Peng G, Deosthale P, Pianeta R, Messersmith HM, Plotkin LI. Sex dimorphic response to osteocyte miR21 deletion in murine calvaria bone as determined by RNAseq analysis.
JBMR Plus 2024;
8:ziae054. [PMID:
38784723 PMCID:
PMC11114469 DOI:
10.1093/jbmrpl/ziae054]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/22/2024] [Accepted: 04/02/2024] [Indexed: 05/25/2024] Open
Abstract
Low levels of microRNA (miR) 21 may explain the higher osteocyte apoptosis with Cx43-deficient and aged female mice. However, miR21 exerts a sex-divergent role in osteocytes, regulating bone mass and architecture through non-cell autonomous effects on osteoblasts and osteoclasts, via sex-specific regulation of osteocyte cytokine production. miR21 deficiency improves bone strength in females, and, to a higher extent, in male miR21-deficient mice. To understand the molecular basis for the effects of miR21 deletion, mRNA was isolated from miR21fl/fl (controls) or miR21-deficient (by deletion in cells expressing Cre recombinase under the control of the 8 kb fragment of the DMP1 promoter: miR21ΔOt mice). miR21 was 50% lower in miR21ΔOt whole calvaria bone compared to control mice of the corresponding sex. RNAseq was performed in 4 samples/sex and genotype. There were 152 genes with <.05 P-value and >1 absolute log2 fold change in the male data analysis, and expression of most genes was higher in the miR21fl/fl group. Two of the genes, Actn3 and Myh4, had a false discovery rate < 0.1. Gene enrichment analysis of significant genes on both KEGG pathways and gene ontology (GO) gene sets shows that the significant genes were enriched in muscle contraction. Some muscle-related genes like Actn3 were included in multiple significant pathways. For females, only 65 genes had P-value <.05 and >1 absolute log2 fold change. Yet, no significant KEGG or GO pathways, including ≥5 significant genes, were seen, and no overlap of significant genes was found between male and female samples. Therefore, deletion of miR21 has a stronger effect on male transcriptome in calvaria, compared to females. Further, no enrichment of any pathway was detected in female samples. Thus, either there are no differences between 2 groups in female or the effect size is small, and a larger sample size is needed to uncover miR21-dependent differences.
Collapse