1
|
Yao Y, Shi J, Zhang C, Gao W, Huang N, Liu Y, Yan W, Han Y, Zhou W, Kong L. Pyruvate dehydrogenase kinase 1 protects against neuronal injury and memory loss in mouse models of diabetes. Cell Death Dis 2023; 14:722. [PMID: 37935660 PMCID: PMC10630521 DOI: 10.1038/s41419-023-06249-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 10/13/2023] [Accepted: 10/25/2023] [Indexed: 11/09/2023]
Abstract
Hyperglycemia-induced aberrant glucose metabolism is a causative factor of neurodegeneration and cognitive impairment in diabetes mellitus (DM) patients. The pyruvate dehydrogenase kinase (PDK)-lactic acid axis is regarded as a critical link between metabolic reprogramming and the pathogenic process of neurological disorders. However, its role in diabetic neuropathy remains unclear. Here, we found that PDK1 and phosphorylation of pyruvate dehydrogenase (PDH) were obviously increased in high glucose (HG)-stimulated primary neurons and Neuro-2a cell line. Acetyl-coA, a central metabolic intermediate, might enhance PDK1 expression via histone H3K9 acetylation modification in HG condition. The epigenetic regulation of PDK1 expression provided an available negative feedback pattern in response to HG environment-triggered mitochondrial metabolic overload. However, neuronal PDK1 was decreased in the hippocampus of streptozotocin (STZ)-induced diabetic mice. Our data showed that the expression of PDK1 also depended on the hypoxia-inducible factor-1 (HIF-1) transcriptional activation under the HG condition. However, HIF-1 was significantly reduced in the hippocampus of diabetic mice, which might explain the opposite expression of PDK1 in vivo. Importantly, overexpression of PDK1 reduced HG-induced reactive oxygen species (ROS) generation and neuronal apoptosis. Enhancing PDK1 expression in the hippocampus ameliorated STZ-induced cognitive impairment and neuronal degeneration in mice. Together, our study demonstrated that both acetyl-coA-induced histone acetylation and HIF-1 are necessary to direct PDK1 expression, and enhancing PDK1 may have a protective effect on cognitive recovery in diabetic mice. Schematic representation of the protective effect of PDK1 on hyperglycemia-induced neuronal injury and memory loss. High glucose enhanced the expression of PDK1 in an acetyl-coA-dependent histone acetylation modification to avoid mitochondrial metabolic overload and ROS release. However, the decrease of HIF-1 may impair the upregulation of PDK1 under hyperglycemia condition. Overexpression of PDK1 prevented hyperglycemia-induced hippocampal neuronal injury and memory loss in diabetic mice.
Collapse
Affiliation(s)
- Yuan Yao
- Department of Clinical Laboratory, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
- Key Laboratory of the Ministry of Education for Experimental Teratology, Shandong Provincial Key Laboratory of Mental Disorders, Department of Human Anatomy and Histoembryology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Jiaming Shi
- Key Laboratory of the Ministry of Education for Experimental Teratology, Shandong Provincial Key Laboratory of Mental Disorders, Department of Human Anatomy and Histoembryology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Chunlai Zhang
- Department of Clinical Laboratory, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Wei Gao
- Department of Clinical Laboratory, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Ning Huang
- Department of Clinical Laboratory, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Yaobei Liu
- Department of Clinical Laboratory, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Weiwen Yan
- Department of Clinical Laboratory, Zibo Hospital of Traditional Chinese Medicine, Zibo, Shandong, China
| | - Yingguang Han
- Department of Clinical Laboratory, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Wenjuan Zhou
- Key Laboratory of the Ministry of Education for Experimental Teratology, Shandong Provincial Key Laboratory of Mental Disorders, Department of Human Anatomy and Histoembryology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Liang Kong
- Department of Clinical Laboratory, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China.
| |
Collapse
|
2
|
Li M, Yao L, He M, Huang H, Zheng H, Ma S, Zhong Z, Yu S, Sun M, Wang H. "Adjust Zang and arouse spirit" electroacupuncture ameliorates cognitive impairment by reducing endoplasmic reticulum stress in db/db mice. Front Endocrinol (Lausanne) 2023; 14:1185022. [PMID: 37152933 PMCID: PMC10154981 DOI: 10.3389/fendo.2023.1185022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 04/03/2023] [Indexed: 05/09/2023] Open
Abstract
Introduction Diabetic cognitive impairment (DCI) is a chronic complication of the central nervous system (CNS) caused by diabetes that affects learning and memory capacities over time. Recently, acupuncture has been shown to improve cognitive impairment in streptozotocin-induced diabetic rats. However, the effects of electroacupuncture on DCI and its underlying mechanism have not yet been elucidated in detail. Methods In this study, we used db/db mice as DCI animal models which showed low cognitive, learning and memory functions. Electroacupuncture significantly ameliorated DCI, which is reflected by better spatial learning and memory function using behavioral tests. The db/db mice with cognitive impairment were randomly divided into a model group (Mod) and an electroacupuncture treatment group (Acup), while db/m mice were used as a normal control group (Con). First, the mice were subjected to behavioural tests using the Morris water maze (MWM), and body weight, blood glucose, insulin, triglycerides (TG) and total cholesterol (TC) were observed; HE, Nissl, and TUNEL staining were used to observe the morphological changes and neuronal apoptosis in the mice hippocampus; Finally, Western blot and rt-PCR were applied to detect the essential proteins and mRNA of ERS and insulin signalling pathway, as well as the expression levels of Tau and Aβ. Results Electroacupuncture significantly ameliorated DCI, which is reflected by better spatial learning and memory function using behavioral tests. Moreover, electroacupuncture attenuated diabetes-induced morphological structure change, neuronal apoptosis in the hippocampus of db/db mice. Our results revealed that electroacupuncture could regulate the expression levels of Tau and Aβ by improving hippocampal ERS levels in db/db mice, inhibiting JNK activation, attenuating IRS1 serine phosphorylation, and restoring normal transduction of the insulin signaling pathway. Discussion In summary, ERS and insulin signaling pathway paly causal roles in DCI development. Electroacupuncture can significantly alleviate the pathogenesis of DCI, improve mice's learning and memory ability, and improve cognitive dysfunction. This study adds to our understanding of the effect of acupuncture on DCI and opens the door to further research on DCI.
Collapse
Affiliation(s)
- Mengyuan Li
- Institute of Acupuncture and Massage, Northeast Asian Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun Jilin, China
| | - Lin Yao
- Institute of Acupuncture and Massage, Northeast Asian Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun Jilin, China
| | - Min He
- Institute of Acupuncture and Massage, Northeast Asian Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun Jilin, China
| | - Haipeng Huang
- Northeast Asian Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Haizhu Zheng
- College of Acupuncture and Massage, Changchun University of Chinese Medicine, Changchun Jilin, China
| | - Shiqi Ma
- College of Acupuncture and Massage, Changchun University of Chinese Medicine, Changchun Jilin, China
| | - Zhen Zhong
- College of Acupuncture and Massage, Changchun University of Chinese Medicine, Changchun Jilin, China
| | - Shuo Yu
- College of Acupuncture and Massage, Changchun University of Chinese Medicine, Changchun Jilin, China
| | - Mengmeng Sun
- Institute of Acupuncture and Massage, Northeast Asian Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun Jilin, China
- *Correspondence: Hongfeng Wang, ; Mengmeng Sun,
| | - Hongfeng Wang
- Northeast Asian Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
- *Correspondence: Hongfeng Wang, ; Mengmeng Sun,
| |
Collapse
|
3
|
Zhu L, Li Y, Xia F, Xue M, Wang Y, Jia D, Gao Y, Li L, Shi Y, Chen S, Xu G, Yuan C. H19: A vital long noncoding RNA in the treatment of diabetes and diabetic complications. Curr Pharm Des 2021; 28:1011-1018. [PMID: 34895118 DOI: 10.2174/1381612827666211210123959] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 10/29/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Increasing academic efforts have been made to explore the correlation of long noncoding RNAs (lncRNAs) with human diseases, particularly metabolic diseases like diabetes mellitus. Taking lncRNA H19 as an example, this review intends to reveal the functions and mechanism of lncRNA H19 in diabetes mellitus and diabetic complications. METHODS The research results associated with lncRNA H19 and diabetes mellitus are collected and summarized on PubMed. CONCLUSION LncRNA H19 is a potential instructive marker for the treatment of diabetes mellitus and diabetic complications.
Collapse
Affiliation(s)
- Leiqi Zhu
- College of Medical Science, China Three Gorges University, Yichang 443002. China
| | - Yuanyang Li
- College of Medical Science, China Three Gorges University, Yichang 443002. China
| | - Fangqi Xia
- College of Medical Science, China Three Gorges University, Yichang 443002. China
| | - Mengzhen Xue
- College of Medical Science, China Three Gorges University, Yichang 443002. China
| | - Yaqi Wang
- College of Medical Science, China Three Gorges University, Yichang 443002. China
| | - Dengke Jia
- College of Medical Science, China Three Gorges University, Yichang 443002. China
| | - Yan Gao
- College of Medical Science, China Three Gorges University, Yichang 443002. China
| | - Luoying Li
- College of Medical Science, China Three Gorges University, Yichang 443002. China
| | - Yue Shi
- College of Medical Science, China Three Gorges University, Yichang 443002. China
| | - Silong Chen
- College of Medical Science, China Three Gorges University, Yichang 443002. China
| | - Guangfu Xu
- College of Medical Science, China Three Gorges University, Yichang 443002. China
| | - Chengfu Yuan
- College of Medical Science, China Three Gorges University, Yichang 443002. China
| |
Collapse
|
4
|
Wang Z, Xia P, Hu J, Huang Y, Zhang F, Li L, Wang E, Guo Q, Ye Z. LncRNA MEG3 Alleviates Diabetic Cognitive Impairments by Reducing Mitochondrial-Derived Apoptosis through Promotion of FUNDC1-Related Mitophagy via Rac1-ROS Axis. ACS Chem Neurosci 2021; 12:2280-2307. [PMID: 33843209 DOI: 10.1021/acschemneuro.0c00682] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Mitochondrial dysfunction and elevated ROS generation are predominant contributors of neuronal death that is responsible for the diabetes-related cognitive impairments. Emerging evidence has demonstrated that long noncoding RNA-MEG3 can serve as an important regulator in the pathogenesis of diabetes. However, the underlying mechanisms remain to be further clarified. Here, it was observed that MEG3 was significantly down-regulated in STZ (streptozotocin)-induced diabetic rats. MEG3 overexpression noticeably improved diabetes-induced cognitive dysfunctions, accompanied by the abatement of Rac1 activation and ROS production, as well as the inhibition of mitochondria-associated apoptosis. Furthermore, either MEG3 overexpression or Rac1 inhibition promoted FUNDC1 dephosphorylation and suppressed oxidative stress and neuro-inflammation. Similarly, in vitro studies confirmed that hyperglycemia also down-regulated MEG3 expression in PC12 cells. MEG3 reintroduction protected PC12 cells against hyperglycemia-triggered neurotoxicity by improving mitochondrial fitness and repressing mitochondria-mediated apoptosis. Moreover, these neuroprotective effects of MEG3 relied on FUNDC1-related mitophagy, since silencing of FUNDC1 abolished these beneficial outcomes. Additionally, MEG3 rescued HG-induced neurotoxicity was involved in inhibiting Rac1 expression via interaction with Rac1 3'UTR. Conversely, knockdown of MEG3 showed opposite effects. NSC23766, a specific inhibitor of Rac1, fully abolished harmful effects of MEG3 depletion. Consistently, knockdown of Rac1 potentiated FUNDC1-associated mitophagy. Meanwhile, colocalization of Rac1 and FUNDC1 was found in mitochondria under hyperglycemia, which was interrupted by MEG3 overexpression. Furthermore, silencing of Rac1 promoted PGAM5 expression, and FUNDC1 strongly interacted with LC3 in Rac1-deleted cells. Altogether, our findings suggested that the Rac1/ROS axis may be a downstream signaling pathway for MEG3-induced neuroprotection, which was involved in FUNDC1-associated mitophagy.
Collapse
Affiliation(s)
- Zhihua Wang
- Department of Anesthesiology, Hainan General Hospital, Haikou 570311, China
| | - Pingping Xia
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha 410078, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Central South University, Changsha 410008, China
| | - Jie Hu
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha 410078, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Central South University, Changsha 410008, China
| | - Yan Huang
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha 410078, Hunan, China
| | - Fan Zhang
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha 410078, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Central South University, Changsha 410008, China
| | - Longyan Li
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha 410078, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Central South University, Changsha 410008, China
| | - E Wang
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha 410078, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Central South University, Changsha 410008, China
| | - Qulian Guo
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha 410078, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Central South University, Changsha 410008, China
| | - Zhi Ye
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha 410078, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Central South University, Changsha 410008, China
| |
Collapse
|
5
|
Zhou J, Zhang Z, Zhou H, Qian G. Diabetic Cognitive Dysfunction: From Bench to Clinic. Curr Med Chem 2020; 27:3151-3167. [PMID: 30727866 DOI: 10.2174/1871530319666190206225635] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Revised: 12/30/2018] [Accepted: 01/30/2019] [Indexed: 02/07/2023]
Abstract
Type 2 diabetes increases the risk of developing cognitive dysfunction in the elderly in the form of short-term memory and executive function impairment. Genetic and diet-induced models of type 2 diabetes further support this link, displaying deficits in working memory, learning, and memory performance. The risk factors for diabetic cognitive dysfunction include vascular disease, hypoglycaemia, hyperlipidaemia, adiposity, insulin resistance, lifestyle factors, and genetic factors. Using neuronal imaging technologies, diabetic patients with cognitive dysfunction show atrophy of the whole brain, particularly the grey matter, hippocampus and amygdala; increased volume of the ventricular and white matter; brain infarcts; impaired network integrity; abnormal microstructure; and reduced cerebral blood flow and amplitude of low-frequency fluctuations. The pathogenesis of type 2 diabetes with cognitive dysfunction involves hyperglycaemia, macrovascular and microvascular diseases, insulin resistance, inflammation, apoptosis, and disorders of neurotransmitters. Large clinical trials may offer further proof of biomarkers and risk factors for diabetic cognitive dysfunction. Advanced neuronal imaging technologies and novel disease animal models will assist in elucidating the precise pathogenesis and to provide better therapeutic interventions and treatment.
Collapse
Affiliation(s)
- Jiyin Zhou
- National Drug Clinical Trial Institution, the Second Affiliated Hospital, Army Medical University, Chongqing 400037, China
| | - Zuo Zhang
- National Drug Clinical Trial Institution, the Second Affiliated Hospital, Army Medical University, Chongqing 400037, China
| | - Hongli Zhou
- National Drug Clinical Trial Institution, the Second Affiliated Hospital, Army Medical University, Chongqing 400037, China
| | - Guisheng Qian
- Institute of Respiratory Diseases, the Second Affiliated Hospital, Army Medical University, Chongqing 400037, China
| |
Collapse
|
6
|
Derkach KV, Zorina II, Zakharova IO, Basova NE, Bakhtyukov AA, Shpakov AO. The Influence of Intranasally Administered
Insulin and
C-peptide on AMP-Activated Protein Kinase Activity, Mitochondrial
Dynamics and Apoptosis Markers in the Hypothalamus of Rats with
Streptozotocin-Induced Diabetes. J EVOL BIOCHEM PHYS+ 2020. [DOI: 10.1134/s0022093020030035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
7
|
Zhou W, Yao Y, Li J, Wu D, Zhao M, Yan Z, Pang A, Kong L. TIGAR Attenuates High Glucose-Induced Neuronal Apoptosis via an Autophagy Pathway. Front Mol Neurosci 2019; 12:193. [PMID: 31456661 PMCID: PMC6700368 DOI: 10.3389/fnmol.2019.00193] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 07/25/2019] [Indexed: 01/21/2023] Open
Abstract
Hyperglycemia-induced neuronal apoptosis is one of the important reasons for diabetic neuropathy. Long-time exposure to high glucose accelerates many aberrant glucose metabolic pathways and eventually leads to neuronal injury. However, the underlying mechanisms of metabolic alterations remain unknown. TP53-inducible glycolysis and apoptosis regulator (TIGAR) is an endogenous inhibitor of glycolysis and increases the flux of pentose phosphate pathway (PPP) by regulating glucose 6-phosphate dehydrogenase (G6PD). TIGAR is highly expressed in neurons, but its role in hyperglycemia-induced neuronal injury is still unclear. In this study, we observed that TIGAR and G6PD are decreased in the hippocampus of streptozotocin (STZ)-induced diabetic mice. Correspondingly, in cultured primary neurons and Neuro-2a cell line, stimulation with high glucose induced significant neuronal apoptosis and down-regulation of TIGAR expression. Overexpression of TIGAR reduced the number of TUNEL-positive neurons and prevented the activation of Caspase-3 in cultured neurons. Furthermore, enhancing the expression of TIGAR rescued high glucose-induced autophagy impairment and the decrease of G6PD. Nitric oxide synthase 1 (NOS1), a negative regulator of autophagy, is also inhibited by overexpression of TIGAR. Inhibition of autophagy abolished the protective effect of TIGAR in neuronal apoptosis in Neuro-2a. Importantly, overexpression of TIGAR in the hippocampus ameliorated STZ-induced cognitive impairment in mice. Therefore, our data demonstrated that TIGAR may have an anti-apoptosis effect via up-regulation of autophagy in diabetic neuropathy.
Collapse
Affiliation(s)
- Wenjuan Zhou
- Key Laboratory of the Ministry of Education for Experimental Teratology, Shandong Provincial Key Laboratory of Mental Disorders, Department of Human Anatomy and Histoembryology, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Yuan Yao
- Department of Physical Education, Shanghai Normal University, Shanghai, China
| | - Jinxing Li
- Department of Clinical Laboratory, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Dong Wu
- Key Laboratory of the Ministry of Education for Experimental Teratology, Shandong Provincial Key Laboratory of Mental Disorders, Department of Human Anatomy and Histoembryology, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Man Zhao
- Key Laboratory of the Ministry of Education for Experimental Teratology, Shandong Provincial Key Laboratory of Mental Disorders, Department of Human Anatomy and Histoembryology, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Zongting Yan
- Department of Clinical Laboratory, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Aimei Pang
- Department of Clinical Laboratory, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Liang Kong
- Department of Clinical Laboratory, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
8
|
Yu JL, Li C, Che LH, Zhao YH, Guo YB. Downregulation of long noncoding RNA H19 rescues hippocampal neurons from apoptosis and oxidative stress by inhibiting IGF2 methylation in mice with streptozotocin-induced diabetes mellitus. J Cell Physiol 2018; 234:10655-10670. [PMID: 30536889 DOI: 10.1002/jcp.27746] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 10/18/2018] [Indexed: 12/22/2022]
Abstract
The diabetes mellitus (DM)-induced reduction of neurogenesis in the hippocampus is consequently accompanied by cognitive decline. The present study set out to define the critical role played by long noncoding RNA H19 (lncRNA H19) in the apoptosis of hippocampal neurons, as well as oxidative stress (OS) in streptozotocin (STZ)-induced DM mice through regulation of insulin-like growth factor 2 (IGF2) methylation. The expression of lncRNA H19 in the hippocampal neurons and surviving neurons were detected. Hippocampal neurons were cultured and transfected with oe-H19, sh-H19, oe-IGF2, or sh-IGF2, followed by detection of the expressions of IGF2 and apoptosis-related genes. Determination of the lipid peroxide and glutathione levels was conducted, while antioxidant enzyme activity was identified. The IGF2 methylation, the binding of lncRNA H19 to DNA methyltransferase, and the binding of lncRNA H19 to IGF2 promoter region were detected. DM mice exhibited high expressions of H19, as well as a decreased hippocampal neurons survival rate. Higher lncRNA H19 expression was found in DM. Upregulated lncRNA H19 significantly increased the expression of Bax and caspase-3 but decreased that of Bcl-2, thus promoting the apoptosis of hippocampal neuron. Besides, upregulation of lncRNA H19 induced OS. LncRNA H19 was observed to bind specifically to the IGF2 gene promoter region and promote IGF2 methylation by enriching DNA methyltransferase, thereby silencing IGF2 expression. Taken together, downregulated lncRNA H19 reduces IGF2 methylation and enhances its expression, thereby suppressing hippocampal neuron apoptosis and OS in STZ-induced (DM) mice.
Collapse
Affiliation(s)
- Jin-Lu Yu
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, China
| | - Chao Li
- Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Li-He Che
- Department of Infectious Diseases, The First Hospital of Jilin University, Changchun, China
| | - Yu-Hao Zhao
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, China
| | - Yun-Bao Guo
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
9
|
Mantor D, Pratchayasakul W, Minta W, Sutham W, Palee S, Sripetchwandee J, Kerdphoo S, Jaiwongkum T, Sriwichaiin S, Krintratun W, Chattipakorn N, Chattipakorn SC. Both oophorectomy and obesity impaired solely hippocampal-dependent memory via increased hippocampal dysfunction. Exp Gerontol 2018; 108:149-158. [PMID: 29678475 DOI: 10.1016/j.exger.2018.04.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Revised: 03/18/2018] [Accepted: 04/16/2018] [Indexed: 02/06/2023]
Abstract
Our previous study demonstrated that obesity aggravated peripheral insulin resistance and brain dysfunction in the ovariectomized condition. Conversely, the effect of obesity followed by oophorectomy on brain oxidative stress, brain apoptosis, synaptic function and cognitive function, particularly in hippocampal-dependent and hippocampal-independent memory, has not been investigated. Our hypothesis was that oophorectomy aggravated metabolic impairment, brain dysfunction and cognitive impairment in obese rats. Thirty-two female rats were fed with either a normal diet (ND, n = 16) or a high-fat diet (HFD, n = 16) for a total of 20 weeks. At week 13, rats in each group were subdivided into sham and ovariectomized subgroups (n = 8/subgroup). At week 20, all rats were tested for hippocampal-dependent and hippocampal-independent memory by using Morris water maze test (MWM) and Novel objective recognition (NOR) tests, respectively. We found that the obese-insulin resistant condition occurred in sham-HFD-fed rats (HFS), ovariectomized-ND-fed rats (NDO), and ovariectomized-HFD-fed rats (HFO). Increased hippocampal oxidative stress level, increased hippocampal apoptosis, increased hippocampal synaptic dysfunction, decreased hippocampal estrogen level and impaired hippocampal-dependent memory were observed in HFS, NDO, and HFO rats. However, the hippocampal-independent memory, cortical estrogen levels, cortical ROS production, and cortical apoptosis showed no significant difference between groups. These findings suggested that oophorectomy and obesity exclusively impaired hippocampal-dependent memory, possibly via increased hippocampal dysfunction. Nonetheless, oophorectomy did not aggravate these deleterious effects under conditions of obesity.
Collapse
Affiliation(s)
- Duangkamol Mantor
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Wasana Pratchayasakul
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Wanitchaya Minta
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Wissuta Sutham
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Siripong Palee
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Jirapas Sripetchwandee
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Sasiwan Kerdphoo
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Thidarat Jaiwongkum
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Sirawit Sriwichaiin
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Warunsorn Krintratun
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Nipon Chattipakorn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Siriporn C Chattipakorn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand; Department of Oral Biology and Diagnostic Science, Faculty of Dentistry, Chiang Mai University, Chiang Mai 50200, Thailand.
| |
Collapse
|
10
|
Rosa AP, Mescka CP, Catarino FM, de Castro AL, Teixeira RB, Campos C, Baldo G, Graf DD, de Mattos-Dutra A, Dutra-Filho CS, da Rosa Araujo AS. Neonatal hyperglycemia induces cell death in the rat brain. Metab Brain Dis 2018; 33:333-342. [PMID: 29260360 DOI: 10.1007/s11011-017-0170-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2017] [Accepted: 12/11/2017] [Indexed: 02/06/2023]
Abstract
Several studies have examined neonatal diabetes, a rare disease characterized by hyperglycemia and low insulin levels that is usually diagnosed in the first 6 month of life. Recently, the effects of diabetes on the brain have received considerable attention. In addition, hyperglycemia may perturb brain function and might be associated with neuronal death in adult rats. However, few studies have investigated the damaging effects of neonatal hyperglycemia on the rat brain during central nervous system (CNS) development, particularly the mechanisms involved in the disease. Thus, in the present work, we investigated whether neonatal hyperglycemia induced by streptozotocin (STZ) promoted cell death and altered the levels of proteins involved in survival/death pathways in the rat brain. Cell death was assessed using FluoroJade C (FJC) staining and the expression of the p38 mitogen-activated protein kinase (p38), phosphorylated-c-Jun amino-terminal kinase (p-JNK), c-Jun amino-terminal kinase (JNK), protein kinase B (Akt), phosphorylated-protein kinase B (p-Akt), glycogen synthase kinase-3β (Gsk3β), B-cell lymphoma 2 (Bcl2) and Bcl2-associated X protein (Bax) protein were measured by Western blotting. The main results of this study showed that the metabolic alterations observed in diabetic rats (hyperglycemia and hypoinsulinemia) increased p38 expression and decreased p-Akt expression, suggesting that cell survival was altered and cell death was induced, which was confirmed by FJC staining. Therefore, the metabolic conditions observed during neonatal hyperglycemia may contribute to the harmful effect of diabetes on the CNS in a crucial phase of postnatal neuronal development.
Collapse
Affiliation(s)
- Andrea Pereira Rosa
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600 (Anexo), Porto Alegre, RS, 90035-003, Brazil.
| | - Caroline Paula Mescka
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Felipe Maciel Catarino
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600 (Anexo), Porto Alegre, RS, 90035-003, Brazil
| | - Alexandre Luz de Castro
- Programa de Pós-Graduação em Ciências Biológicas: Fisiologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Rayane Brinck Teixeira
- Programa de Pós-Graduação em Ciências Biológicas: Fisiologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Cristina Campos
- Programa de Pós-Graduação em Ciências Biológicas: Fisiologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Guilherme Baldo
- Programa de Pós-Graduação em Ciências Biológicas: Fisiologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Débora Dalmas Graf
- Departamento de Ciências Básicas da Saúde, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS, Brazil
| | - Angela de Mattos-Dutra
- Departamento de Ciências Básicas da Saúde, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS, Brazil
| | - Carlos Severo Dutra-Filho
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600 (Anexo), Porto Alegre, RS, 90035-003, Brazil
| | - Alex Sander da Rosa Araujo
- Programa de Pós-Graduação em Ciências Biológicas: Fisiologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| |
Collapse
|
11
|
Shi X, Pi L, Zhou S, Li X, Min F, Wang S, Liu Z, Wu J. Activation of Sirtuin 1 Attenuates High Glucose-Induced Neuronal Apoptosis by Deacetylating p53. Front Endocrinol (Lausanne) 2018; 9:274. [PMID: 29892266 PMCID: PMC5985296 DOI: 10.3389/fendo.2018.00274] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Accepted: 05/09/2018] [Indexed: 12/04/2022] Open
Abstract
Diabetes mellitus (DM) has been proven to be a key risk factor for cognitive impairment. Previous studies have implicated hippocampal neuronal apoptosis in diabetes-related cognitive impairment. However, the underlying mechanism remains unknown. Sirtuin 1 (SIRT1) is a protein deacetylase depended on nicotinamide adenine dinucleotide. Furthermore, it is indispensable in normal learning and memory. Whether SIRT1 is taken part in diabetes-induced neuronal apoptosis and thus involve in the development of diabetic cognitive impairment is still not clear. To address this issue, we examined the possible role of SIRT1 in hippocampal neuronal apoptosis in streptozotocin-induced diabetic mice. Furthermore, the possible mechanism was investigated in high glucose-induced SH-SY5Y cells. We found that downregulation of the activity and expression of SIRT1 was associated with increased hippocampal neuronal apoptosis in mice. In vitro, cell apoptosis induced by high glucose which was accompanied by a downregulation of SIRT1 and an increased acetylation of p53. On the contrary, activation of SIRT1 using its agonist resveratrol ameliorated cell apoptosis via deacetylating p53. Our data suggest that high concentration of glucose can induce neuronal apoptosis through downregulation of SIRT1 and increased acetylation of p53, which likely contribute to the development of cognitive impairment in diabetes.
Collapse
Affiliation(s)
- Xiajie Shi
- Department of Endocrinology, Xiangya Hospital, Central South University, Changsha, China
- Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Linhua Pi
- Department of Endocrinology, Xiangya Hospital, Central South University, Changsha, China
| | - Shanlei Zhou
- Department of Endocrinology, Xiangya Hospital, Central South University, Changsha, China
| | - Xin Li
- Department of Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Central South University, Changsha, China
| | - Fangyuan Min
- Department of Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Central South University, Changsha, China
| | - Shan Wang
- Department of Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Central South University, Changsha, China
| | - Zhenqi Liu
- Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia Health System, Charlottesville, VA, United States
| | - Jing Wu
- Department of Endocrinology, Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Jing Wu,
| |
Collapse
|
12
|
Meng Y, Wang W, Kang J, Wang X, Sun L. Role of the PI3K/AKT signalling pathway in apoptotic cell death in the cerebral cortex of streptozotocin-induced diabetic rats. Exp Ther Med 2017; 13:2417-2422. [PMID: 28565857 DOI: 10.3892/etm.2017.4259] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 01/26/2017] [Indexed: 12/18/2022] Open
Abstract
Diabetes mellitus is associated with cognitive dysfunction. Numerous previous studies have shown that type 1 diabetes-induced hyperglycaemia causes structural brain damage, such as a decrease in whole-brain grey matter. The impact of diabetes mellitus on the cerebral cortex is poorly understood and requires further clarification. In the present study, diabetes was induced via an intraperitoneal injection of streptozotocin (50 mg/kg). Hematoxylin and eosin (H&E) staining was performed to detect the morphological changes in the cerebral cortex, terminal deoxynucleotidyl transferase-mediated dUTP nick end labelling (TUNEL) staining was used to detect neuronal apoptosis and western blotting was performed to determine protein expression levels. Nine weeks after the induction of diabetes, the body weight was significantly lower and the blood glucose levels were significantly higher in the diabetic rats than in the control rats (P<0.05). H&E staining revealed nuclear chromatin condensation and cytoplasmic shrinkage in the cerebral cortex of the diabetic rats and TUNEL staining further indicated apoptotic changes in the cerebral cortex of the diabetic rats. The ratio of B-cell lymphoma 2 (Bcl-2) -associated X protein/Bcl-2 and the expression of cytochrome c and activated caspase-3 (cleaved caspase-3) were significantly increased, whereas the ratio of phosphorylated AKT/AKT was significantly decreased in the diabetic rats compared with that in the control rats (P<0.05). Taken together, these results suggested that diabetes mellitus may induce neuronal apoptosis in the cerebral cortex by downregulating AKT phosphorylation.
Collapse
Affiliation(s)
- Yan Meng
- Department of Pathophysiology, Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medicine, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Weiwei Wang
- Department of Pathophysiology, Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medicine, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Jinsong Kang
- Department of Pathophysiology, Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medicine, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Xinxue Wang
- Department of Pathophysiology, Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medicine, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Liankun Sun
- Department of Pathophysiology, Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medicine, Jilin University, Changchun, Jilin 130021, P.R. China
| |
Collapse
|
13
|
Lee SG, Yoo DY, Jung HY, Nam SM, Kim JW, Choi JH, Yi SS, Won MH, Yoon YS, Hwang IK, Moon SM. Neurons in the hippocampal CA1 region, but not the dentate gyrus, are susceptible to oxidative stress in rats with streptozotocin-induced type 1 diabetes. Neural Regen Res 2015; 10:451-6. [PMID: 25878595 PMCID: PMC4396109 DOI: 10.4103/1673-5374.153695] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/10/2015] [Indexed: 11/25/2022] Open
Abstract
In this study, we investigated the effects of streptozotocin-induced type 1 diabetes on antioxidant-like protein-1 immunoreactivity, protein carbonyl levels, and malondialdehyde formation, a marker for lipid peroxidation, in the hippocampus. For this study, streptozotocin (75 mg/kg) was intraperitoneally injected into adult rats to induce type 1 diabetes. The three experimental parameters were determined at 2, 3, 4 weeks after streptozotocin treatment. Fasting blood glucose levels significantly increased by 20.7–21.9 mM after streptozotocin treatment. The number of antioxidant-like protein-1 immunoreactive neurons significantly decreased in the hippocampal CA1 region, but not the dentate gyrus, 3 weeks after streptozotocin treatment compared to the control group. Malondialdehyde and protein carbonyl levels, which are modified by oxidative stress, significantly increased with a peak at 3 weeks after malondialdehyde treatment, and then decreased 4 weeks after malondialdehyde treatment. These results suggest that neurons in the hippocampal CA1 region, but not the dentate gyrus, are susceptible to oxidative stress 3 weeks after malondialdehyde treatment.
Collapse
Affiliation(s)
- Sang Gun Lee
- Departments of Neurosurgery, Dongtan Sacred Heart Hospital, College of Medicine, Hallym University, Hwaseong 445-907, South Korea
| | - Dae Young Yoo
- Department of Anatomy and Cell Biology, College of Veterinary Medicine, and Research Institute for Veterinary Science, Seoul National University, Seoul 151-742, South Korea
| | - Hyo Young Jung
- Department of Anatomy and Cell Biology, College of Veterinary Medicine, and Research Institute for Veterinary Science, Seoul National University, Seoul 151-742, South Korea
| | - Sung Min Nam
- Department of Anatomy and Cell Biology, College of Veterinary Medicine, and Research Institute for Veterinary Science, Seoul National University, Seoul 151-742, South Korea
| | - Jong Whi Kim
- Department of Anatomy and Cell Biology, College of Veterinary Medicine, and Research Institute for Veterinary Science, Seoul National University, Seoul 151-742, South Korea
| | - Jung Hoon Choi
- Department of Anatomy, College of Veterinary Medicine, Kangwon National University, Chuncheon 200-701, South Korea
| | - Sun Shin Yi
- Department of Biomedical Laboratory Science, College of Medical Sciences, Soonchunhyang University, Asan 336-745, South Korea
| | - Moo-Ho Won
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon 200-701, South Korea
| | - Yeo Sung Yoon
- Department of Anatomy and Cell Biology, College of Veterinary Medicine, and Research Institute for Veterinary Science, Seoul National University, Seoul 151-742, South Korea
| | - In Koo Hwang
- Department of Anatomy and Cell Biology, College of Veterinary Medicine, and Research Institute for Veterinary Science, Seoul National University, Seoul 151-742, South Korea
| | - Seung Myung Moon
- Departments of Neurosurgery, Dongtan Sacred Heart Hospital, College of Medicine, Hallym University, Hwaseong 445-907, South Korea
| |
Collapse
|