1
|
Li YH, Liu C, Xu RZ, Fan YP, Wang JY, Li H, Zhang J, Zhang HJ, Wang JJ, Li DK. Genome-wide analysis of long non-coding RNAs involved in the fruit development process of Cucumis melo Baogua. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2024; 30:1475-1491. [PMID: 39310708 PMCID: PMC11413265 DOI: 10.1007/s12298-024-01507-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 08/20/2024] [Accepted: 08/27/2024] [Indexed: 09/25/2024]
Abstract
Melon (Cucumis melo L.) is a horticultural crop that is planted globally. Cucumis melo L. cv. Baogua is a typical melon that is suitable for studying fruit development because of its ability to adapt to different climatic conditions. Long non-coding RNAs (lncRNAs) are a class of non-coding RNAs longer than 200 nucleotides, which play important roles in a wide range of biological processes by regulating gene expression. In this study, the transcriptome of the Baogua melon was sequenced at three stages of the process of fruit development (14 days, 21 days, and 28 days) to study the role of lncRNAs in fruit development. The cis and trans lncRNAs were subsequently predicted and identified to determine their target genes. Notably, 1716 high-confidence lncRNAs were obtained in the three groups. A subsequent differential expression analysis of the lncRNAs between the three groups revealed 388 differentially expressed lncRNAs. A total of 11 genes were analyzed further to validate the transcriptome sequencing results. Interestingly, the MELO3C001376.2 and MSTRG.571.2 genes were found to be significantly (P < 0.05) downregulated in the fruits. This study provides a basis to better understand the functions and regulatory mechanisms of lncRNAs during the development of melon fruit.
Collapse
Affiliation(s)
- Ya-hui Li
- School of Life Sciences, Anhui Bio-Breeding Engineering Research Center for Water Melon and Melon, Huaibei Normal University, Huaibei, 235000 Anhui People’s Republic of China
| | - Chun Liu
- School of Life Sciences, Anhui Bio-Breeding Engineering Research Center for Water Melon and Melon, Huaibei Normal University, Huaibei, 235000 Anhui People’s Republic of China
| | - Run-zhe Xu
- School of Life Sciences, Anhui Bio-Breeding Engineering Research Center for Water Melon and Melon, Huaibei Normal University, Huaibei, 235000 Anhui People’s Republic of China
| | - Yu-peng Fan
- School of Life Sciences, Anhui Bio-Breeding Engineering Research Center for Water Melon and Melon, Huaibei Normal University, Huaibei, 235000 Anhui People’s Republic of China
| | - Ji-yuan Wang
- School of Life Sciences, Anhui Bio-Breeding Engineering Research Center for Water Melon and Melon, Huaibei Normal University, Huaibei, 235000 Anhui People’s Republic of China
| | - Hu Li
- School of Life Sciences, Anhui Bio-Breeding Engineering Research Center for Water Melon and Melon, Huaibei Normal University, Huaibei, 235000 Anhui People’s Republic of China
| | - Jian Zhang
- Institute of Vegetables, Key Laboratory of Horticultural Crop Germplasm Innovation and Utilization (Co-Construction By Ministry and Province), Anhui Academy of Agricultural Sciences, Huaibei Normal University, Nongke South Road 40, Hefei, 230031 Anhui Province People’s Republic of China
| | - Hui-jun Zhang
- School of Life Sciences, Anhui Bio-Breeding Engineering Research Center for Water Melon and Melon, Huaibei Normal University, Huaibei, 235000 Anhui People’s Republic of China
| | - Jing-jing Wang
- Huinan Academy of Agricultural Sciences, Huainan, 232001 Anhui Province People’s Republic of China
| | - Da-kui Li
- Huinan Academy of Agricultural Sciences, Huainan, 232001 Anhui Province People’s Republic of China
| |
Collapse
|
2
|
Tchurikov NA, Vartanian AA, Klushevskaya ES, Alembekov IR, Kretova AN, Lukicheva VN, Chechetkin VR, Kravatskaya GI, Kosorukov VS, Kravatsky YV. Strong Activation of ID1, ID2, and ID3 Genes Is Coupled with the Formation of Vasculogenic Mimicry Phenotype in Melanoma Cells. Int J Mol Sci 2024; 25:9291. [PMID: 39273240 PMCID: PMC11394958 DOI: 10.3390/ijms25179291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 08/22/2024] [Accepted: 08/26/2024] [Indexed: 09/15/2024] Open
Abstract
Gene expression patterns are very sensitive to external influences and are reflected in phenotypic changes. It was previously described that transferring melanoma cells from a plastic surface to Matrigel led to formation of de novo vascular networks-vasculogenic mimicry-that are characteristic to a stemness phenotype in aggressive tumors. Up to now there was no detailed data about the gene signature accompanying this process. Here, we show that this transfer shortly led to extremely strong epigenetic changes in gene expression in the melanoma cells. We observed that on Matrigel numerous genes controlling ribosome biogenesis were upregulated. However, most of the activated genes were inhibitors of the differentiation genes (ID1, ID2, and ID3). At the same time, the genes that control differentiation were downregulated. Both the upregulated and the downregulated genes are simultaneously targeted by different transcription factors shaping sets of co-expressed genes. The specific group of downregulated genes shaping contacts with rDNA genes are also associated with the H3K27me3 mark and with numerous lincRNAs and miRNAs. We conclude that the stemness phenotype of melanoma cells is due to the downregulation of developmental genes and formation of dedifferentiated cells.
Collapse
Affiliation(s)
- Nickolai A Tchurikov
- Department of Epigenetic Mechanisms of Gene Expression Regulation, Engelhardt Institute of Molecular Biology Russian Academy of Sciences, 119334 Moscow, Russia
| | - Amalia A Vartanian
- Department of Experimental Diagnosis and Therapy of Tumors, N.N. Blokhin National Medical Research Center of Oncology of the Ministry of Health of Russia, 115478 Moscow, Russia
| | - Elena S Klushevskaya
- Department of Epigenetic Mechanisms of Gene Expression Regulation, Engelhardt Institute of Molecular Biology Russian Academy of Sciences, 119334 Moscow, Russia
| | - Ildar R Alembekov
- Department of Epigenetic Mechanisms of Gene Expression Regulation, Engelhardt Institute of Molecular Biology Russian Academy of Sciences, 119334 Moscow, Russia
| | - Antonina N Kretova
- Department of Epigenetic Mechanisms of Gene Expression Regulation, Engelhardt Institute of Molecular Biology Russian Academy of Sciences, 119334 Moscow, Russia
| | - Viktoriya N Lukicheva
- Department of Epigenetic Mechanisms of Gene Expression Regulation, Engelhardt Institute of Molecular Biology Russian Academy of Sciences, 119334 Moscow, Russia
| | - Vladimir R Chechetkin
- Department of Epigenetic Mechanisms of Gene Expression Regulation, Engelhardt Institute of Molecular Biology Russian Academy of Sciences, 119334 Moscow, Russia
| | - Galina I Kravatskaya
- Department of Epigenetic Mechanisms of Gene Expression Regulation, Engelhardt Institute of Molecular Biology Russian Academy of Sciences, 119334 Moscow, Russia
| | - Vyacheslav S Kosorukov
- Department of Experimental Diagnosis and Therapy of Tumors, N.N. Blokhin National Medical Research Center of Oncology of the Ministry of Health of Russia, 115478 Moscow, Russia
| | - Yuri V Kravatsky
- Department of Epigenetic Mechanisms of Gene Expression Regulation, Engelhardt Institute of Molecular Biology Russian Academy of Sciences, 119334 Moscow, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology Russian Academy of Sciences, 119334 Moscow, Russia
| |
Collapse
|
3
|
Tchurikov NA, Alembekov IR, Klushevskaya ES, Kretova AN, Lukicheva VN, Chechetkin VR, Kravatskaya GI, Kravatsky YV. Preferential Co-Expression and Colocalization of rDNA-Contacting Genes with LincRNAs Suggest Their Involvement in Shaping Inter-Chromosomal Interactions with Nucleoli. Int J Mol Sci 2024; 25:6333. [PMID: 38928039 PMCID: PMC11204237 DOI: 10.3390/ijms25126333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/05/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024] Open
Abstract
Different developmental genes shape frequent dynamic inter-chromosomal contacts with rDNA units in human and Drosophila cells. In the course of differentiation, changes in these contacts occur, coupled with changes in the expression of hundreds of rDNA-contacting genes. The data suggest a possible role of nucleoli in the global regulation of gene expression. However, the mechanism behind the specificity of these inter-chromosomal contacts, which are rebuilt in every cell cycle, is not yet known. Here, we describe the strong association of rDNA-contacting genes with numerous long intergenic non-coding RNAs (lincRNAs) in HEK293T cells and in initial and differentiated K562 cells. We observed that up to 600 different lincRNAs were preferentially co-expressed with multiple overlapping sets of rDNA-contacting developmental genes, and there was a strong correlation between the genomic positions of rDNA-contacting genes and lincRNA mappings. These two findings suggest that lincRNAs might guide the corresponding developmental genes toward rDNA clusters. We conclude that the inter-chromosomal interactions of rDNA-contacting genes with nucleoli might be guided by lincRNAs, which might physically link particular genomic regions with rDNA clusters.
Collapse
Affiliation(s)
- Nickolai A. Tchurikov
- Department of Epigenetic Mechanisms of Gene Expression Regulation, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119334, Russia (Y.V.K.)
| | - Ildar R. Alembekov
- Department of Epigenetic Mechanisms of Gene Expression Regulation, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119334, Russia (Y.V.K.)
| | - Elena S. Klushevskaya
- Department of Epigenetic Mechanisms of Gene Expression Regulation, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119334, Russia (Y.V.K.)
| | - Antonina N. Kretova
- Department of Epigenetic Mechanisms of Gene Expression Regulation, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119334, Russia (Y.V.K.)
| | - Viktoriya N. Lukicheva
- Department of Epigenetic Mechanisms of Gene Expression Regulation, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119334, Russia (Y.V.K.)
| | - Vladimir R. Chechetkin
- Department of Epigenetic Mechanisms of Gene Expression Regulation, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119334, Russia (Y.V.K.)
| | - Galina I. Kravatskaya
- Department of Epigenetic Mechanisms of Gene Expression Regulation, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119334, Russia (Y.V.K.)
| | - Yuri V. Kravatsky
- Department of Epigenetic Mechanisms of Gene Expression Regulation, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119334, Russia (Y.V.K.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119334, Russia
| |
Collapse
|
4
|
Ozturk S. Genetic variants underlying spermatogenic arrests in men with non-obstructive azoospermia. Cell Cycle 2023; 22:1021-1061. [PMID: 36740861 PMCID: PMC10081088 DOI: 10.1080/15384101.2023.2171544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/29/2022] [Accepted: 01/18/2023] [Indexed: 02/07/2023] Open
Abstract
Spermatogenic arrest is a severe form of non-obstructive azoospermia (NOA), which occurs in 10-15% of infertile men. Interruption in spermatogenic progression at premeiotic, meiotic, or postmeiotic stage can lead to arrest in men with NOA. Recent studies have intensively focused on defining genetic variants underlying these spermatogenic arrests by making genome/exome sequencing. A number of variants were discovered in the genes involving in mitosis, meiosis, germline differentiation and other basic cellular events. Herein, defined variants in NOA cases with spermatogenic arrests and created knockout mouse models for the related genes are comprehensively reviewed. Also, importance of gene panel-based screening for NOA cases was discussed. Screening common variants in these infertile men with spermatogenic arrests may contribute to elucidating the molecular background and designing novel treatment strategies.
Collapse
Affiliation(s)
- Saffet Ozturk
- Department of Histology and Embryology, Akdeniz University School of Medicine, Antalya, Turkey
| |
Collapse
|
5
|
Chattopadhyay T, Biswal P, Lalruatfela A, Mallick B. Emerging roles of PIWI-interacting RNAs (piRNAs) and PIWI proteins in head and neck cancer and their potential clinical implications. Biochim Biophys Acta Rev Cancer 2022; 1877:188772. [PMID: 35931391 DOI: 10.1016/j.bbcan.2022.188772] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 07/29/2022] [Accepted: 07/29/2022] [Indexed: 02/08/2023]
Abstract
Head and neck squamous cell carcinoma (HNSCC) are among the well-known neoplasms originating in the oral cavity, pharynx, and larynx. Despite advancements in chemotherapy, radiotherapy, and surgery, the survival rates of the patients are low, which has posed a major therapeutic challenge. A growing number of non-coding RNAs (ncRNAs), for instance, microRNAs, have been identified whose abnormal expression patterns have been implicated in HNSCC. However, more recently, several seminal research has shown that piwi-interacting RNAs (piRNAs), a promising and young class of small ncRNA, are linked to the emergence and progression of cancer. They can regulate transposable elements (TE) and gene expression through multiple mechanisms, making them potentially more powerful regulators than miRNAs. Hence, they can be more promising ncRNAs candidates for cancer therapeutic intervention. Here, we surveyed the roles and clinical implications of piRNAs and their PIWI proteins partners in tumorigenesis and associated molecular processes of cancer, with a particular focus on HNSCC, to offer a new avenue for diagnosis, prognosis, and therapeutic interventions for the malignancy, improving patient's outcomes.
Collapse
Affiliation(s)
- Trisha Chattopadhyay
- RNAi and Functional Genomics Lab., Department of Life Science, National Institute of Technology, Rourkela 769008, Odisha, India
| | - Priyajit Biswal
- RNAi and Functional Genomics Lab., Department of Life Science, National Institute of Technology, Rourkela 769008, Odisha, India
| | - Anthony Lalruatfela
- RNAi and Functional Genomics Lab., Department of Life Science, National Institute of Technology, Rourkela 769008, Odisha, India
| | - Bibekanand Mallick
- RNAi and Functional Genomics Lab., Department of Life Science, National Institute of Technology, Rourkela 769008, Odisha, India.
| |
Collapse
|
6
|
Tchurikov NA, Klushevskaya ES, Alembekov IR, Bukreeva AS, Kretova AN, Chechetkin VR, Kravatskaya GI, Kravatsky YV. Fragments of rDNA Genes Scattered over the Human Genome Are Targets of Small RNAs. Int J Mol Sci 2022; 23:ijms23063014. [PMID: 35328433 PMCID: PMC8954558 DOI: 10.3390/ijms23063014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/08/2022] [Accepted: 03/09/2022] [Indexed: 02/06/2023] Open
Abstract
Small noncoding RNAs of different origins and classes play several roles in the regulation of gene expression. Here, we show that diverged and rearranged fragments of rDNA units are scattered throughout the human genome and that endogenous small noncoding RNAs are processed by the Microprocessor complex from specific regions of ribosomal RNAs shaping hairpins. These small RNAs correspond to particular sites inside the fragments of rDNA that mostly reside in intergenic regions or the introns of about 1500 genes. The targets of these small ribosomal RNAs (srRNAs) are characterized by a set of epigenetic marks, binding sites of Pol II, RAD21, CBP, and P300, DNase I hypersensitive sites, and by enrichment or depletion of active histone marks. In HEK293T cells, genes that are targeted by srRNAs (srRNA target genes) are involved in differentiation and development. srRNA target genes are enriched with more actively transcribed genes. Our data suggest that remnants of rDNA sequences and srRNAs may be involved in the upregulation or downregulation of a specific set of genes in human cells. These results have implications for diverse fields, including epigenetics and gene therapy.
Collapse
Affiliation(s)
- Nickolai A. Tchurikov
- Department of Epigenetic Mechanisms of Gene Expression Regulation, Engelhardt Institute of Molecular Biology Russian Academy of Sciences, 119334 Moscow, Russia; (E.S.K.); (I.R.A.); (A.S.B.); (A.N.K.); (V.R.C.); (G.I.K.); (Y.V.K.)
- Correspondence:
| | - Elena S. Klushevskaya
- Department of Epigenetic Mechanisms of Gene Expression Regulation, Engelhardt Institute of Molecular Biology Russian Academy of Sciences, 119334 Moscow, Russia; (E.S.K.); (I.R.A.); (A.S.B.); (A.N.K.); (V.R.C.); (G.I.K.); (Y.V.K.)
| | - Ildar R. Alembekov
- Department of Epigenetic Mechanisms of Gene Expression Regulation, Engelhardt Institute of Molecular Biology Russian Academy of Sciences, 119334 Moscow, Russia; (E.S.K.); (I.R.A.); (A.S.B.); (A.N.K.); (V.R.C.); (G.I.K.); (Y.V.K.)
| | - Anastasiia S. Bukreeva
- Department of Epigenetic Mechanisms of Gene Expression Regulation, Engelhardt Institute of Molecular Biology Russian Academy of Sciences, 119334 Moscow, Russia; (E.S.K.); (I.R.A.); (A.S.B.); (A.N.K.); (V.R.C.); (G.I.K.); (Y.V.K.)
| | - Antonina N. Kretova
- Department of Epigenetic Mechanisms of Gene Expression Regulation, Engelhardt Institute of Molecular Biology Russian Academy of Sciences, 119334 Moscow, Russia; (E.S.K.); (I.R.A.); (A.S.B.); (A.N.K.); (V.R.C.); (G.I.K.); (Y.V.K.)
| | - Vladimir R. Chechetkin
- Department of Epigenetic Mechanisms of Gene Expression Regulation, Engelhardt Institute of Molecular Biology Russian Academy of Sciences, 119334 Moscow, Russia; (E.S.K.); (I.R.A.); (A.S.B.); (A.N.K.); (V.R.C.); (G.I.K.); (Y.V.K.)
| | - Galina I. Kravatskaya
- Department of Epigenetic Mechanisms of Gene Expression Regulation, Engelhardt Institute of Molecular Biology Russian Academy of Sciences, 119334 Moscow, Russia; (E.S.K.); (I.R.A.); (A.S.B.); (A.N.K.); (V.R.C.); (G.I.K.); (Y.V.K.)
| | - Yuri V. Kravatsky
- Department of Epigenetic Mechanisms of Gene Expression Regulation, Engelhardt Institute of Molecular Biology Russian Academy of Sciences, 119334 Moscow, Russia; (E.S.K.); (I.R.A.); (A.S.B.); (A.N.K.); (V.R.C.); (G.I.K.); (Y.V.K.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology Russian Academy of Sciences, 119334 Moscow, Russia
| |
Collapse
|
7
|
Correia CCM, Rodrigues LF, de Avila Pelozin BR, Oliveira EM, Fernandes T. Long Non-Coding RNAs in Cardiovascular Diseases: Potential Function as Biomarkers and Therapeutic Targets of Exercise Training. Noncoding RNA 2021; 7:ncrna7040065. [PMID: 34698215 PMCID: PMC8544698 DOI: 10.3390/ncrna7040065] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 09/27/2021] [Accepted: 09/30/2021] [Indexed: 12/13/2022] Open
Abstract
Despite advances in treatments and therapies, cardiovascular diseases (CVDs) remain one of the leading causes of death worldwide. The discovery that most of the human genome, although transcribed, does not encode proteins was crucial for focusing on the potential of long non-coding RNAs (lncRNAs) as essential regulators of cell function at the epigenetic, transcriptional, and post-transcriptional levels. This class of non-coding RNAs is related to the pathophysiology of the cardiovascular system. The different expression profiles of lncRNAs, in different contexts of CVDs, change a great potential in their use as a biomarker and targets of therapeutic intervention. Furthermore, regular physical exercise plays a protective role against CVDs; on the other hand, little is known about its underlying molecular mechanisms. In this review, we look at the accumulated knowledge on lncRNAs and their functions in the cardiovascular system, focusing on the cardiovascular pathology of arterial hypertension, coronary heart disease, acute myocardial infarction, and heart failure. We discuss the potential of these molecules as biomarkers for clinical use, their limitations, and how the manipulation of the expression profile of these transcripts through physical exercise can begin to be suggested as a strategy for the treatment of CVDs.
Collapse
Affiliation(s)
- Camila Caldas Martins Correia
- Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo 05508-030, Brazil;
- Laboratory of Biochemistry and Molecular Biology of Exercise, School of Physical Education and Sport, University of Sao Paulo, Sao Paulo 05508-030, Brazil; (L.F.R.); (B.R.d.A.P.); (E.M.O.)
| | - Luis Felipe Rodrigues
- Laboratory of Biochemistry and Molecular Biology of Exercise, School of Physical Education and Sport, University of Sao Paulo, Sao Paulo 05508-030, Brazil; (L.F.R.); (B.R.d.A.P.); (E.M.O.)
| | - Bruno Rocha de Avila Pelozin
- Laboratory of Biochemistry and Molecular Biology of Exercise, School of Physical Education and Sport, University of Sao Paulo, Sao Paulo 05508-030, Brazil; (L.F.R.); (B.R.d.A.P.); (E.M.O.)
| | - Edilamar Menezes Oliveira
- Laboratory of Biochemistry and Molecular Biology of Exercise, School of Physical Education and Sport, University of Sao Paulo, Sao Paulo 05508-030, Brazil; (L.F.R.); (B.R.d.A.P.); (E.M.O.)
| | - Tiago Fernandes
- Laboratory of Biochemistry and Molecular Biology of Exercise, School of Physical Education and Sport, University of Sao Paulo, Sao Paulo 05508-030, Brazil; (L.F.R.); (B.R.d.A.P.); (E.M.O.)
- Correspondence: ; Tel.: + 55-11-2648-1566 (ext. 05508-030)
| |
Collapse
|
8
|
Song B, Buckler ES, Wang H, Wu Y, Rees E, Kellogg EA, Gates DJ, Khaipho-Burch M, Bradbury PJ, Ross-Ibarra J, Hufford MB, Romay MC. Conserved noncoding sequences provide insights into regulatory sequence and loss of gene expression in maize. Genome Res 2021; 31:1245-1257. [PMID: 34045362 PMCID: PMC8256870 DOI: 10.1101/gr.266528.120] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 05/21/2021] [Indexed: 01/16/2023]
Abstract
Thousands of species will be sequenced in the next few years; however, understanding how their genomes work, without an unlimited budget, requires both molecular and novel evolutionary approaches. We developed a sensitive sequence alignment pipeline to identify conserved noncoding sequences (CNSs) in the Andropogoneae tribe (multiple crop species descended from a common ancestor ∼18 million years ago). The Andropogoneae share similar physiology while being tremendously genomically diverse, harboring a broad range of ploidy levels, structural variation, and transposons. These contribute to the potential of Andropogoneae as a powerful system for studying CNSs and are factors we leverage to understand the function of maize CNSs. We found that 86% of CNSs were comprised of annotated features, including introns, UTRs, putative cis-regulatory elements, chromatin loop anchors, noncoding RNA (ncRNA) genes, and several transposable element superfamilies. CNSs were enriched in active regions of DNA replication in the early S phase of the mitotic cell cycle and showed different DNA methylation ratios compared to the genome-wide background. More than half of putative cis-regulatory sequences (identified via other methods) overlapped with CNSs detected in this study. Variants in CNSs were associated with gene expression levels, and CNS absence contributed to loss of gene expression. Furthermore, the evolution of CNSs was associated with the functional diversification of duplicated genes in the context of maize subgenomes. Our results provide a quantitative understanding of the molecular processes governing the evolution of CNSs in maize.
Collapse
Affiliation(s)
- Baoxing Song
- Institute for Genomic Diversity, Cornell University, Ithaca, New York 14853, USA
| | - Edward S Buckler
- Institute for Genomic Diversity, Cornell University, Ithaca, New York 14853, USA
- Section of Plant Breeding and Genetics, Cornell University, Ithaca, New York 14853, USA
- Agricultural Research Service, United States Department of Agriculture, Ithaca, New York 14853, USA
| | - Hai Wang
- Institute for Genomic Diversity, Cornell University, Ithaca, New York 14853, USA
- National Maize Improvement Center, Key Laboratory of Crop Heterosis and Utilization, Joint Laboratory for International Cooperation in Crop Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Yaoyao Wu
- Institute for Genomic Diversity, Cornell University, Ithaca, New York 14853, USA
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
| | - Evan Rees
- Section of Plant Breeding and Genetics, Cornell University, Ithaca, New York 14853, USA
| | | | - Daniel J Gates
- Department of Evolution and Ecology, University of California Davis, Davis, California 95616, USA
| | - Merritt Khaipho-Burch
- Section of Plant Breeding and Genetics, Cornell University, Ithaca, New York 14853, USA
| | - Peter J Bradbury
- Agricultural Research Service, United States Department of Agriculture, Ithaca, New York 14853, USA
| | - Jeffrey Ross-Ibarra
- Department of Evolution and Ecology, University of California Davis, Davis, California 95616, USA
- Center for Population Biology and Genome Center, University of California Davis, Davis, California 95616, USA
| | - Matthew B Hufford
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, Iowa 50011, USA
| | - M Cinta Romay
- Institute for Genomic Diversity, Cornell University, Ithaca, New York 14853, USA
| |
Collapse
|
9
|
Zhang Z, Meng Y, Gao F, Xiao Y, Zheng Y, Wang HQ, Gao Y, Jiang H, Yuan B, Zhang JB. TGF-β1-Mediated FDNCR1 Regulates Porcine Preadipocyte Differentiation via the TGF-β Signaling Pathway. Animals (Basel) 2020; 10:ani10081399. [PMID: 32796679 PMCID: PMC7459525 DOI: 10.3390/ani10081399] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 08/08/2020] [Accepted: 08/10/2020] [Indexed: 01/08/2023] Open
Abstract
Simple Summary Fat differentiation affects lipid deposition and is a complex metabolic process. It has been previously reported that multiple transcription factors regulate adipocyte formation. With the in-depth study of epigenetics, in recent years it has been reported that long noncoding RNA (lncRNA) can effectively affect the formation of lipid droplets and thus regulate fat deposition. lncRNA can regulate cell function through a variety of mechanisms, the most studied is the mechanism of action of lncRNA as a miRNA molecular sponge. The purpose of this article is to explore the role of transforming growth factor-beta (TGF-β1) mediated lncRNA in the formation of porcine adipocytes, from the perspective of lncRNA to reveal the effect of TGF-β1 on the differentiation of porcine adipocytes, and provide a new way to improve the quality of pork. Abstract Adipocyte differentiation and lipid metabolism have important regulatory effects on the quality of meat from livestock. A variety of transcription factors regulate preadipocyte differentiation. Several studies have revealed that transforming growth factor-beta (TGF-β1) may play a key role in epithelial–mesenchymal transition (EMT); however, little is known about the effects of TGF-β1 treatment on porcine preadipocytes. To explore the role of TGF-β1 in porcine adipocyte differentiation, porcine preadipocytes were treated with 10 ng/mL TGF-β1, and two libraries were constructed for RNA-seq. We chose an abundant and differentially expressed long noncoding RNA (lncRNA), which we named fat deposition-associated long noncoding RNA1 (FDNCR1), for further study. RT-qPCR was used to detect mRNA levels of genes related to adipocyte differentiation. Triglyceride assay kits were used to detect lipid droplet deposition. TGF-β1 significantly suppressed porcine preadipocyte differentiation. We identified 8158 lncRNAs in total and 39 differentially expressed lncRNAs. After transfection with FDNCR1 siRNA, the mRNA expression of aP2, C/EBPα, and PPARγ and triglyceride levels significantly increased. Transfection with FDNCR1 siRNA significantly decreased protein levels of p-Smad2/Smad2 and p-Smad3/Smad3. These results demonstrate that FDNCR1 suppresses porcine preadipocyte differentiation via the TGF-β signaling pathway.
Collapse
Affiliation(s)
- Zhe Zhang
- Department of Laboratory Animals, Jilin Provincial Key Laboratory of Animal Model, Jilin University, Changchun, Jilin 130062, China; (Z.Z.); (Y.M.); (F.G.); (Y.X.); (Y.Z.); (H.-Q.W.); (Y.G.); (H.J.)
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shanxi 712100, China
| | - Yu Meng
- Department of Laboratory Animals, Jilin Provincial Key Laboratory of Animal Model, Jilin University, Changchun, Jilin 130062, China; (Z.Z.); (Y.M.); (F.G.); (Y.X.); (Y.Z.); (H.-Q.W.); (Y.G.); (H.J.)
| | - Fei Gao
- Department of Laboratory Animals, Jilin Provincial Key Laboratory of Animal Model, Jilin University, Changchun, Jilin 130062, China; (Z.Z.); (Y.M.); (F.G.); (Y.X.); (Y.Z.); (H.-Q.W.); (Y.G.); (H.J.)
| | - Yue Xiao
- Department of Laboratory Animals, Jilin Provincial Key Laboratory of Animal Model, Jilin University, Changchun, Jilin 130062, China; (Z.Z.); (Y.M.); (F.G.); (Y.X.); (Y.Z.); (H.-Q.W.); (Y.G.); (H.J.)
| | - Yi Zheng
- Department of Laboratory Animals, Jilin Provincial Key Laboratory of Animal Model, Jilin University, Changchun, Jilin 130062, China; (Z.Z.); (Y.M.); (F.G.); (Y.X.); (Y.Z.); (H.-Q.W.); (Y.G.); (H.J.)
| | - Hao-Qi Wang
- Department of Laboratory Animals, Jilin Provincial Key Laboratory of Animal Model, Jilin University, Changchun, Jilin 130062, China; (Z.Z.); (Y.M.); (F.G.); (Y.X.); (Y.Z.); (H.-Q.W.); (Y.G.); (H.J.)
| | - Yan Gao
- Department of Laboratory Animals, Jilin Provincial Key Laboratory of Animal Model, Jilin University, Changchun, Jilin 130062, China; (Z.Z.); (Y.M.); (F.G.); (Y.X.); (Y.Z.); (H.-Q.W.); (Y.G.); (H.J.)
| | - Hao Jiang
- Department of Laboratory Animals, Jilin Provincial Key Laboratory of Animal Model, Jilin University, Changchun, Jilin 130062, China; (Z.Z.); (Y.M.); (F.G.); (Y.X.); (Y.Z.); (H.-Q.W.); (Y.G.); (H.J.)
| | - Bao Yuan
- Department of Laboratory Animals, Jilin Provincial Key Laboratory of Animal Model, Jilin University, Changchun, Jilin 130062, China; (Z.Z.); (Y.M.); (F.G.); (Y.X.); (Y.Z.); (H.-Q.W.); (Y.G.); (H.J.)
- Correspondence: (B.Y.); (J.-B.Z.); Tel.: +86-431-8783-6536 (B.Y.); +86-431-8783-6551 (J.-B.Z.)
| | - Jia-Bao Zhang
- Department of Laboratory Animals, Jilin Provincial Key Laboratory of Animal Model, Jilin University, Changchun, Jilin 130062, China; (Z.Z.); (Y.M.); (F.G.); (Y.X.); (Y.Z.); (H.-Q.W.); (Y.G.); (H.J.)
- Correspondence: (B.Y.); (J.-B.Z.); Tel.: +86-431-8783-6536 (B.Y.); +86-431-8783-6551 (J.-B.Z.)
| |
Collapse
|
10
|
Tian H, Guo F, Zhang Z, Ding H, Meng J, Li X, Peng Z, Wan S. Discovery, identification, and functional characterization of long noncoding RNAs in Arachis hypogaea L. BMC PLANT BIOLOGY 2020; 20:308. [PMID: 32615935 PMCID: PMC7330965 DOI: 10.1186/s12870-020-02510-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 06/22/2020] [Indexed: 05/10/2023]
Abstract
BACKGROUND Long noncoding RNAs (lncRNAs), which are typically > 200 nt in length, are involved in numerous biological processes. Studies on lncRNAs in the cultivated peanut (Arachis hypogaea L.) largely remain unknown. RESULTS A genome-wide scan of the peanut (Arachis hypogaea L.) transcriptome identified 1442 lncRNAs, which were encoded by loci distributed over every chromosome. Long intergenic noncoding RNAs accounted for 85.58% of these lncRNAs. Additionally, 189 lncRNAs were differentially abundant in the root, leaf, or seed. Generally, lncRNAs showed lower expression levels, tighter tissue-specific expression, and less splicing than mRNAs. Approximately 44.17% of the lncRNAs with an exon/intron structure were alternatively spliced; this rate was slightly lower than the splicing rate of mRNA. Transcription at the start site event was the alternative splicing (AS) event with the highest frequency (28.05%) in peanut lncRNAs, whereas the occurrence rate (30.19%) of intron retention event was the highest in mRNAs. AS changed the target gene profiles of lncRNAs and increased the diversity and flexibility of lncRNAs, which may be important for lncRNAs to execute their functions. Additionally, a substantial number of the peanut AS isoforms generated from protein-encoding genes appeared to be noncoding because they were truncated transcripts; such isoforms can be legitimately regarded as a class of lncRNAs. The predicted target genes of the lncRNAs were involved in a wide range of biological processes. Furthermore, expression pattern of several selected lncRNAs and their target genes were examined under salt stress, results showed that all of them could respond to salt stress in different manners. CONCLUSIONS This study provided a resource of candidate lncRNAs and expression patterns across tissues, and whether these lncRNAs are functional will be further investigated in our subsequent experiments.
Collapse
Affiliation(s)
- Haiying Tian
- College of Life Science, Shandong University, Jinan, 250014 China
| | - Feng Guo
- Bio-Tech Research Center, Shandong Academy of Agricultural Science/Shandong Provincial Key Laboratory of Genetic Improvement, Ecology and Physiology of Crops, Jinan, 250014 China
| | - Zhimeng Zhang
- Peanut Research Institute of Shandong, Qingdao, 266100 China
| | - Hong Ding
- Peanut Research Institute of Shandong, Qingdao, 266100 China
| | - Jingjing Meng
- Bio-Tech Research Center, Shandong Academy of Agricultural Science/Shandong Provincial Key Laboratory of Genetic Improvement, Ecology and Physiology of Crops, Jinan, 250014 China
| | - Xinguo Li
- College of Life Science, Shandong University, Jinan, 250014 China
- Bio-Tech Research Center, Shandong Academy of Agricultural Science/Shandong Provincial Key Laboratory of Genetic Improvement, Ecology and Physiology of Crops, Jinan, 250014 China
| | - Zhenying Peng
- College of Life Science, Shandong University, Jinan, 250014 China
- Bio-Tech Research Center, Shandong Academy of Agricultural Science/Shandong Provincial Key Laboratory of Genetic Improvement, Ecology and Physiology of Crops, Jinan, 250014 China
| | - Shubo Wan
- College of Life Science, Shandong University, Jinan, 250014 China
- Shandong Academy of Agricultural Science, Jinan, 250014 China
| |
Collapse
|
11
|
Gao C, Sun J, Dong Y, Wang C, Xiao S, Mo L, Jiao Z. Comparative transcriptome analysis uncovers regulatory roles of long non-coding RNAs involved in resistance to powdery mildew in melon. BMC Genomics 2020; 21:125. [PMID: 32024461 PMCID: PMC7003419 DOI: 10.1186/s12864-020-6546-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Accepted: 01/31/2020] [Indexed: 12/23/2022] Open
Abstract
Background Long non-coding RNAs (lncRNAs) are a class of non-coding RNAs with more than 200 nucleotides in length, which play vital roles in a wide range of biological processes. Powdery mildew disease (PM) has become a major threat to the production of melon. To investigate the potential roles of lncRNAs in resisting to PM in melon, it is necessary to identify lncRNAs and uncover their molecular functions. In this study, we compared the lncRNAs between a resistant and a susceptible melon in response to PM infection. Results It is reported that 11,612 lncRNAs were discovered, which were distributed across all 12 melon chromosomes, and > 85% were from intergenic regions. The melon lncRNAs have shorter transcript lengths and fewer exon numbers than protein-coding genes. In addition, a total of 407 and 611 lncRNAs were found to be differentially expressed after PM infection in PM-susceptible and PM-resistant melons, respectively. Furthermore, 1232 putative targets of differently expressed lncRNAs (DELs) were discovered and gene ontology enrichment (GO) analysis showed that these target genes were mainly enriched in stress-related terms. Consequently, co-expression patterns between LNC_018800 and CmWRKY21, LNC_018062 and MELO3C015771 (glutathione reductase coding gene), LNC_014937 and CmMLO5 were confirmed by qRT-PCR. Moreover, we also identified 24 lncRNAs that act as microRNA (miRNA) precursors, 43 lncRNAs as potential targets of 22 miRNA families and 13 lncRNAs as endogenous target mimics (eTMs) for 11 miRNAs. Conclusion This study shows the first characterization of lncRNAs involved in PM resistance in melon and provides a starting point for further investigation into the functions and regulatory mechanisms of lncRNAs in the resistance to PM.
Collapse
Affiliation(s)
- Chao Gao
- Shandong Key Laboratory of Greenhouse Vegetable Biology, Shandong Branch of National Improvement Center for Vegetable, Vegetable Science Observation and Experiment Station in Huang huai District of Ministry of Agriculture (Shandong), Institute of Vegetables and Flowers, Shandong Academy of Agricultural Sciences, Jinan, 250100, China.
| | - Jianlei Sun
- Shandong Key Laboratory of Greenhouse Vegetable Biology, Shandong Branch of National Improvement Center for Vegetable, Vegetable Science Observation and Experiment Station in Huang huai District of Ministry of Agriculture (Shandong), Institute of Vegetables and Flowers, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Yumei Dong
- Shandong Key Laboratory of Greenhouse Vegetable Biology, Shandong Branch of National Improvement Center for Vegetable, Vegetable Science Observation and Experiment Station in Huang huai District of Ministry of Agriculture (Shandong), Institute of Vegetables and Flowers, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Chongqi Wang
- Shandong Key Laboratory of Greenhouse Vegetable Biology, Shandong Branch of National Improvement Center for Vegetable, Vegetable Science Observation and Experiment Station in Huang huai District of Ministry of Agriculture (Shandong), Institute of Vegetables and Flowers, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Shouhua Xiao
- Shandong Key Laboratory of Greenhouse Vegetable Biology, Shandong Branch of National Improvement Center for Vegetable, Vegetable Science Observation and Experiment Station in Huang huai District of Ministry of Agriculture (Shandong), Institute of Vegetables and Flowers, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Longfei Mo
- College of horticulture, Jilin Agricultural University, Changchun, 130118, China
| | - Zigao Jiao
- Shandong Key Laboratory of Greenhouse Vegetable Biology, Shandong Branch of National Improvement Center for Vegetable, Vegetable Science Observation and Experiment Station in Huang huai District of Ministry of Agriculture (Shandong), Institute of Vegetables and Flowers, Shandong Academy of Agricultural Sciences, Jinan, 250100, China.
| |
Collapse
|
12
|
Srikanth S, Ramachandran S, Mohan S S. Construction of the gene regulatory network identifies MYC as a transcriptional regulator of SWI/SNF complex. Sci Rep 2020; 10:158. [PMID: 31932624 PMCID: PMC6957478 DOI: 10.1038/s41598-019-56844-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 12/17/2019] [Indexed: 12/21/2022] Open
Abstract
Precise positioning of nucleosomes at the gene regulatory elements mediated by the SWI/SNF family of remodelling complex is important for the transcriptional regulation of genes. A wide set of genes are either positively or negatively regulated by SWI/SNF. In higher eukaryotes, around thirty genes were found to code for SWI/SNF subunits. The construction of a gene regulatory network of SWI/SNF subunits identifies MYC as a common regulator for many of the SWI/SNF subunit genes. A meta-analysis study was conducted to investigate the MYC dependent regulation of SWI/SNF remodelling complex. Subunit information and the promoter sequences of the subunit genes were used to find the canonical E-box motif and its variants. Detailed analysis of mouse and human ChIP-Seq at the SWI/SNF subunit loci indicates the presence of MYC binding peaks overlapping with E-boxes. The co-expression correlation and the differential expression analysis of wt vs. MYC perturbed MEFs indicate the MYC dependent regulation of some of the SWI/SNF subunits. The extension of the analysis was done on MYC proficient and MYC deficient embryonic fibroblast cell lines, TGR1 and HO15, and in one of the MYC amplified cancer types, Medulloblastoma. A transcriptional regulatory feedback loop between MYC and SWI/SNF could be a major factor contributing to the aggressiveness of MYC dependent cancers.
Collapse
Affiliation(s)
- Srimari Srikanth
- School of Chemical & Biotechnology, SASTRA Deemed to be University, Tirumalaisamudram, Thanjavur, India
| | - Srimathy Ramachandran
- School of Chemical & Biotechnology, SASTRA Deemed to be University, Tirumalaisamudram, Thanjavur, India
| | - Suma Mohan S
- School of Chemical & Biotechnology, SASTRA Deemed to be University, Tirumalaisamudram, Thanjavur, India.
| |
Collapse
|
13
|
Levinson C, Lee M, Applegate LA, Zenobi-Wong M. An injectable heparin-conjugated hyaluronan scaffold for local delivery of transforming growth factor β1 promotes successful chondrogenesis. Acta Biomater 2019; 99:168-180. [PMID: 31536840 DOI: 10.1016/j.actbio.2019.09.017] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 09/05/2019] [Accepted: 09/11/2019] [Indexed: 02/08/2023]
Abstract
Cartilage lacks basic repair mechanisms and thus surgical interventions are necessary to treat lesions. Minimally-invasive arthroscopic procedures require the development of injectable biomaterials to support chondrogenesis of implanted cells. However, most cartilage tissue engineering approaches rely on pre-culture of scaffolds in media containing growth factors (GFs) such as transforming growth factor (TGF)-β1, which are crucial for cartilage formation and homeostasis. GFs media-supplementation is incompatible with injectable approaches and has led to a knowledge gap about optimal dose of GFs and release profiles needed to achieve chondrogenesis. This study aims to determine the optimal loading and release kinetics of TGF-β1 bound to an engineered GAG hydrogel to promote optimal cartilaginous matrix production in absence of TGF-β1 media-supplementation. We show that heparin, a GAG known to bind a wide range of GFs, covalently conjugated to a hyaluronan hydrogel, leads to a sustained release of TGF-β1. Using this heparin-conjugated hyaluronan hydrogel, 0.25 to 50 ng TGF-β1 per scaffold was loaded and cell viability, proliferation and cartilaginous matrix deposition of the encapsulated chondroprogenitor cells were measured. Excellent chondrogenesis was found when 5 ng TGF-β1 per scaffold and higher were used. We also demonstrate the necessity of a sustained release of TGF-β1, as no matrix deposition is observed upon a burst release. In conclusion, our biomaterial loaded with an optimal initial dose of 5 ng/scaffold TGF-β1 is a promising injectable material for cartilage repair, with potentially increased safety due to the low, locally administered GF dose. STATEMENT OF SIGNIFICANCE: Cartilage cell-based products are dependent on exogenous growth factor supplementation in order for proper tissue maturation. However, for a one-step repair of defects without need for expensive tissue maturation, an injectable, growth factor loaded formulation is required. Here we show development of an injectable hyaluronan hydrogel, which achieves a sustained release of TGF-β1 due to covalent conjugation of heparin. These grafts matured into cartilaginous tissue in the absence of growth factor supplementation. Additionally, this system allowed us to screen TGF-β1 concentrations to determine the mimimum amount of growth factor required for chondrogenesis. This study represents a critical step towards development of a minimally-invasive, arthroscopic treatment for cartilage lesions.
Collapse
|
14
|
Blyuss KB, Fatehi F, Tsygankova VA, Biliavska LO, Iutynska GO, Yemets AI, Blume YB. RNAi-Based Biocontrol of Wheat Nematodes Using Natural Poly-Component Biostimulants. FRONTIERS IN PLANT SCIENCE 2019; 10:483. [PMID: 31057585 PMCID: PMC6479188 DOI: 10.3389/fpls.2019.00483] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Accepted: 03/28/2019] [Indexed: 06/09/2023]
Abstract
With the growing global demands on sustainable food production, one of the biggest challenges to agriculture is associated with crop losses due to parasitic nematodes. While chemical pesticides have been quite successful in crop protection and mitigation of damage from parasites, their potential harm to humans and environment, as well as the emergence of nematode resistance, have necessitated the development of viable alternatives to chemical pesticides. One of the most promising and targeted approaches to biocontrol of parasitic nematodes in crops is that of RNA interference (RNAi). In this study we explore the possibility of using biostimulants obtained from metabolites of soil streptomycetes to protect wheat (Triticum aestivum L.) against the cereal cyst nematode Heterodera avenae by means of inducing RNAi in wheat plants. Theoretical models of uptake of organic compounds by plants, and within-plant RNAi dynamics, have provided us with useful insights regarding the choice of routes for delivery of RNAi-inducing biostimulants into plants. We then conducted in planta experiments with several streptomycete-derived biostimulants, which have demonstrated the efficiency of these biostimulants at improving plant growth and development, as well as in providing resistance against the cereal cyst nematode. Using dot blot hybridization we demonstrate that biostimulants trigger a significant increase of the production in plant cells of si/miRNA complementary with plant and nematode mRNA. Wheat germ cell-free experiments show that these si/miRNAs are indeed very effective at silencing the translation of nematode mRNA having complementary sequences, thus reducing the level of nematode infestation and improving plant resistance to nematodes. Thus, we conclude that natural biostimulants produced from metabolites of soil streptomycetes provide an effective tool for biocontrol of wheat nematode.
Collapse
Affiliation(s)
| | - Farzad Fatehi
- Department of Mathematics, University of Sussex, Brighton, United Kingdom
| | - Victoria A. Tsygankova
- Department of Chemistry of Bioactive Nitrogen-Containing Heterocyclic Compounds, Institute of Bioorganic Chemistry and Petrochemistry, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Liudmyla O. Biliavska
- Department of General and Soil Microbiology, Zabolotny Institute of Microbiology and Virology, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Galyna O. Iutynska
- Department of General and Soil Microbiology, Zabolotny Institute of Microbiology and Virology, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Alla I. Yemets
- Department of Cell Biology and Biotechnology, Institute of Food Biotechnology and Genomics, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Yaroslav B. Blume
- Department of Genomics and Molecular Biotechnology, Institute of Food Biotechnology and Genomics, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| |
Collapse
|
15
|
Kumar H, Srikanth K, Park W, Lee SH, Choi BH, Kim H, Kim YM, Cho ES, Kim JH, Lee JH, Jung JY, Go GW, Lee KT, Kim JM, Lee J, Lim D, Park JE. Transcriptome analysis to identify long non coding RNA (lncRNA) and characterize their functional role in back fat tissue of pig. Gene 2019; 703:71-82. [PMID: 30954676 DOI: 10.1016/j.gene.2019.04.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 03/08/2019] [Accepted: 04/03/2019] [Indexed: 12/12/2022]
Abstract
Long non coding RNAs (lncRNA) have been previously found to be involved in important cellular activities like epigenetics, implantation, cell growth etc. in pigs. However, comprehensive analysis of lncRNA in back fat tissues at different developmental stages in pigs is still lacking. In this study we conducted transcriptome analysis in the back fat tissue of a F1 crossbred Korean Native Pig (KNP) × Yorkshire Pig to identify lncRNA. We investigated their role in 16 pigs at two different growth stages; stage 1 (10 weeks, n = 8) and stage 2 (26 weeks, n = 8). After quality assessment of sequencing reads, we got a total of 1,641,165 assembled transcripts out of eight paired end read from each stage. Among them, 6808 lncRNA transcripts were identified by filtering on the basis of multiple parameters like read length ≥ 200 nucleotides, exon numbers ≥2, FPKM ≥0.5, coding potential score < 0 etc. PFAM and RFAM were used to filter out all possible protein coding genes and housekeeping RNAs respectively. A total of 103 lncRNAs and 1057 mRNAs were found to be differentially expressed (DE) between the two stages (|log2FC| > 2, q < 0.05). We also identified 306 genes located around 100 kb upstream and 234 genes downstream around these DE lncRNA transcripts. The expression of top eleven DE lncRNAs (COL4A6, LY7S, MYH2, OXCT1, SMPDL3A, TMEM182, TTC36, RFOOOO4, RFOOO15, RFOOO45, CADM2) had been validating by qRT-PCR. Pathway and GO terms analysis showed that, positive regulation of biosynthetic process, Wnt signaling pathway, cellular protein modification process, and positive regulation of nitrogen compound were differentially enriched. Our results suggested that, KEGG pathways such as protein digestion and absorption, Arrhythmogenic right ventricular cardiomyopathy (ARVC) to be significantly enriched in both DE lncRNAs as well as DE mRNAs and involved in back fat tissues development. It also suggests that, identified lncRNAs are involved in regulation of important adipose tissues development pathways.
Collapse
Affiliation(s)
- Himansu Kumar
- Animal Genomics and Bioinformatics Division, National Institute of Animal Science, RDA, Wanju 55365, Republic of Korea
| | - Krishnamoorthy Srikanth
- Animal Genomics and Bioinformatics Division, National Institute of Animal Science, RDA, Wanju 55365, Republic of Korea
| | - Woncheol Park
- Animal Genomics and Bioinformatics Division, National Institute of Animal Science, RDA, Wanju 55365, Republic of Korea
| | - Seung-Hoon Lee
- Animal Genomics and Bioinformatics Division, National Institute of Animal Science, RDA, Wanju 55365, Republic of Korea
| | - Bong-Hwan Choi
- Animal Genomics and Bioinformatics Division, National Institute of Animal Science, RDA, Wanju 55365, Republic of Korea
| | - Hana Kim
- Animal Genomics and Bioinformatics Division, National Institute of Animal Science, RDA, Wanju 55365, Republic of Korea
| | - Yong-Min Kim
- Swine Science Division, National Institute of Animal Science, RDA, Cheonan 31000, Republic of Korea
| | - Eun-Seok Cho
- Swine Science Division, National Institute of Animal Science, RDA, Cheonan 31000, Republic of Korea
| | - Jin Hyoung Kim
- Animal Products Research and Development Division, National Institute of Animal Science, RDA, Wanju 55365, Republic of Korea
| | - Jang Hee Lee
- Department of Companion Animal, Seoul Hoseo Occupational Training College, Seoul 07583, Republic of Korea
| | - Ji Yeon Jung
- Department of Food and Nutrition, Hanyang University, Seoul 04763, Republic of Korea
| | - Gwang-Woong Go
- Department of Food and Nutrition, Hanyang University, Seoul 04763, Republic of Korea
| | - Kyung-Tai Lee
- Animal Genetics and Breeding Division, National Institute of Animal Science, RDA, Cheonan 31000, Republic of Korea
| | - Jun-Mo Kim
- Department of Animal Science and Technology, Chung-Ang University, Anseong 17546, Republic of Korea
| | - Jungjae Lee
- Jung P& C Institute, Inc., 1504 U-Tower, Yongin-si, Gyeonggi-do 16950, Republic of Korea
| | - Dajeong Lim
- Animal Genomics and Bioinformatics Division, National Institute of Animal Science, RDA, Wanju 55365, Republic of Korea.
| | - Jong-Eun Park
- Animal Genomics and Bioinformatics Division, National Institute of Animal Science, RDA, Wanju 55365, Republic of Korea.
| |
Collapse
|
16
|
Shukla PS, Borza T, Critchley AT, Hiltz D, Norrie J, Prithiviraj B. Ascophyllum nodosum extract mitigates salinity stress in Arabidopsis thaliana by modulating the expression of miRNA involved in stress tolerance and nutrient acquisition. PLoS One 2018; 13:e0206221. [PMID: 30372454 PMCID: PMC6205635 DOI: 10.1371/journal.pone.0206221] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 10/09/2018] [Indexed: 11/25/2022] Open
Abstract
Ascophyllum nodosum extract (ANE) contains bioactive compounds that improve the growth of Arabidopsis in experimentally-induced saline conditions; however, the molecular mechanisms through which ANE elicits tolerance to salinity remain largely unexplored. Micro RNAs (miRNAs) are key regulators of gene expression, playing crucial roles in plant growth, development, and stress tolerance. Next generation sequencing of miRNAs from leaves of control Arabidopsis and from plants subjected to three treatments (ANE, NaCl and ANE+NaCl) was used to identify ANE-responsive miRNA in the absence and presence of saline conditions. Differential gene expression analysis revealed that ANE had a strong effect on miRNAs expression in both conditions. In the presence of salinity, ANE tended to reduce the up-regulation or the down-regulation trend induced caused by NaCl in miRNAs such as ath-miR396a-5p, ath-miR399, ath-miR2111b and ath-miR827. To further uncover the effects of ANE, the expression of several target genes of a number of ANE-responsive miRNAs was analyzed by qPCR. NaCl, but not ANE, down-regulated miR396a-5p, which negatively regulated the expression of AtGRF7 leading to a higher expression of AtDREB2a and AtRD29 in the presence of ANE+NaCl, as compared to ANE alone. ANE+NaCl initially reduced and then enhanced the expression of ath-miR169g-5p, while the expression of the target genes AtNFYA1 and ATNFYA2, known to be involved in the salinity tolerance mechanism, was increased as compared to ANE or to NaCl treatments. ANE and ANE+NaCl modified the expression of ath-miR399, ath-miR827, ath-miR2111b, and their target genes AtUBC24, AtWAK2, AtSYG1 and At3g27150, suggesting a role of ANE in phosphate homeostasis. In vivo and in vitro experiments confirmed the improved growth of Arabidopsis in presence of ANE, in saline conditions and in phosphate-deprived medium, further substantiating the influence of ANE on a variety of essential physiological processes in Arabidopsis including salinity tolerance and phosphate uptake.
Collapse
Affiliation(s)
- Pushp Sheel Shukla
- Marine Bio-products Research Laboratory, Dalhousie University, Department of Plant, Food and Environmental Sciences, Truro, Nova Scotia, Canada
| | - Tudor Borza
- Marine Bio-products Research Laboratory, Dalhousie University, Department of Plant, Food and Environmental Sciences, Truro, Nova Scotia, Canada
| | - Alan T. Critchley
- Research and Development, Acadian Seaplants Limited, Dartmouth, Nova Scotia, Canada
| | - David Hiltz
- Research and Development, Acadian Seaplants Limited, Dartmouth, Nova Scotia, Canada
| | - Jeff Norrie
- Research and Development, Acadian Seaplants Limited, Dartmouth, Nova Scotia, Canada
| | - Balakrishnan Prithiviraj
- Marine Bio-products Research Laboratory, Dalhousie University, Department of Plant, Food and Environmental Sciences, Truro, Nova Scotia, Canada
| |
Collapse
|
17
|
|
18
|
Li H, Yang J, Jiang R, Wei X, Song C, Huang Y, Lan X, Lei C, Ma Y, Hu L, Chen H. Long Non-coding RNA Profiling Reveals an Abundant MDNCR that Promotes Differentiation of Myoblasts by Sponging miR-133a. MOLECULAR THERAPY. NUCLEIC ACIDS 2018; 12:610-625. [PMID: 30195797 PMCID: PMC6078111 DOI: 10.1016/j.omtn.2018.07.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 06/29/2018] [Accepted: 07/03/2018] [Indexed: 12/31/2022]
Abstract
Muscle development is regulated by a series of complicate processes, and non-coding RNAs (ncRNAs) such as lncRNA have been reported to play important roles in regulating skeletal myogenesis and diseases. Here we profile the expression of lncRNA in cattle skeletal muscle tissue from fetus and adult developmental stages and detect 13,580 lncRNA candidates. Many of these lncRNAs are differentially expressed between two developmental stages. We further characterize one abundant lncRNA with the highest expression level of all downregulated lncRNAs, which we named muscle differentiation-associated lncRNA (MDNCR). Via luciferase screening, RNA binding protein immunoprecipitation (RIP), and RNA pull-down assays, MDNCR was observed to directly bind to miR-133a with 32 potential binding sites. GosB was identified as a target of miR-133a by luciferase activity, quantitative real-time qPCR, and western blotting assays. Overexpression of MDNCR increased the expression of GosB, whereas this effect was abolished by miR-133a. We found that MDNCR promotes myoblast differentiation and inhibits cell proliferation by sponging miR-133a. These results demonstrate that MDNCR binding miR-133a promotes cell differentiation by targeting GosB in cattle primary myoblasts.
Collapse
Affiliation(s)
- Hui Li
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Shaanxi 712100, China
| | - Jiameng Yang
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Shaanxi 712100, China
| | - Rui Jiang
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Shaanxi 712100, China
| | - Xuefeng Wei
- College of Life Sciences, Xinyang Normal University, Institute for Conservation and Utilization of Agro-Bioresources in Dabie Mountains, Xinyang, Henan 464000, China
| | - Chengchuang Song
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Shaanxi 712100, China
| | - Yongzhen Huang
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Shaanxi 712100, China
| | - Xianyong Lan
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Shaanxi 712100, China
| | - Chuzhao Lei
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Shaanxi 712100, China
| | - Yun Ma
- College of Life Sciences, Xinyang Normal University, Institute for Conservation and Utilization of Agro-Bioresources in Dabie Mountains, Xinyang, Henan 464000, China
| | - Linyong Hu
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai 810001, China
| | - Hong Chen
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Shaanxi 712100, China.
| |
Collapse
|
19
|
Hao DC, Xiao PG. Deep in shadows: Epigenetic and epigenomic regulations of medicinal plants. CHINESE HERBAL MEDICINES 2018. [DOI: 10.1016/j.chmed.2018.02.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
|
20
|
Olina AV, Kulbachinskiy AV, Aravin AA, Esyunina DM. Argonaute Proteins and Mechanisms of RNA Interference in Eukaryotes and Prokaryotes. BIOCHEMISTRY (MOSCOW) 2018; 83:483-497. [PMID: 29738683 DOI: 10.1134/s0006297918050024] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Noncoding RNAs play essential roles in genetic regulation in all organisms. In eukaryotic cells, many small noncoding RNAs act in complex with Argonaute proteins and regulate gene expression by recognizing complementary RNA targets. The complexes of Argonaute proteins with small RNAs also play a key role in silencing of mobile genetic elements and, in some cases, viruses. These processes are collectively called RNA interference. RNA interference is a powerful tool for specific gene silencing in both basic research and therapeutic applications. Argonaute proteins are also found in prokaryotic organisms. Recent studies have shown that prokaryotic Argonautes can also cleave their target nucleic acids, in particular DNA. This activity of prokaryotic Argonautes might potentially be used to edit eukaryotic genomes. However, the molecular mechanisms of small nucleic acid biogenesis and the functions of Argonaute proteins, in particular in bacteria and archaea, remain largely unknown. Here we briefly review available data on the RNA interference processes and Argonaute proteins in eukaryotes and prokaryotes.
Collapse
Affiliation(s)
- A V Olina
- Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, 123182, Russia.
| | - A V Kulbachinskiy
- Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, 123182, Russia
| | - A A Aravin
- California Institute of Technology, Division of Biology, Pasadena, CA 91125, USA
| | - D M Esyunina
- Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, 123182, Russia.
| |
Collapse
|
21
|
Kashima M, Agata K, Shibata N. Searching for non-transposable targets of planarian nuclear PIWI in pluripotent stem cells and differentiated cells. Dev Growth Differ 2018; 60:260-277. [DOI: 10.1111/dgd.12536] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 04/07/2018] [Accepted: 04/09/2018] [Indexed: 12/27/2022]
Affiliation(s)
- Makoto Kashima
- Department of Biophysics; Graduate School of Science; Kyoto University; Kyoto Japan
| | - Kiyokazu Agata
- Department of Biophysics; Graduate School of Science; Kyoto University; Kyoto Japan
| | - Norito Shibata
- Department of Biophysics; Graduate School of Science; Kyoto University; Kyoto Japan
| |
Collapse
|
22
|
An N, Fan S, Wang Y, Zhang L, Gao C, Zhang D, Han M. Genome-wide identification, characterization and expression analysis of long non-coding RNAs in different tissues of apple. Gene 2018; 666:44-57. [PMID: 29733967 DOI: 10.1016/j.gene.2018.05.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 04/11/2018] [Accepted: 05/02/2018] [Indexed: 10/17/2022]
Abstract
Recently, the long non-coding RNAs (lncRNAs), which play important roles in various complex biological processes, have received more attention in plants. However, little information is available on lncRNAs in woody fruit trees and their potential regulatory roles remain poorly understood, especially in apple. Here, a total of 1726 high-confidence lncRNAs (hc-lncRNAs) were identified in different tissues including young fruits, shoot tips, stem phloem and root tips using high-throughput sequencing. These lncRNAs are distributed across all 17 apple chromosomes, and >85% come from intergenic regions. The apple lncRNAs have longer transcript lengths and greater exon numbers than protein-coding genes. Additionally, among the 1726 hc-lncRNA, 850 are predicted to have target genes. These target genes are involved in many processes including hormone signaling, sugar metabolism, and the cell cycle and stress responses. Furthermore, 57, 74, 168 and 78 lncRNAs specifically expressed in root tips, shoot tips, young fruits and stem phloem were analyzed using the COG (cluster of orthologous group)and GO (gene ontology) databases. Young fruits contain the most unique lncRNAs, which are involved in biological processes such as energy production and conversion, carbohydrate transport and metabolism, posttranslational modification and protein turnover. Quantitative real-time PCR (qRT-PCR) is employed to confirm the different expression levels among the four tissues. Moreover, the expression levels of eight fruit-related lncRNAs are investigated during different fruit development stages, which indicates they have important roles in fruit ripening and sugar metabolism. Overall, our genome-wide research on lncRNAs in different apple tissues provides valuable clues and information that can help elucidate the potential roles of lncRNAs in the growth and development of apple, as well as in other fruit trees.
Collapse
Affiliation(s)
- Na An
- College of Horticulture, Northwest A&F University, Yangling 712100, Shannxi, China; College of Life Science, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Sheng Fan
- College of Horticulture, Northwest A&F University, Yangling 712100, Shannxi, China
| | - Yibin Wang
- College of Horticulture, Northwest A&F University, Yangling 712100, Shannxi, China
| | - Lizhi Zhang
- College of Horticulture, Northwest A&F University, Yangling 712100, Shannxi, China
| | - Cai Gao
- College of Horticulture, Northwest A&F University, Yangling 712100, Shannxi, China
| | - Dong Zhang
- College of Horticulture, Northwest A&F University, Yangling 712100, Shannxi, China.
| | - Mingyu Han
- College of Horticulture, Northwest A&F University, Yangling 712100, Shannxi, China.
| |
Collapse
|
23
|
Li Q, Zhang J, Zhou J, Yang B, Liu P, Cao L, Jing L, Liu H. lncRNAs are novel biomarkers for differentiating between cisplatin-resistant and cisplatin-sensitive ovarian cancer. Oncol Lett 2018; 15:8363-8370. [PMID: 29805570 PMCID: PMC5950027 DOI: 10.3892/ol.2018.8433] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 12/05/2017] [Indexed: 12/16/2022] Open
Abstract
Cisplatin-resistant ovarian cancer occurs in patients with ovarian cancer treated with cisplatin-based chemotherapy, which results in tumor progression during treatment, or recurrence of the tumor within 6 months of the treatment. It is vital that a novel biomarker for diagnosis, or an efficient therapeutic target of cisplatin-resistant ovarian is identified. Long non-coding (lnc)RNAs were determined to serve critical functions in a variety of distinct types of cancer, including ovarian cancer; however, there is limited knowledge regarding the differential expression levels of lncRNAs in cisplatin-resistant and cisplatin-sensitive ovarian cancer. Therefore, in the present study, the expression levels were determined for these cancer types. The lncRNA expression profile in cisplatin-resistant ovarian cancer was analyzed and compared with the results for cisplatin-sensitive ovarian cancer; gene ontology and pathway analysis demonstrated that the dysregulated lncRNAs participated in important biological processes. Subsequently, it was identified that these dysregulated lncRNAs were present in other ovarian cancer tissues and in SKOV3 ovarian cancer cells, as well as its cisplatin-resistant clone, SKOV3/CDDP. In addition, it was revealed that 8 lncRNAs (Enst0000435726, Enst00000585612, Enst00000566734, Enst00000453783, NR_023915, RP11_697E22.2, uc010jub.1 and tcons_00008505) were associated with cisplatin-resistant ovarian cancer. The present study may assist in improving understanding of the initiation and developmental mechanisms underlying cisplatin-resistant ovarian cancer, which could aid future studies in discovering potential biomarkers for diagnosis or therapeutic targets that may be used in clinical treatment.
Collapse
Affiliation(s)
- Qing Li
- Department of Pathology, Shanghai Pudong New Area People's Hospital, Shanghai 201299, P.R. China
| | - Juan Zhang
- Department of Pathology, Affiliated Nanjing Maternal and Child Health Hospital, Nanjing Medical University, Nanjing, Jiangsu 210004, P.R. China
| | - Juan Zhou
- Department of Pathology, Shanghai Pudong New Area People's Hospital, Shanghai 201299, P.R. China
| | - Binglie Yang
- Department of Gynecology and Obstetrics, Shanghai Pudong New Area People's Hospital, Shanghai 201299, P.R. China
| | - Pingping Liu
- Department of Gynecology and Obstetrics, Shanghai Pudong New Area People's Hospital, Shanghai 201299, P.R. China
| | - Lei Cao
- Department of Pathology, Shanghai Pudong New Area People's Hospital, Shanghai 201299, P.R. China
| | - Lei Jing
- Department of Pathology, Shanghai Pudong New Area People's Hospital, Shanghai 201299, P.R. China
| | - Hua Liu
- Department of Pathology, Shanghai Pudong New Area People's Hospital, Shanghai 201299, P.R. China
| |
Collapse
|
24
|
LncRNA Uc.173 is a key molecule for the regulation of lead-induced renal tubular epithelial cell apoptosis. Biomed Pharmacother 2018; 100:101-107. [PMID: 29425744 DOI: 10.1016/j.biopha.2018.01.112] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 01/21/2018] [Accepted: 01/24/2018] [Indexed: 01/28/2023] Open
Abstract
Transcribed ultra-conserved region (T-UCR) transcripts are a novel class of long non-coding RNAs (lncRNAs) transcribed from ultra-conserved region which is highly conserved in human, rat, and mouse genome. LncRNA UC.173 has been found significantly down-regulated in lead-exposed population and lead-exposed animal mode, and had an inhibitory effect on lead-induced nerve cell apoptosis. We supposed that lncRNA UC.173 had an inhibitory effect on lead-induced renal tubular epithelial cell apoptosis. Thus, the aim of our study was to explore the function of lncRNA UC.173 in lead-exposed renal tubular epithelial cells. In our results, lead exposure inhibited renal tubular epithelial cells viability and promoted cell apoptosis and apoptosis-associated genes expression, but no effect on cell-cycle distribution. Lead exposure inhibited the expression of lncRNA UC.173 in renal tubular epithelial cells, and the inhibition effect was time-dependent and concentration-dependent. Up-regulation of lncRNA UC.173 had no effect on renal tubular epithelial cell viability, cell cycle and apoptosis, but significantly rescued lead-induced inhibition of renal tubular epithelial cell viability and suppressed lead-induced cell apoptosis. In summary, our experiments suggest that lncRNA UC.173 is certainly involved in the regulation of lead-induced renal tubular epithelial cell apoptosis, which may supply a new strategy to minimize lead-induced nephrotoxicity.
Collapse
|
25
|
Lakhotia SC. From Heterochromatin to Long Noncoding RNAs in Drosophila: Expanding the Arena of Gene Function and Regulation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1008:75-118. [PMID: 28815537 DOI: 10.1007/978-981-10-5203-3_3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Recent years have witnessed a remarkable interest in exploring the significance of pervasive noncoding transcripts in diverse eukaryotes. Classical cytogenetic studies using the Drosophila model system unraveled the perplexing attributes and "functions" of the "gene"-poor heterochromatin. Recent molecular studies in the fly model are likewise revealing the very diverse and significant roles played by long noncoding RNAs (lncRNAs) in development, gene regulation, chromatin organization, cell and nuclear architecture, etc. There has been a rapid increase in the number of identified lncRNAs, although a much larger number still remains unknown. The diversity of modes of actions and functions of the limited number of Drosophila lncRNAs, which have been examined, already reflects the profound roles of such RNAs in generating and sustaining the biological complexities of eukaryotes. Several of the known Drosophila lncRNAs originate as independent sense or antisense transcripts from promoter or intergenic, intronic, or 5'/3'-UTR regions, while many of them are independent genes that produce only lncRNAs or coding as well as noncoding RNAs. The different lncRNAs affect chromatin organization (local or large-scale pan-chromosomal), transcription, RNA processing/stability, or translation either directly through interaction with their target DNA sequences or indirectly by acting as intermediary molecules for specific regulatory proteins or may act as decoys/sinks, or storage sites for specific proteins or groups of proteins, or may provide a structural framework for the assembly of substructures in nucleus/cytoplasm. It is interesting that many of the "functions" alluded to heterochromatin in earlier cytogenetic studies appear to find correlates with the known subtle as well as far-reaching actions of the different small and long noncoding RNAs. Further studies exploiting the very rich and powerful genetic and molecular resources available for the Drosophila model are expected to unravel the mystery underlying the long reach of ncRNAs.
Collapse
Affiliation(s)
- Subhash C Lakhotia
- Cytogenetics Laboratory, Department of Zoology, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
26
|
Identification of long non-coding RNAs in the immature and mature rat anterior pituitary. Sci Rep 2017; 7:17780. [PMID: 29259254 PMCID: PMC5736705 DOI: 10.1038/s41598-017-17996-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 12/04/2017] [Indexed: 12/21/2022] Open
Abstract
Many long non-coding RNAs (lncRNAs) have been identified in several types of human pituitary adenomas and normal anterior pituitary, some of which are involved in the pathogenesis of pituitary adenomas. However, a systematic analysis of lncRNAs expressed at different developmental stages of normal pituitary, particularly in rats, has not been performed. Therefore, we contrasted two cDNA libraries of immature (D15) and mature (D120) anterior pituitary in rat that were sequenced on an Illumina HiSeq Xten platform, and a total of 29,568,806,352 clean reads were identified. Notably, 7039 lncRNA transcripts corresponded to 4442 lncRNA genes, and 1181 lncRNA transcripts were significantly differentially expressed in D15 and D120. In addition, 6839 protein-coding genes (<100 kb upstream and downstream) were the nearest neighbors of 4074 lncRNA genes. An interaction network of lncRNAs and the follicle-stimulating hormone beta-subunit (FSHb) gene was constructed using the lncRNATargets platform, and three novel lncRNAs were obtained. Furthermore, we detected the expression of the novel lncRNAs and ten highly expressed lncRNAs that were randomly selected through quantitative PCR (qPCR). The rat anterior pituitary lncRNA content identified in this study provides a more in-depth understanding of the roles of these lncRNAs in hormone and reproduction development and regulation in mammals.
Collapse
|
27
|
Liu M, Xing LQ, Liu YJ. A three-long noncoding RNA signature as a diagnostic biomarker for differentiating between triple-negative and non-triple-negative breast cancers. Medicine (Baltimore) 2017; 96:e6222. [PMID: 28248879 PMCID: PMC5340452 DOI: 10.1097/md.0000000000006222] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 01/31/2017] [Accepted: 02/03/2017] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Triple-negative breast cancer (TNBC) is an aggressive cancer with unfavorable outcome and it is useful to explore noninvasive biomarkers for its early diagnosis. Here, we identified differentially expressed long noncoding RNAs (lncRNAs) in blood samples of patients with TNBC to assess their diagnostic value. METHODS Differential expression of lncRNAs in plasma of patients with TNBC (n = 25) and non-TNBC (NTNBC; n = 35) and in healthy controls was compared by microarray analysis and validated by real-time PCR. lncRNA expression between plasma and BC tissues was compared using Pearson correlation test. Logit model was used to obtain a new lncRNA-based score. Receiver operating characteristic analysis was performed to assess the diagnostic value of the selected lncRNAs. RESULTS Microarray data showed that 41 lncRNAs were aberrantly expressed. Among these, antisense noncoding RNA in the INK4 locus (ANRIL), hypoxia inducible factor 1alpha antisense RNA-2 (HIF1A-AS2), and urothelial carcinoma-associated 1 (UCA1) were markedly upregulated in plasma of patients with TNBC compared with patients with NTNBC (P < 0.01). HIF1A-AS2 expression was positively associated with its tissue levels (r = 0.670, P < 0.01). AUC (95% CI) of ANRIL, HIF1A-AS2, and UCA1 was 0.785 (0.660-0.881), 0.739 (0.610-0.844), and 0.817 (0.696-0.905), respectively. TNBCSigLnc-3, a new score obtained using the logit model, showed excellent diagnostic performance, with AUC of 0.934 (0.839-0.982), sensitivity of 76.0%, and specificity of 97.1%. CONCLUSION ANRIL, HIF1A-AS2, and UCA1 expression was significantly increased in plasma of patients with TNBC, suggesting their use as TNBC-specific diagnostic biomarkers.
Collapse
|
28
|
Chen G, Peng L, Zhu Z, Du C, Shen Z, Zang R, Su Y, Xia Y, Tang W. LncRNA AFAP1-AS Functions as a Competing Endogenous RNA to Regulate RAP1B Expression by sponging miR-181a in the HSCR. Int J Med Sci 2017; 14:1022-1030. [PMID: 28924375 PMCID: PMC5599927 DOI: 10.7150/ijms.18392] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 03/14/2017] [Indexed: 12/12/2022] Open
Abstract
Background: Long noncoding RNAs (lncRNAs) have recently emerged as important regulators in a broad spectrum of cellular processes including development and disease. Despite the known engagement of the AFAP1-AS in several human diseases, its biological function in Hirschsprung disease (HSCR) remains elusive. Methods: We used qRT-PCR to detect the relative expression of AFAP1-AS in 64 HSCR bowel tissues and matched normal intestinal tissues. The effects of AFAP1-AS on cell proliferation, migration, cell cycle, apoptosis and cytoskeletal organization were evaluated using CCK-8, transwell assay, flow cytometer analysis and immunofluorescence, in 293T and SH-SY5Y cell lines, respectively. Moreover, the competing endogenous RNA (ceRNA) activity of AFAP1-AS on miR-181a was investigated via luciferase reporter assay and immunoblot analysis. Results: Aberrant inhibition of AFAP1-AS was observed in HSCR tissues. Knockdown of AFAP1-AS in 293T and SH-SY5Y cells suppressed cell proliferation, migration, and induced the loss of cell stress filament integrity, possibly due to AFAP1-AS sequestering miR-181a in HSCR cells. Furthermore, AFAP1-AS could down-regulate RAP1B via its competing endogenous RNA (ceRNA) activity on miR-181a. Conclusions: These findings suggest that aberrant expression of lncRNA AFAP1-AS, a ceRNA of miR-181a, may involve in the onset and progression of HSCR by augmenting the miR-181a target gene, RAP1B.
Collapse
Affiliation(s)
- Guanglin Chen
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing 211166, China.,Department of Pediatric Surgery, Children's Hospital of Nanjing Medical University
| | - Lei Peng
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing 211166, China.,Department of Pediatric Surgery, Children's Hospital of Nanjing Medical University
| | - Zhongxian Zhu
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing 211166, China.,Department of Pediatric Surgery, Children's Hospital of Nanjing Medical University
| | - Chunxia Du
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing 211166, China.,Department of Pediatric Surgery, Children's Hospital of Nanjing Medical University
| | - Ziyang Shen
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing 211166, China.,Department of Pediatric Surgery, Children's Hospital of Nanjing Medical University
| | - Rujin Zang
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing 211166, China.,Department of Pediatric Surgery, Children's Hospital of Nanjing Medical University
| | - Yang Su
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing 211166, China.,Department of Pediatric Surgery, Children's Hospital of Nanjing Medical University
| | - Yankai Xia
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing 211166, China.,Key Laboratory of Modern Toxicology (Nanjing Medical University), Ministry of Education, China
| | - Weibing Tang
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing 211166, China.,Department of Pediatric Surgery, Children's Hospital of Nanjing Medical University
| |
Collapse
|
29
|
Nan A, Zhou X, Chen L, Liu M, Zhang N, Zhang L, Luo Y, Liu Z, Dai L, Jiang Y. A transcribed ultraconserved noncoding RNA, Uc.173, is a key molecule for the inhibition of lead-induced neuronal apoptosis. Oncotarget 2016; 7:112-24. [PMID: 26683706 PMCID: PMC4807986 DOI: 10.18632/oncotarget.6590] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 11/26/2015] [Indexed: 01/05/2023] Open
Abstract
As a common toxic metal, lead has significant neurotoxicity to brain development. Long non-coding RNAs (lncRNAs) function in multiple biological processes. However, whether lncRNAs are involved in lead-induced neurotoxicity remains unclear. Uc.173 is a lncRNA from a transcribed ultra-conservative region (T-UCR) of human, mouse and rat genomes. We established a lead-induced nerve injury mouse model. It showed the levels of Uc.173 decreased significantly in hippocampus tissue and serum of the model. We further tested the expression of Uc.173 in serum of lead-exposed children, which also showed a tendency to decrease. To explore the effects of Uc.173 on lead-induced nerve injury, we overexpressed Uc.173 in an N2a mouse nerve cell line and found Uc.173 had an inhibitory effect on lead-induced apoptosis of N2a. To investigate the molecular mechanisms of Uc.173 in apoptosis associated with lead-induced nerve injury, we predicted the target microRNAs of Uc.173 by using miRanda, TargetScan and RegRNA. After performing quantitative real-time PCR and bioinformatics analysis, we showed Uc.173 might inter-regulate with miR-291a-3p in lead-induced apoptosis and regulate apoptosis-associated genes. Our study suggests Uc.173 significantly inhibits the apoptosis of nerve cells, which may be mediated by inter-regulation with miRNAs in lead-induced nerve injury.
Collapse
Affiliation(s)
- Aruo Nan
- State Key Laboratory of Respiratory Disease, Institute for Chemical Carcinogenesis, Guangzhou Medical University, Guangzhou, PR China
| | - Xinke Zhou
- Institute for Chemical Carcinogenesis, The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, PR China
| | - Lijian Chen
- State Key Laboratory of Respiratory Disease, Institute for Chemical Carcinogenesis, Guangzhou Medical University, Guangzhou, PR China
| | - Meiling Liu
- State Key Laboratory of Respiratory Disease, Institute for Chemical Carcinogenesis, Guangzhou Medical University, Guangzhou, PR China
| | - Nan Zhang
- State Key Laboratory of Respiratory Disease, Institute for Chemical Carcinogenesis, Guangzhou Medical University, Guangzhou, PR China
| | - Li Zhang
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou, PR China
| | - Yuanwei Luo
- Institute for Chemical Carcinogenesis, The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, PR China
| | - Zhenzhong Liu
- State Key Laboratory of Respiratory Disease, Institute for Chemical Carcinogenesis, Guangzhou Medical University, Guangzhou, PR China
| | - Lijun Dai
- Laboratory Animal Center, Guangzhou Medical University, Guangzhou, PR China
| | - Yiguo Jiang
- State Key Laboratory of Respiratory Disease, Institute for Chemical Carcinogenesis, Guangzhou Medical University, Guangzhou, PR China
| |
Collapse
|
30
|
Yakushev EY, Mikhaleva EA, Abramov YA, Sokolova OA, Zyrianova IM, Gvozdev VA, Klenov MS. The role of Piwi nuclear localization in the differentiation and proliferation of germline stem cells. Mol Biol 2016. [DOI: 10.1134/s0026893316040154] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
31
|
Zhan S, Dong Y, Zhao W, Guo J, Zhong T, Wang L, Li L, Zhang H. Genome-wide identification and characterization of long non-coding RNAs in developmental skeletal muscle of fetal goat. BMC Genomics 2016; 17:666. [PMID: 27550073 PMCID: PMC4994410 DOI: 10.1186/s12864-016-3009-3] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 08/10/2016] [Indexed: 01/23/2023] Open
Abstract
Background Long non-coding RNAs (lncRNAs) have been studied extensively over the past few years. Large numbers of lncRNAs have been identified in mouse, rat, and human, and some of them have been shown to play important roles in muscle development and myogenesis. However, there are few reports on the characterization of lncRNAs covering all the development stages of skeletal muscle in livestock. Results RNA libraries constructed from developing longissimus dorsi muscle of fetal (45, 60, and 105 days of gestation) and postnatal (3 days after birth) goat (Capra hircus) were sequenced. A total of 1,034,049,894 clean reads were generated. Among them, 3981 lncRNA transcripts corresponding to 2739 lncRNA genes were identified, including 3515 intergenic lncRNAs and 466 anti-sense lncRNAs. Notably, in pairwise comparisons between the libraries of skeletal muscle at the different development stages, a total of 577 transcripts were differentially expressed (P < 0.05) which were validated by qPCR using randomly selected six lncRNA genes. The identified goat lncRNAs shared some characteristics, such as fewer exons and shorter length, with the lncRNAs in other mammals. We also found 1153 lncRNAs genes were neighbored 1455 protein-coding genes (<10 kb upstream and downstream) and functionally enriched in transcriptional regulation and development-related processes, indicating they may be in cis-regulatory relationships. Additionally, Pearson’s correlation coefficients of co-expression levels suggested 1737 lncRNAs and 19,422 mRNAs were possibly in trans-regulatory relationships (r > 0.95 or r < −0.95). These co-expressed mRNAs were enriched in development-related biological processes such as muscle system processes, regulation of cell growth, muscle cell development, regulation of transcription, and embryonic morphogenesis. Conclusions This study provides a catalog of goat muscle-related lncRNAs, and will contribute to a fuller understanding of the molecular mechanism underpinning muscle development in mammals. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-3009-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Siyuan Zhan
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yao Dong
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
| | - Wei Zhao
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jiazhong Guo
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
| | - Tao Zhong
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
| | - Linjie Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
| | - Li Li
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Hongping Zhang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|
32
|
Lv M, Xu P, Wu Y, Huang L, Li W, Lv S, Wu X, Zeng X, Shen R, Jia X, Yin Y, Gu Y, Yuan H, Xie H, Fu Z. LncRNAs as new biomarkers to differentiate triple negative breast cancer from non-triple negative breast cancer. Oncotarget 2016; 7:13047-59. [PMID: 26910840 PMCID: PMC4914340 DOI: 10.18632/oncotarget.7509] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 01/19/2016] [Indexed: 12/20/2022] Open
Abstract
Triple negative breast cancer (TNBC) is an aggressive type of breast cancer with high heterogeneity. To date, there is no efficient therapy for TNBC patients and the prognosis is poor. It is urgent to find new biomarkers for the diagnosis of TNBC or efficient therapy targets. As an area of focus in the post-genome period, long non-coding RNAs (lncRNAs) have been found to play critical roles in many cancers, including TNBC. However, there is little information on differentially expressed lncRNAs between TNBC and non-TNBC. We detected the expression levels of lncRNAs in TNBC and non-TNBC tissues separately. Then we analyzed the lncRNA expression signature of TNBC relative to non-TNBC, and found dysregulated lncRNAs participated in important biological processes though Gene Ontology and Pathway analysis. Finally, we validated these lncRNA expression levels in breast cancer tissues and cells, and then confirmed that 4 lncRNAs (RP11-434D9.1, LINC00052, BC016831, and IGKV) were correlated with TNBC occurrence through receiver operating characteristic curve analysis. This study offers helpful information to understand the initiation and development mechanisms of TNBC comprehensively and suggests potential biomarkers for diagnosis or therapy targets for clinical treatment.
Collapse
Affiliation(s)
- Mingming Lv
- Nanjing Maternity and Child Health Medical Institute, Affiliated Nanjing Maternal and Child Health Hospital, Nanjing Medical University, Nanjing, China
| | - Pengfei Xu
- Nanjing Maternity and Child Health Medical Institute, Affiliated Nanjing Maternal and Child Health Hospital, Nanjing Medical University, Nanjing, China
| | - Ying Wu
- Nanjing Maternity and Child Health Medical Institute, Affiliated Nanjing Maternal and Child Health Hospital, Nanjing Medical University, Nanjing, China
| | - Lei Huang
- First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Wenqu Li
- First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Shanshan Lv
- Nanjing Maternity and Child Health Medical Institute, Affiliated Nanjing Maternal and Child Health Hospital, Nanjing Medical University, Nanjing, China
| | - Xiaowei Wu
- Department of Pharmacology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| | - Xin Zeng
- Nanjing Maternity and Child Health Medical Institute, Affiliated Nanjing Maternal and Child Health Hospital, Nanjing Medical University, Nanjing, China
| | - Rong Shen
- Nanjing Maternity and Child Health Medical Institute, Affiliated Nanjing Maternal and Child Health Hospital, Nanjing Medical University, Nanjing, China
| | - Xuemei Jia
- Nanjing Maternity and Child Health Medical Institute, Affiliated Nanjing Maternal and Child Health Hospital, Nanjing Medical University, Nanjing, China
| | - Yongmei Yin
- First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Yun Gu
- Department of Pathology, Affiliated Nanjing Maternal and Child Health Hospital, Nanjing Medical University, Nanjing, China
| | - Hongyan Yuan
- Nanjing Maternity and Child Health Medical Institute, Affiliated Nanjing Maternal and Child Health Hospital, Nanjing Medical University, Nanjing, China
- Department of Oncology and Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, D.C., USA
| | - Hui Xie
- Nanjing Maternity and Child Health Medical Institute, Affiliated Nanjing Maternal and Child Health Hospital, Nanjing Medical University, Nanjing, China
- First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Ziyi Fu
- Nanjing Maternity and Child Health Medical Institute, Affiliated Nanjing Maternal and Child Health Hospital, Nanjing Medical University, Nanjing, China
| |
Collapse
|