuente R, Vieira RS. Optimizing the enzymatic production of biolubricants by the Taguchi method: Esterification of the free fatty acids from castor oil with 2-ethyl-1-hexanol catalyzed by Eversa Transform 2.0. Enzyme Microb Technol 2024; 175:110409. [PMID: 38335559 DOI: 10.1016/j.enzmictec.2024.110409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/26/2024] [Accepted: 02/01/2024] [Indexed: 02/12/2024]
Abstract
The solvent-free esterification of the free fatty acids (FFAs) obtained by the hydrolysis of castor oil (a non-edible vegetable oil) with 2-ethyl-1-hexanol (a branched fatty alcohol) was catalyzed by different free lipases. Eversa Transform 2.0 (ETL) features surpassed most commercial lipases. Some process parameters were optimized by the Taguchi method (L16'). As a result, a conversion over 95% of the FFAs of castor oil into esters with lubricants properties was achieved under optimized reaction conditions (15 wt% of biocatalyst content, 1:4 molar ratio (FFAs/alcohol), 30 °C, 180 rpm, 96 h). The substrates molar ratio had the highest influence on the dependent variable (conversion at 24 h). FFAs/2-ethyl-1-hexanol esters were characterized regarding the physicochemical and tribological properties. Interestingly, the modification of the FFAs with 2-ethyl-1-hexanol by ETL increased the oxidative stability of the FFAs feedstock from 0.18 h to 16.83 h. The biolubricants presented a lower friction coefficient than the reference commercial mineral lubricant (0.052 ± 0.07 against 0.078 ± 0.04). Under these conditions, ETL catalyzed the oligomerization of ricinoleic acid (a hydroxyl fatty acid) into estolides, reaching a conversion of 25.15% of the initial FFAs (for the first time).
Collapse
Affiliation(s)
- Rodolpho R C Monteiro
- Departamento de Engenharia Química, Universidade Federal do Ceará, Campus do Pici, 60455760 Fortaleza, Brazil
| | - Maria M F de Melo Neta
- Departamento de Engenharia Mecânica, Universidade Federal do Ceará, Campus do Pici, 60455760 Fortaleza, Brazil
| | - Wesley S Rocha
- Departamento de Engenharia Química, Universidade Federal do Ceará, Campus do Pici, 60455760 Fortaleza, Brazil
| | - Jorge B Soares
- Departamento de Engenharia de Transportes, Universidade Federal do Ceará, Campus do Pici, 60455760 Fortaleza, Brazil
| | - F Murilo T de Luna
- Departamento de Engenharia Química, Universidade Federal do Ceará, Campus do Pici, 60455760 Fortaleza, Brazil; Departamento de Engenharia Mecânica, Universidade Federal do Ceará, Campus do Pici, 60455760 Fortaleza, Brazil
| | | | - Rodrigo S Vieira
- Departamento de Engenharia Química, Universidade Federal do Ceará, Campus do Pici, 60455760 Fortaleza, Brazil.
| |
Collapse
|
5
|
Monteiro RRC, Berenguer-Murcia Á, Rocha-Martin J, Vieira RS, Fernandez-Lafuente R. Biocatalytic production of biolubricants: Strategies, problems and future trends. Biotechnol Adv 2023; 68:108215. [PMID: 37473819 DOI: 10.1016/j.biotechadv.2023.108215] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/13/2023] [Accepted: 07/15/2023] [Indexed: 07/22/2023]
Abstract
The increasing worries by the inadequate use of energy and the preservation of nature are promoting an increasing interest in the production of biolubricants. After discussing the necessity of producing biolubricants, this review focuses on the production of these interesting molecules through the use of lipases, discussing the different possibilities (esterification of free fatty acids, hydroesterification or transesterification of oils and fats, transesterification of biodiesel with more adequate alcohols, estolides production, modification of fatty acids). The utilization of discarded substrates has special interest due to the double positive ecological impact (e.g., oil distillated, overused oils). Pros and cons of all these possibilities, together with general considerations to optimize the different processes will be outlined. Some possibilities to overcome some of the problems detected in the production of these interesting compounds will be also discussed.
Collapse
Affiliation(s)
- Rodolpho R C Monteiro
- Departamento de Engenharia Química, Universidade Federal do Ceará, Campus do Pici, 60455760 Fortaleza, Brazil
| | - Ángel Berenguer-Murcia
- Departamento de Química Inorgánica e Instituto Universitario de Materiales, Universidad de Alicante, 03080 Alicante, Spain
| | - Javier Rocha-Martin
- Departamento de Bioquímica y Biología Molecular, Facultad de Biología, Universidad Complutense de Madrid, 28040 Madrid, Spain.
| | - Rodrigo S Vieira
- Departamento de Engenharia Química, Universidade Federal do Ceará, Campus do Pici, 60455760 Fortaleza, Brazil.
| | | |
Collapse
|
6
|
Gadelmoula A, Aldahash SA. Dry Friction and Wear Behavior of Laser-Sintered Graphite/Carbon Fiber/Polyamide 12 Composite. Polymers (Basel) 2023; 15:3916. [PMID: 37835965 PMCID: PMC10575170 DOI: 10.3390/polym15193916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/24/2023] [Accepted: 09/26/2023] [Indexed: 10/15/2023] Open
Abstract
Carbon fiber-reinforced polymers (CFRPs) are being used extensively in modern industries that require a high strength-to-weight ratio, such as aerospace, automotive, motorsport, and sports equipment. However, although reinforcement with carbon fibers improves the mechanical properties of polymers, this comes at the expense of abrasive wear resistance. Therefore, to efficiently utilize CFRPs in dry sliding contacts, solid lubricant is used as a filler. Further, to facilitate the fabrication of objects with complex geometries, selective laser sintering (SLS) can be employed. Accordingly, in the present work, graphite-filled carbon fiber-reinforced polyamide 12 (CFR-PA12) specimens were prepared using the SLS process to explore the dry sliding friction and wear characteristics of the composite. The test specimens were aligned along four different orientations in the build chamber of the SLS machine to determine the orientation-dependent tribological properties. The experiments were conducted using a pin-on-disc tribometer to measure the coefficient of friction (COF), interface temperature, friction-induced noise, and specific wear rate. In addition, scanning electron microscopy (SEM) of tribo-surfaces was conducted to specify the dominant wear pattern. The results indicated that the steady-state COF, contact temperature, and wear pattern of graphite-filled CFR-PA12 are orientation-independent and that the contact temperature is likely to approach an asymptote far below the glass transition temperature of amorphous PA12 zones, thus eliminating the possibility of matrix softening. Additionally, the results showed that the Z-oriented specimen exhibits the lowest level of friction-induced noise along with the highest wear resistance. Moreover, SEM of tribo-surfaces determined that abrasive wear is the dominant wear pattern.
Collapse
Affiliation(s)
- Abdelrasoul Gadelmoula
- Department of Mechanical and Industrial Engineering, College of Engineering, Majmaah University, Al-Majmaah 11952, Saudi Arabia;
- Department of Mechanical Design and Production Engineering, Faculty of Engineering, Assiut University, Assiut 71515, Egypt
| | - Saleh Ahmed Aldahash
- Department of Mechanical and Industrial Engineering, College of Engineering, Majmaah University, Al-Majmaah 11952, Saudi Arabia;
| |
Collapse
|