1
|
Zhao S, Li B, Gao H, Zhang Y. MiR-320a Acts as a Tumor Suppressor in Somatotroph Pituitary Neuroendocrine Tumors by Targeting BCAT1. Neuroendocrinology 2023; 114:14-24. [PMID: 37591221 DOI: 10.1159/000533549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 08/03/2023] [Indexed: 08/19/2023]
Abstract
INTRODUCTION Aberrant miR-320a has been reported to be involved in the tumorigenesis of several cancers. In our previous study, we identified the low expression of circulating miR-320a in patients with somatotroph pituitary neuroendocrine tumor (PitNET); however, the role of miR-320a in somatotroph PitNET proliferation is still unclear. METHODS Cell viability and colony formation assays were used to detect the effect of miR-320a and BCAT1 on GH3 cells. TargetScan was used to identify the target genes of miR-320a. Dual-luciferase reporter gene assay was used to explore the relation between miR-320a and BCAT1. Transcriptome and proteome analyses were performed between somatotroph PitNETs and healthy controls. The expression level of miR-320a in somatotroph PitNETs were detected by RT-qPCR and Western blot. RESULTS miR-320a mimics inhibit cell proliferation, while miR-320a inhibitors promote cell proliferation in GH3 cells. An overlap analysis using a Venn diagram revealed that BCAT1 is the only target gene of miR-320a overexpressed in somatotroph PitNETs compared to healthy controls, as revealed by both microarray and proteomics results. A dual-luciferase reporter gene assay showed that miR-320a may bind to the BCAT1-3'UTR. The transfection of miR-320a mimics downregulated the expression and miR-320a inhibitors and upregulated the expression of BCAT1 in GH3 cells. The interference of BCAT1 expression in GH3 cells downregulated cell proliferation and growth. Pan-cancer analyses demonstrated that high BCAT1 expression often indicates a poor prognosis. CONCLUSION Our findings illustrate that miR-320a may function as a tumor suppressor and BCAT1 may promote tumor progression. miR-320a may inhibit the growth of somatotroph PitNETs by targeting BCAT1.
Collapse
Affiliation(s)
- Sida Zhao
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Bin Li
- Department of Neurosurgery, Peking University People's Hospital, Beijing, China
| | - Hua Gao
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Yazhuo Zhang
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Beijing Institute for Brain Disorders Brain Tumor Center, Beijing, China
| |
Collapse
|
2
|
Ijaz M, Li X, Zhang D, Bai Y, Hou C, Hussain Z, Zheng X, Huang C. Sarcoplasmic and myofibrillar phosphoproteins profile of beef M. longissimus thoracis with different pH u at different days postmortem. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:2464-2471. [PMID: 34642961 DOI: 10.1002/jsfa.11586] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 09/27/2021] [Accepted: 10/12/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND The abnormal ultimate pH (pHu ) in postmortem muscles affect the meat quality and results in substantial economic losses. Dark, firm, and dry (DFD) meat linked with the higher postmortem pHu values and exhibited many quality issues such as dark color, tough texture and shorter shelf life. This research aimed to investigate the effect of protein phosphorylation on variations in beef pHu in order to explore the possible mechanisms underlying DFD meat formation. RESULTS Glycogen and lactate contents were higher, while L* and a* were lower in high pHu beef. Shear force was higher in intermediate pHu group. Global phosphorylation of sarcoplasmic proteins was higher in low pHu samples on day 1 and of myofibrillar proteins was higher in intermediate pHu meat on days 1 and 2 postmortem. Sarcoplasmic protein bands with different phosphorylation levels were identified as containing some glycometabolism and stress response proteins and phosphorylated myofibrillar protein bands were identified sarcomeric and metabolic proteins. CONCLUSIONS Phosphorylation of multiple proteins of glycolytic pathway and contractile machinery may play critical roles in development of DFD beef. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Muawuz Ijaz
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-products Quality & Safety in Harvest, Storage, Transportation, Management and Control, Ministry of Agriculture and Rural Affairs, Beijing, P. R. China
- Department of Animal Sciences, CVAS-Jhang 35200, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Xin Li
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-products Quality & Safety in Harvest, Storage, Transportation, Management and Control, Ministry of Agriculture and Rural Affairs, Beijing, P. R. China
| | - Dequan Zhang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-products Quality & Safety in Harvest, Storage, Transportation, Management and Control, Ministry of Agriculture and Rural Affairs, Beijing, P. R. China
| | - Yuqiang Bai
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-products Quality & Safety in Harvest, Storage, Transportation, Management and Control, Ministry of Agriculture and Rural Affairs, Beijing, P. R. China
| | - Chengli Hou
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-products Quality & Safety in Harvest, Storage, Transportation, Management and Control, Ministry of Agriculture and Rural Affairs, Beijing, P. R. China
| | - Zubair Hussain
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-products Quality & Safety in Harvest, Storage, Transportation, Management and Control, Ministry of Agriculture and Rural Affairs, Beijing, P. R. China
| | - Xiaochun Zheng
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-products Quality & Safety in Harvest, Storage, Transportation, Management and Control, Ministry of Agriculture and Rural Affairs, Beijing, P. R. China
| | - Caiyan Huang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-products Quality & Safety in Harvest, Storage, Transportation, Management and Control, Ministry of Agriculture and Rural Affairs, Beijing, P. R. China
| |
Collapse
|
3
|
Human growth hormone proteoform pattern changes in pituitary adenomas: Potential biomarkers for 3P medical approaches. EPMA J 2021; 12:67-89. [PMID: 33786091 DOI: 10.1007/s13167-021-00232-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 01/11/2021] [Indexed: 12/19/2022]
Abstract
Relevance Human growth hormone (hGH) is synthesized, stored, and secreted by somatotroph cells in the pituitary gland, and promotes human growth and metabolism. Compared to a normal pituitary, a GH-secreting pituitary adenoma can secrete excessive GH to cause pathological changes in body tissues. GH proteoform changes would be associated with GH-related disease pathogenesis. Purpose This study aimed to elucidate changes in GH proteoforms between GH-secreting pituitary adenomas and control pituitaries for the predictive diagnostics, targeted prevention, and personalization of medical services. Methods The isoelectric point (pI) and relative molecular mass (Mr) are two basic features of a proteoform that can be used to effectively array and detect proteoforms with two-dimensional gel electrophoresis (2DGE) and 2DGE-based western blot. GH proteoforms were characterized with liquid chromatography (LC) and mass spectrometry (MS). Phosphoproteomics, ubiquitinomics, acetylomics, and bioinformatics were used to analyze post-translational modifications (PTMs) of GH proteoforms in GH-secreting pituitary adenoma tissues and control pituitaries. Results Sixty-six 2D gel spots were found to contain hGH, including 46 spots (46 GH proteoforms) in GH-secreting pituitary adenomas and 35 spots (35 GH proteoforms) in control pituitaries. Further, 35 GH proteoforms in control pituitary tissues were matched with 35 of 46 GH proteoforms in GH-secreting pituitary adenoma tissues; and 11 GH proteoforms were presented in only GH-secreting pituitary adenoma tissues but not in control pituitary tissues. The matched 35 GH proteoforms showed quantitative changes in GH-secreting pituitary adenomas compared to the controls. The quantitative levels of those 46 GH proteoforms in GH-secreting pituitary adenomas were significantly different from those 35 GH proteoforms in control pituitaries. Meanwhile, different types of PTMs were identified among those GH proteoforms. Phosphoproteomics identified phosphorylation at residues Ser77, Ser132, Ser134, Thr174, and Ser176 in hGH. Ubiquitinomics identified ubiquitination at residue Lys96 in hGH. Acetylomics identified acetylation at reside Lys171 in hGH. Deamination was identified at residue Asn178 in hGH. Conclusion These findings provide the first hGH proteoform pattern changes in GH-secreting pituitary adenoma tissues compared to control pituitary tissues, and the status of partial PTMs in hGH proteoforms. Those data provide in-depth insights into biological roles of hGH in GH-related diseases, and identify hGH proteoform pattern biomarkers for treatment of a GH-secreting pituitary adenoma in the context of 3P medicine -predictive diagnostics, targeted prevention, and personalization of medical services. Supplementary information The online version contains supplementary material available at 10.1007/s13167-021-00232-7.
Collapse
|
4
|
Rai A, Das L, Mukherjee KK, Dhandapani S, Tripathi M, Ahuja CK, Radotra BD, Dutta P. Phosphorylated EGFR (pEGFR T693) as a Novel Predictor of Recurrence in Non-Functioning Pituitary Adenomas. Front Endocrinol (Lausanne) 2021; 12:708111. [PMID: 34295309 PMCID: PMC8289705 DOI: 10.3389/fendo.2021.708111] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 06/21/2021] [Indexed: 12/12/2022] Open
Abstract
PURPOSE Non-functioning pituitary adenomas (NFPAs) exhibit high recurrence rates after surgery. However, the determinants of recurrence are inconsistent in the available literature. The present study sought to investigate the association between nuclear phosphorylated EGFR (pEGFR) levels and recurrence of NFPAs. METHODS Tissue microarrays from patients undergoing adenomectomy for NFPAs at our tertiary care center from 2003 to 2015 and having a minimum of 60 months of follow-up (n=102) were accessed. Immunohistochemical analysis (IHC) was performed to determine the expression of nuclear pEGFR T693. h-score was calculated as the product of staining intensity and the number of positively staining cells. Radiological surveillance (MRI) was performed to categorize NFPAs as recurrent or non-recurrent on follow-up. RESULTS The mean age of the cohort was 50 ± 11 years with a male preponderance (61.1%). Recurrence was observed in 46.1% of the patients at a median of 123 months (IQR 72-159) of follow-up. pEGFR T693 positivity was higher in a significantly greater number of recurrent NFPAs as compared to non-recurrent NFPAs (95.7% vs 81%, p=0.02). h-scores were also significantly higher in recurrent NFPAs (122.1 ± 6 vs 81.54 ± 3.3, p<0.0001). pEGFR T693 positivity significantly predicted recurrence in NFPAs (HR=4.9, CI 2.8-8.8, p<0.0001). ROC analysis revealed an h-score cutoff of 89.8 as being associated significantly with recurrence (sensitivity 80%, specificity 78%, AUC 0.84, p<0.0001). CONCLUSION pEGFR T693 was expressed in significantly higher number of recurrent NFPAs. The h-scores were also higher in recurrent NFPAs. Nuclear pEGFR T693 may serve as a predictor of recurrence in NFPAs.
Collapse
Affiliation(s)
- Ashutosh Rai
- Department of Endocrinology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Liza Das
- Department of Endocrinology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Kanchan K. Mukherjee
- Department of Neurosurgery, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Sivashanmugam Dhandapani
- Department of Neurosurgery, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Manjul Tripathi
- Department of Neurosurgery, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Chirag Kamal Ahuja
- Department of Radiodiagnosis, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Bishan Dass Radotra
- Department of Histopathology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Pinaki Dutta
- Department of Endocrinology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
- *Correspondence: Pinaki Dutta,
| |
Collapse
|
5
|
Srirangam Nadhamuni V, Korbonits M. Novel Insights into Pituitary Tumorigenesis: Genetic and Epigenetic Mechanisms. Endocr Rev 2020; 41:bnaa006. [PMID: 32201880 PMCID: PMC7441741 DOI: 10.1210/endrev/bnaa006] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 03/19/2020] [Indexed: 02/08/2023]
Abstract
Substantial advances have been made recently in the pathobiology of pituitary tumors. Similar to many other endocrine tumors, over the last few years we have recognized the role of germline and somatic mutations in a number of syndromic or nonsyndromic conditions with pituitary tumor predisposition. These include the identification of novel germline variants in patients with familial or simplex pituitary tumors and establishment of novel somatic variants identified through next generation sequencing. Advanced techniques have allowed the exploration of epigenetic mechanisms mediated through DNA methylation, histone modifications and noncoding RNAs, such as microRNA, long noncoding RNAs and circular RNAs. These mechanisms can influence tumor formation, growth, and invasion. While genetic and epigenetic mechanisms often disrupt similar pathways, such as cell cycle regulation, in pituitary tumors there is little overlap between genes altered by germline, somatic, and epigenetic mechanisms. The interplay between these complex mechanisms driving tumorigenesis are best studied in the emerging multiomics studies. Here, we summarize insights from the recent developments in the regulation of pituitary tumorigenesis.
Collapse
Affiliation(s)
- Vinaya Srirangam Nadhamuni
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, UK
| | - Márta Korbonits
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, UK
| |
Collapse
|
6
|
Integration of quantitative phosphoproteomics and transcriptomics revealed phosphorylation-mediated molecular events as useful tools for a potential patient stratification and personalized treatment of human nonfunctional pituitary adenomas. EPMA J 2020; 11:419-467. [PMID: 32849927 DOI: 10.1007/s13167-020-00215-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 06/05/2020] [Indexed: 02/06/2023]
Abstract
Background Invasiveness is a very challenging clinical problem in nonfunctional pituitary adenomas (NFPAs), and currently, there are no effective invasiveness-related molecular biomarkers. The post-neurosurgery treatment is much different as for invasive and noninvasive NFPAs. The aim of this study was to integrate phosphoproteomics and transcriptomics data to reveal phosphorylation-mediated molecular events for invasive characteristics of NFPAs to achieve a potential tool for patient stratification, and prognostic/predictive assessment to discriminate invasive from noninvasive NFPAs for personalized attitude. Methods The 6-plex tandem mass tag (TMT) labeling reagents coupled with TiO2 enrichment of phosphopeptides and liquid chromatography-tandem mass spectrometry (LC-MS/MS) were used to identify and quantify each phosphoprotein and phosphosite in NFPAs and controls. Differentially expressed genes (DEGs) between invasive NFPA and control tissues were obtained from the Gene Expression Omnibus (GEO) database. The overlapping analysis was performed between phosphoprotiens and invasive DEGs. Gene Ontology (GO) enrichment, the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway, and protein-protein interaction (PPI) analyses were used to analyze these overlapped molecules. Results In total, 1035 phosphoproteins with 2982 phosphorylation sites were identified in NFPAs vs. controls, and 2751 DEGs were identified in invasive NFPAs vs. controls. Overlapping analysis of these phosphoproteins and DEGs exposed 130 overlapped molecules (phosphoproteins; invasive DEGs). GO enrichment and KEGG pathway analyses of 130 overlapped molecules revealed multiple biological processes and signaling pathway network alterations, including cell-cell adhesion, platelet activation, GTPase signaling pathway, protein kinase signaling, calcium signaling pathway, estrogen signaling pathway, glucagon signaling pathway, cGMP-PKG signaling pathway, GnRH signaling pathway, inflammatory mediator regulation of TRP channels, vascular smooth muscle contraction, and Fc gamma R-mediated phagocytosis, which were obviously associated with tumor invasive characteristics. For 130 overlapped molecules, PPI network-based molecular complex detection (MCODE) identified 10 hub molecules, namely SLC2A4, TSC2, AKT1, SCG3, ALB, APOL1, ACACA, SPARCL1, CHGB, and IGFBP5. These hub molecules are involved in multiple signaling pathways and represent potential predictive/prognostic markers in NFPA patients as well as they represent potential therapeutic targets. Conclusions This study provided the first large-scale phosphoprotein profiling and phosphorylation-related signaling pathway network alterations in human NFPA tissues. Further, overlapping analysis of phosphoproteins and invasive DEGs revealed the phosphorylation-mediated signaling pathway network changes in invasive NFPAs. These findings are the precious resource for in-depth insight into the molecular mechanisms of NFPAs, as well as for the discovery of effective phosphoprotein biomarkers and therapeutic targets for invasive NFPAs.
Collapse
|
7
|
Hu Y, Sun L, Zhang Y, Lang J, Rao J. Phosphoproteomics Reveals Key Regulatory Kinases and Modulated Pathways Associated with Ovarian Cancer Tumors. Onco Targets Ther 2020; 13:3595-3605. [PMID: 32425555 PMCID: PMC7196812 DOI: 10.2147/ott.s240164] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 03/06/2020] [Indexed: 12/17/2022] Open
Abstract
Background Ovarian cancer (OC) is the seventh most common cancer worldwide for women. However, there are no sufficient diagnostic methods and few treatment options available due to poor understanding of its pathogenic mechanisms. Methods To comprehensively analyze the phosphoproteomic characterization for OC, we took advantage of a quantitative global phosphoproteomics method, titanium(IV) immobilized metal affinity chromatography (Ti4+-IMAC) coupled to nanoscale liquid chromatography and quadrupole time-of-flight tandem mass spectrometry (nanoLC/Q-TOF-MS/MS) on ovarian tissue samples obtained from five OC patients and five matched controls. Results A total of 722 phosphorylated sites corresponding to 534 proteins were significantly different (fold change ≥ 2, p < 0.01) between OC patients and the controls. Among them, 83 transcription factors mainly consisted of transcription cofactors, zf-C2H2, and chromatin remodeling factors and 29 kinases were included. Further functional analysis suggested significantly biological processes were highly enriched and involved in the pathogenesis of OC, especially fructose and mannose metabolism. Moreover, the regulatory roles of modulated pathways, including MAPK, ErbB, and GnRH signaling pathways were also identified as critical processes involved in OC. The results here highlighted key phosphorylated proteins, particularly kinases, and the corresponding cancer-related metabolic and signal pathways that played important roles in the development of OC. Additionally, the expression levels of two kinases, phosphorylated CDK (T14) and phosphorylated PRKCQ (S695), were validated by Western blot analysis in the other group of ovarian tissue samples. Conclusion Altogether, our data not only provided novel insights into the potential biomarkers and therapy options for OC but also extended our knowledge on its pathophysiological mechanism.
Collapse
Affiliation(s)
- Yingchao Hu
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, People's Republic of China
| | - Lejia Sun
- Department of Liver Surgery, Peking Union Medical College (PUMC) Hospital, PUMC & Chinese Academy of Medical Sciences, Beijing 100730, People's Republic of China
| | - Yinglan Zhang
- Department of Obstetrics and Gynecology, Affiliated Beijing Chaoyang Hospital of Capital Medical University, Beijing 100020, People's Republic of China
| | - Jinghe Lang
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, People's Republic of China
| | - Jun Rao
- Jiangxi Provincial Key Laboratory of Translational Medicine and Oncology, Jiangxi Cancer Hospital, Jiangxi Cancer Center, Nanchang 330029, People's Republic of China
| |
Collapse
|