2
|
Shafiee A. Design and Fabrication of Three-Dimensional Printed Scaffolds for Cancer Precision Medicine. Tissue Eng Part A 2020; 26:305-317. [PMID: 31992154 DOI: 10.1089/ten.tea.2019.0278] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Three-dimensional (3D)-engineered scaffolds have been widely investigated as drug delivery systems (DDS) or cancer models with the aim to develop effective cancer therapies. The in vitro and in vivo models developed via 3D printing (3DP) and tissue engineering concepts have significantly contributed to our understanding of cell-cell and cell-extracellular matrix interactions in the cancer microenvironment. Moreover, 3D tumor models were used to study the therapeutic efficiency of anticancer drugs. The present study aims to provide an overview of applying the 3DP and tissue engineering concepts for cancer studies with suggestions for future research directions. The 3DP technologies being used for the fabrication of personalized DDS have been highlighted and the potential technical approaches and challenges associated with the fused deposition modeling, the inkjet-powder bed, and stereolithography as the most promising 3DP techniques for drug delivery purposes are briefly described. Then, the advances, challenges, and future perspectives in tissue-engineered cancer models for precision medicine are discussed. Overall, future advances in this arena depend on the continuous integration of knowledge from cancer biology, biofabrication techniques, multiomics and patient data, and medical needs to develop effective treatments ultimately leading to improved clinical outcomes. Impact statement Three-dimensional printing (3DP) enables the fabrication of personalized medicines and drug delivery systems. The convergence of 3DP, tissue engineering concepts, and cancer biology could significantly improve our understanding of cancer biology and contribute to the development of new cancer therapies.
Collapse
Affiliation(s)
- Abbas Shafiee
- UQ Diamantina Institute, Translational Research Institute, The University of Queensland, Brisbane, Australia.,Centre in Regenerative Medicine, Institute of Health and Biomedical Innovation, Queensland University of Technology (QUT), Brisbane, Australia.,Royal Brisbane and Women's Hospital, Metro North Hospital and Health Service, Brisbane, Australia
| |
Collapse
|
3
|
McGovern JA, Shafiee A, Wagner F, Lahr CA, Landgraf M, Meinert C, Williams ED, Russell PJ, Clements JA, Loessner D, Holzapfel BM, Risbridger GP, Hutmacher DW. Humanization of the Prostate Microenvironment Reduces Homing of PC3 Prostate Cancer Cells to Human Tissue-Engineered Bone. Cancers (Basel) 2018; 10:cancers10110438. [PMID: 30428629 PMCID: PMC6265886 DOI: 10.3390/cancers10110438] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 11/02/2018] [Accepted: 11/09/2018] [Indexed: 01/12/2023] Open
Abstract
The primary tumor microenvironment is inherently important in prostate cancer (PCa) initiation, growth and metastasis. However, most current PCa animal models are based on the injection of cancer cells into the blood circulation and bypass the first steps of the metastatic cascade, hence failing to investigate the influence of the primary tumor microenvironment on PCa metastasis. Here, we investigated the spontaneous metastasis of PC3 human PCa cells from humanized prostate tissue, containing cancer-associated fibroblasts (CAFs) and prostate lymphatic and blood vessel endothelial cells (BVECs), to humanized tissue-engineered bone constructs (hTEBCs) in NOD-SCID IL2Rγnull (NSG) mice. The hTEBC formed a physiologically mature organ bone which allowed homing of metastatic PCa cells. Humanization of prostate tissue had no significant effect on the tumor burden at the primary site over the 4 weeks following intraprostatic injection, yet reduced the incidence and burden of metastases in the hTEBC. Spontaneous PCa metastases were detected in the lungs and spleen with no significant differences between the humanized and non-humanized prostate groups. A significantly greater metastatic tumor burden was observed in the liver when metastasis occurred from the humanized prostate. Together, our data suggests that the presence of human-derived CAFs and BVECs in the primary PCa microenvironment influences selectively the metastatic and homing behavior of PC3 cells in this model. Our orthotopic and humanized PCa model developed via convergence of cancer research and tissue engineering concepts provides a platform to dissect mechanisms of species-specific PCa bone metastasis and to develop precision medicine strategies.
Collapse
Affiliation(s)
- Jacqui A McGovern
- Centre in Regenerative Medicine, Institute of Health and Biomedical Innovation, Queensland University of Technology (QUT), 60 Musk Avenue, Kelvin Grove, Brisbane, QLD 4059, Australia.
| | - Abbas Shafiee
- Centre in Regenerative Medicine, Institute of Health and Biomedical Innovation, Queensland University of Technology (QUT), 60 Musk Avenue, Kelvin Grove, Brisbane, QLD 4059, Australia.
- The University of Queensland (UQ), Diamantina Institute, Translational Research Institute, Brisbane, QLD 4102, Australia.
| | - Ferdinand Wagner
- Centre in Regenerative Medicine, Institute of Health and Biomedical Innovation, Queensland University of Technology (QUT), 60 Musk Avenue, Kelvin Grove, Brisbane, QLD 4059, Australia.
- Department of Pediatric Surgery, Dr. von Hauner Children's Hospital, Ludwig-Maximilians-University of Munich, Lindwurmstraße 4, 80337 Munich, Germany.
| | - Christoph A Lahr
- Centre in Regenerative Medicine, Institute of Health and Biomedical Innovation, Queensland University of Technology (QUT), 60 Musk Avenue, Kelvin Grove, Brisbane, QLD 4059, Australia.
| | - Marietta Landgraf
- Centre in Regenerative Medicine, Institute of Health and Biomedical Innovation, Queensland University of Technology (QUT), 60 Musk Avenue, Kelvin Grove, Brisbane, QLD 4059, Australia.
| | - Christoph Meinert
- Centre in Regenerative Medicine, Institute of Health and Biomedical Innovation, Queensland University of Technology (QUT), 60 Musk Avenue, Kelvin Grove, Brisbane, QLD 4059, Australia.
| | - Elizabeth D Williams
- Australian Prostate Cancer Research Centre-Queensland, Institute of Health and Biomedical Innovation, School of Biomedical Sciences, Queensland University of Technology, Princess Alexandra Hospital, Translational Research Institute, Brisbane, QLD 4102, Australia.
| | - Pamela J Russell
- Australian Prostate Cancer Research Centre-Queensland, Institute of Health and Biomedical Innovation, School of Biomedical Sciences, Queensland University of Technology, Princess Alexandra Hospital, Translational Research Institute, Brisbane, QLD 4102, Australia.
| | - Judith A Clements
- Australian Prostate Cancer Research Centre-Queensland, Institute of Health and Biomedical Innovation, School of Biomedical Sciences, Queensland University of Technology, Princess Alexandra Hospital, Translational Research Institute, Brisbane, QLD 4102, Australia.
| | - Daniela Loessner
- Centre in Regenerative Medicine, Institute of Health and Biomedical Innovation, Queensland University of Technology (QUT), 60 Musk Avenue, Kelvin Grove, Brisbane, QLD 4059, Australia.
- Centre for Cancer and Inflammation, Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, UK.
| | - Boris M Holzapfel
- Centre in Regenerative Medicine, Institute of Health and Biomedical Innovation, Queensland University of Technology (QUT), 60 Musk Avenue, Kelvin Grove, Brisbane, QLD 4059, Australia.
- Australian Prostate Cancer Research Centre-Queensland, Institute of Health and Biomedical Innovation, School of Biomedical Sciences, Queensland University of Technology, Princess Alexandra Hospital, Translational Research Institute, Brisbane, QLD 4102, Australia.
- Orthopedic Center for Musculoskeletal Research, University of Wuerzburg, Brettreichstraße 11, 97072 Wuerzburg, Germany.
| | - Gail P Risbridger
- Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute, Monash University, Melbourne, VIC 2800, Australia.
- Prostate Cancer Research Program, Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia.
| | - Dietmar W Hutmacher
- Centre in Regenerative Medicine, Institute of Health and Biomedical Innovation, Queensland University of Technology (QUT), 60 Musk Avenue, Kelvin Grove, Brisbane, QLD 4059, Australia.
- Australian Prostate Cancer Research Centre-Queensland, Institute of Health and Biomedical Innovation, School of Biomedical Sciences, Queensland University of Technology, Princess Alexandra Hospital, Translational Research Institute, Brisbane, QLD 4102, Australia.
- ARC Industrial Transformation Training Centre in Additive Biomanufacturing, Queensland University of Technology (QUT), 60 Musk Avenue, Kelvin Grove, Brisbane, QLD 4059, Australia.
| |
Collapse
|