1
|
Amid R, Kadkhodazadeh M, Kheiri A, Esfandiari S. Comparison of the healing process of xenografts with three different sources in critical-size bone defects: An in vivo study. JOURNAL OF ADVANCED PERIODONTOLOGY & IMPLANT DENTISTRY 2024; 16:22-29. [PMID: 39027209 PMCID: PMC11252156 DOI: 10.34172/japid.2024.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 02/26/2024] [Indexed: 07/20/2024]
Abstract
Background Xenograft bone substitutes can be obtained from different animals and processed using various methods. The present in vivo study evaluated bone regeneration after using three types of xenografts with different sources in critical-sized bone defects in rabbit calvaria. Methods Four 8-mm defects were created in calvaria of 14 New Zealand and white male rabbits. Three out of four defects were filled with xenografts of bovine, camel, and ostrich sources. The fourth defect was left unfilled as the control group. Seven rabbits were sacrificed after eight weeks and seven others after 12 weeks. Micro-CT imaging and histologic evaluation were further performed on dissected calvarias. Results After 8 and 12 weeks, the highest and lowest percentages of new bone formation were observed in the camel (27.71% and 41.92%) and control (11.33% and 15.96%) groups, respectively. In the case of residual material, the ostrich group had the most value after eight weeks (53%), while after 12 weeks, it was highest in the camel group (37%). Micro-CT findings were consistent with histologic results. Conclusion Although all three xenografts can be good choices for treating bone defects, camel-sourced xenograft seemed to be better than the other two groups. The origin and processing procedures of xenografts affected their final characteristics, which should be considered for clinical use.
Collapse
Affiliation(s)
- Reza Amid
- Dental Research Center, Research Institute of Dental Sciences, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Periodontics, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahdi Kadkhodazadeh
- Dental Research Center, Research Institute of Dental Sciences, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Periodontics, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Aida Kheiri
- Dental Research Center, Research Institute of Dental Sciences, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Periodontics, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shiva Esfandiari
- Department of Biology, School of Science, Shahid Beheshti University, Tehran, Iran
| |
Collapse
|
2
|
Ukon Y, Nishida M, Yamamori N, Takeyama K, Sakamoto K, Takenaka S, Makino T, Fujimori T, Sakai Y, Kanie Y, Kodama J, Bal Z, Tateiwa D, Nakagawa S, Hirai H, Okada S, Kaito T. Prostaglandin EP4 Selective Agonist AKDS001 Enhances New Bone Formation by Minimodeling in a Rat Heterotopic Xenograft Model of Human Bone. Front Bioeng Biotechnol 2022; 10:845716. [PMID: 35372320 PMCID: PMC8968459 DOI: 10.3389/fbioe.2022.845716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 03/02/2022] [Indexed: 11/13/2022] Open
Abstract
To enhance bone regeneration, the use of bone morphogenetic protein (BMP)-2 is an attractive option. Unfortunately, the dose-dependent side effects prevent its widespread use. Therefore, a novel osteogenic agent using a different mechanism of action than BMP-2 is highly desirable. Previous reports demonstrated that prostaglandin E2 receptor 4 (EP4) agonists have potent osteogenic effects on non-human cells and are one of the potential alternatives for BMP-2. Here, we investigated the effects of an EP4 agonist (AKDS001) on human cells with a rat heterotopic xenograft model of human bone. Bone formation in the xenograft model was significantly enhanced by AKDS001 treatment. Histomorphometric analysis showed that the mode of bone formation by AKDS001 was minimodeling rather than remodeling. In cultured human mesenchymal stem cells, AKDS001 enhanced osteogenic differentiation and mineralization via the cAMP/PKA pathway. In cultured human preosteoclasts, AKDS001 suppressed bone resorption by inhibiting differentiation into mature osteoclasts. Thus, we conclude that AKDS001 can enhance bone formation in grafted autogenous bone by minimodeling while maintaining the volume of grafted bone. The combined use of an EP4 agonist and autogenous bone grafting may be a novel treatment option to enhance bone regeneration. However, we should be careful in interpreting the results because male xenografts were implanted in male rats in the present study. It remains to be seen whether females can benefit from the positive effects of AKDS001 MS by using female xenografts implanted in female rats in clinically relevant animal models.
Collapse
Affiliation(s)
- Yuichiro Ukon
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Masahiro Nishida
- Laboratory for Pharmacology, Pharmaceuticals Research Center, Asahi Kasei Pharma Corporation, Shizuoka, Japan
| | - Natsumi Yamamori
- Laboratory for Pharmacology, Pharmaceuticals Research Center, Asahi Kasei Pharma Corporation, Shizuoka, Japan
| | - Kazuhiro Takeyama
- Laboratory for Pharmacology, Pharmaceuticals Research Center, Asahi Kasei Pharma Corporation, Shizuoka, Japan
| | - Kazuhito Sakamoto
- Laboratory for Pharmacology, Pharmaceuticals Research Center, Asahi Kasei Pharma Corporation, Shizuoka, Japan
| | - Shota Takenaka
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Takahiro Makino
- Department of Orthopaedic Surgery, Hayaishi Hospital, Osaka, Japan
| | - Takahito Fujimori
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Yusuke Sakai
- Department of Orthopaedic Surgery, Suita Municipal Hospital, Osaka, Japan
| | - Yuya Kanie
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Joe Kodama
- Department of Orthopedics, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Zeynep Bal
- Department of Signal Transduction, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Daisuke Tateiwa
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Shinichi Nakagawa
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Hiromasa Hirai
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Seiji Okada
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Takashi Kaito
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
- *Correspondence: Takashi Kaito,
| |
Collapse
|
3
|
Wongin S, Wangdee C, Nantavisai S, Banlunara W, Nakbunnum R, Waikakul S, Chotiyarnwong P, Roytrakul S, Viravaidya-Pasuwat K. Evaluation of osteochondral-like tissues using human freeze-dried cancellous bone and chondrocyte sheets to treat osteochondral defects in rabbits. Biomater Sci 2021; 9:4701-4716. [PMID: 34019604 DOI: 10.1039/d1bm00239b] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Human freeze-dried cancellous bone combined with human chondrocyte sheets have recently been used to construct an osteochondral-like tissue, which resembled a cartilage layer on a subchondral bone layer. Nevertheless, the efficacy of these human tissues in a xenogeneic model has been rarely reported. Therefore, this study aimed to evaluate the potential of human freeze-dried cancellous bones combined with human chondrocyte sheets for the treatment of osteochondral defects in rabbits. The key roles of the extracellular matrix (ECM) and released cytokines in these tissues in osteochondral repair were also assessed. Triple-layered chondrocyte sheets were constructed using a temperature-responsive culture surface. Then, they were placed onto cancellous bone to form chondrocyte sheet-cancellous bone tissues. The immunostaining of collagen type II (COL2) and the proteomic analysis of the human tissues were carried out before the transplantation. In our in vitro study, the triple-layered chondrocyte sheets adhered well on the cancellous bone, and the COL2 expression was apparent throughout the tissue structures. From the proteomic analysis results, it was found that the major function of the secreted proteins found in these tissues was protein binding. The distinct pathways were focal adhesion and the ECM-receptor interaction pathways. Among the highly expressed proteins, laminin-alpha 5 (LAMA5) and fibronectin (FN) not only played roles in the protein binding and ECM-receptor interaction, but also were involved in the cytokine-mediated signaling pathway. At 12 weeks after xenogeneic transplantation, compared to the control group, the defects treated with the chondrocyte sheets showed more hyaline-like cartilage tissue, as indicated by the abundance of safranin-O and COL2 with a partial collagen type I (COL1) expression. At 4, 8, and 12 weeks, compared to the defects treated with the cancellous bone, the staining of safranin-O and COL2 was more apparent in the defects treated with the chondrocyte sheet-cancellous bone tissues. Therefore, the human chondrocyte sheets and chondrocyte sheet-cancellous bone tissues provide a potential treatment for rabbit femoral condyle defect. LAMA5 and FN found in these human xenografts and their culture media might play key roles in the ECM-receptor interaction and might be involved in the cytokine-mediated signaling pathway during tissue repair.
Collapse
Affiliation(s)
- Sopita Wongin
- Biological Engineering Program, Faculty of Engineering, King Mongkut's University of Technology Thonburi, Bangkok 10140, Thailand.
| | - Chalika Wangdee
- Department of Veterinary Surgery, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand.
| | - Sirirat Nantavisai
- Special Task Force for Activating Research (STAR) in Biology of Embryo and Stem Cell Research in Veterinary Science, Veterinary Stem Cells and Bioengineering Innovation Center (VSCBIC), Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand.
| | - Wijit Banlunara
- Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand.
| | - Rapeepat Nakbunnum
- Department of Orthopedic Surgery, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand.
| | - Saranatra Waikakul
- Department of Orthopedic Surgery, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand.
| | - Pojchong Chotiyarnwong
- Department of Orthopedic Surgery, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand.
| | - Sittiruk Roytrakul
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Thailand Science Park, Pathum Thani, 12120, Thailand.
| | - Kwanchanok Viravaidya-Pasuwat
- Biological Engineering Program, Faculty of Engineering, King Mongkut's University of Technology Thonburi, Bangkok 10140, Thailand. and Department of Chemical Engineering, Faculty of Engineering, King Mongkut's University of Technology Thonburi, Bangkok 10140, Thailand.
| |
Collapse
|
4
|
Kurzyk A, Dębski T, Święszkowski W, Pojda Z. Comparison of adipose stem cells sources from various locations of rat body for their application for seeding on polymer scaffolds. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2019; 30:376-397. [DOI: 10.1080/09205063.2019.1570433] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Agata Kurzyk
- Department of Regenerative Medicine, Maria Sklodowska Curie Institute – Oncology Center, Warsaw, Poland
| | - Tomasz Dębski
- Department of Regenerative Medicine, Maria Sklodowska Curie Institute – Oncology Center, Warsaw, Poland
| | - Wojciech Święszkowski
- Materials Design Division, Faculty of Material Science and Engineering, Warsaw University of Technology, Warsaw, Poland
| | - Zygmunt Pojda
- Department of Regenerative Medicine, Maria Sklodowska Curie Institute – Oncology Center, Warsaw, Poland
| |
Collapse
|
5
|
Fahimipour F, Rasoulianboroujeni M, Dashtimoghadam E, Khoshroo K, Tahriri M, Bastami F, Lobner D, Tayebi L. 3D printed TCP-based scaffold incorporating VEGF-loaded PLGA microspheres for craniofacial tissue engineering. Dent Mater 2017; 33:1205-1216. [PMID: 28882369 DOI: 10.1016/j.dental.2017.06.016] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 04/28/2017] [Accepted: 06/22/2017] [Indexed: 01/13/2023]
Abstract
OBJECTIVE Vascularization is a critical process during bone regeneration/repair and the lack of tissue vascularization is recognized as a major challenge in applying bone tissue engineering methods for cranial and maxillofacial surgeries. The aim of our study is to fabricate a vascular endothelial growth factor (VEGF)-loaded gelatin/alginate/β-TCP composite scaffold by 3D printing method using a computer-assisted design (CAD) model. METHODS The paste, composed of (VEGF-loaded PLGA)-containing gelatin/alginate/β-TCP in water, was loaded into standard Nordson cartridges and promptly employed for printing the scaffolds. Rheological characterization of various gelatin/alginate/β-TCP formulations led to an optimized paste as a printable bioink at room temperature. RESULTS The in vitro release kinetics of the loaded VEGF revealed that the designed scaffolds fulfill the bioavailability of VEGF required for vascularization in the early stages of tissue regeneration. The results were confirmed by two times increment of proliferation of human umbilical vein endothelial cells (HUVECs) seeded on the scaffolds after 10 days. The compressive modulus of the scaffolds, 98±11MPa, was found to be in the range of cancellous bone suggesting their potential application for craniofacial tissue engineering. Osteoblast culture on the scaffolds showed that the construct supports cell viability, adhesion and proliferation. It was found that the ALP activity increased over 50% using VEGF-loaded scaffolds after 2 weeks of culture. SIGNIFICANCE The 3D printed gelatin/alginate/β-TCP scaffold with slow releasing of VEGF can be considered as a potential candidate for regeneration of craniofacial defects.
Collapse
Affiliation(s)
- F Fahimipour
- Marquette University School of Dentistry, Milwaukee, WI 53233, USA
| | | | - E Dashtimoghadam
- Marquette University School of Dentistry, Milwaukee, WI 53233, USA
| | - K Khoshroo
- Marquette University School of Dentistry, Milwaukee, WI 53233, USA
| | - M Tahriri
- Marquette University School of Dentistry, Milwaukee, WI 53233, USA
| | - F Bastami
- Research Institute of Dental Sciences, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - D Lobner
- Department of Biomedical Sciences, Marquette University, Milwaukee, WI 53233, USA
| | - L Tayebi
- Marquette University School of Dentistry, Milwaukee, WI 53233, USA; Department of Engineering Science, University of Oxford, Oxford OX1 3PJ, UK.
| |
Collapse
|
6
|
Ardeshirylajimi A. Applied Induced Pluripotent Stem Cells in Combination With Biomaterials in Bone Tissue Engineering. J Cell Biochem 2017; 118:3034-3042. [DOI: 10.1002/jcb.25996] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2017] [Accepted: 03/16/2017] [Indexed: 01/01/2023]
Affiliation(s)
- Abdolreza Ardeshirylajimi
- Department of Tissue Engineering and Applied Cell SciencesSchool of Advanced Technologies in MedicineShahid Beheshti University of Medical SciencesTehranIran
- Edward A. Doisy Department of Biochemistry and Molecular BiologySaint Louis University School of MedicineSaint LouisMissouri
| |
Collapse
|